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Abstract

Context Species are influenced by factors operating

at multiple scales, but multi-scale species distribution

and abundance models are rarely used. Though multi-

scale species distribution models outperform single-

scale models, when compared through model selec-

tion, multi- and single-scale models built with com-

puter learning algorithms have not been compared.

Objectives We compared the performance of models

using a simple and accessible, multi-scale, machine

learning, species distribution and abundance modeling

framework to pseudo-optimized and unoptimized

single-scale models.

Methods We characterized environmental variables

at four spatial scales and used boosted regression trees

to build multi-scale and single-scale distribution and

abundance models for 28 bird species. For each

species and across species, we compared the perfor-

mance of multi-scale models to pseudo-optimized and

lowest-performing unoptimized single-scale models.

Results Multi-scale distribution models consistently

performed as well or better than pseudo-optimized

single-scale models and significantly better than

unoptimized single-scale models. Abundance model

performance showed a similar, but less pronounced

pattern. Mixed-effects models, that controlled for

species, provided strong evidence that multi-scale

models performed better than unoptimized single-

scale models. Although mean improvement in model

performance across species appeared minor, for indi-

vidual species, arbitrary selection of scale could result

in discrepancies of up to fourteen percent for area of

suitable habitat and population estimates.

Conclusions Scale selection should be explicitly

addressed in distribution and abundance modeling.

The multi-scale species distribution and abundance

modeling framework presented here provides a con-

cise and accessible alternative to standard pseudo-

scale optimization while addressing the scale-depen-

dent response of species to their environment.

Keywords Abundance models � Boosted regression

trees � Ecological niche model � Multi-scale model �
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Introduction

Predictions of species’ distributions and abundances

are valuable in addressing current and future conser-

vation challenges. Species distribution models

(SDMs) that tie species occurrence throughout a

landscape to the environment are now common

practice (e.g. Fournier et al. 2017; Dalgarno et al.

2017; Evangelista et al. 2018; Reino et al. 2018).

High-resolution land-use and land-cover data that can

inform SDMs are freely available (United States

Geological Survey 2011). For many species, the high

resolution of current land cover data may be too small

to capture species-environment relationships (e.g.

species respond to larger scales than the 30 m grid

cells). To investigate such relationships, researchers

must recharacterize environmental data to more

biologically appropriate scales.

The appropriate scale at which to characterize

environmental covariates is species- and process-

dependent (Wiens 1989; Wiens and Milne 1989;

Levin 1992;Mayor et al. 2009;McGarigal et al. 2016).

Within a single species and ecological process (e.g.

occurrence or abundance), the results from one scale

may not translate to another (Mayor et al. 2009). To

characterize the comprehensive influence of an envi-

ronmental covariate, multiple scales must be

examined.

Scale optimization is the specific consideration and

evaluation of the spatial scale at which a species most

strongly responds to an environmental covariate. In its

simplest form, ‘pseudo-scale optimization’ is per-

formed by comparing the performance of models (e.g.

AUC or AIC) with environmental variables charac-

terized at different scales (McGarigal et al. 2016).

More commonly, scale optimization is conducted in

multiple steps (Boscolo and Metzger 2009; Penning-

ton and Blair 2011; Timm et al. 2016; Stevens and

Conway 2020). First, each environmental covariate is

modeled at different spatial scales and model perfor-

mance is compared. The scale of each covariate’s top

performing model is considered that covariate’s

optimal scale. These optimized covariates can then

be combined into multi-scale models, which can

increase model predictive performance (McGarigal

et al. 2016; Timm et al. 2016). Though cumbersome,

scale optimized multi-scale models outperform

pseudo-scale optimized models (Stevens and Conway

2019). This scale optimized multi-scale framework

can be adapted to SDMs (e.g. Stevens and Conway

2019; Stevens and Conway 2020). More sophisticated

models that allow for a change in the strength of

environmental covariate influence have been recently

developed as well (Miguet et al. 2017; Moll et al.

2020).

SDMs run with machine learning algorithms, such

as boosted regression trees (BRTs), seem to work

under a completely different paradigm. First, model

selection is rarely a component. Second, though multi-

scale SDMs are used (e.g. Shirley et al. 2013; Halstead

et al. 2019; Hallman and Robinson 2020), the multi-

scale nature of the models is rarely discussed explic-

itly. Third, since BRTs are robust to overfitting, many

environmental covariates characterized at multiple

scales are included in the same model. BRTs can also

be used to model abundance (Wilsey et al. 2016), with

zero-inflated BRTs more appropriately dealing with

the many zeroes associated with avian count data

(Johnston et al. 2015). To our knowledge, no one has

explicitly compared multi-scale and single-scale

SDMs or abundance models run with the BRT

algorithm.

Though multi-scale models are clearly important

(Baladrón et al. 2016; Benı́tez-López et al. 2017),

studies frequently select a scale without direct exam-

ination of the scale-dependence of a species’ response

(McGarigal et al. 2016). We use a landscape-scale

study of birds in western Oregon to explore the

performance of multi-scale SDMs and abundance

models in a boosted regression tree (BRT) framework.

We assess the range of improvement in model

performance from single- to multi-scale models by

explicitly comparing our unoptimized (worst perform-

ing) single-scale models and our pseudo-optimized

(best performing) single-scale models, to multi-scale

models. Further, we assess the strength of the species-

specificity of this improvement. Most importantly, we

provide an easy to use method of multi-scale SDM and

abundance modeling that we hope increases the

accessibility of multi-scale models.

Methods

Count data, location, and study species

We studied 28 species of passerine that were specif-

ically selected to encompass a variety of habitat
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preference and prevalence, factors that are known to

affect species distribution model performance (Hall-

man and Robinson 2020). Point counts were con-

ducted from 2011 to 2013 at 2231 locations across

Benton and Polk Counties, Oregon. Benton and Polk

counties fall within Oregon’s Coast Range and

Willamette Valley ecoregions (Thorson et al. 2003).

Land cover within these counties consists primarily of

wet coniferous forests in the coastal mountain range

and a mix of agricultural and urbanized lands in the

Willamette Valley. Coast Range forests are a mix of

federal and private lands and include the full range of

forest ages from recently harvested to old-growth.

All avian point counts were conducted by (author)

WDR. Roadside counts were spaced every 0.8 km

along accessible roads. Off-road counts were con-

ducted along 200 m grids in two National Wildlife

Refuges. Roadside counts were primarily along nar-

row, lightly traveled rural logging and farming roads.

Each count lasted 5 min and was visited once during

the study. All birds seen or heard at all distances from

observer were included. Field methods to account for

imperfect detection were implemented, but for this

study we chose to use raw unadjusted counts to make

modeling methods applicable to the majority of freely

available avian occurrence and abundance data (Sul-

livan et al. 2009; Hudson et al. 2017).

Environmental data

We compiled 25 freely available rasters of environ-

mental variables to use in our models (Table 1). We

downloaded 30-m resolution Oregon land cover data

from United States Geological Survey’s National Gap

Analysis Project (United State Geological Survey

2011) and selected 13 land cover classifications to use

as model variables. We downloaded 30-m resolution

data on forest structure and composition from Land-

scape Ecology, Modeling, Mapping and Analysis’s

gradient nearest neighbor structure maps (Landscape

Ecology, Modeling, Mapping, and Analysis 2014).

We selected eight variables describing forest structure

and composition to include in our models. We

downloaded a 10-m resolution Digital Elevation

Model from the Oregon Spatial Data Library (Oregon

Spatial Data Library 2017), rescaled it to a matching

30-m resolution, and used it to calculate slope and

compound topographic index (Yang et al. 2005), an

index of topographic soil wetness. We used elevation,

slope, and compound topographic index as the topo-

graphic variables in our models. We also downloaded

a shapefile of Oregon’s waterways from the Oregon

Spatial Data Library (Oregon Spatial Data Library

2016) and calculated a 30-m resolution distance to

water as a final environmental variable in our models.

We characterized our environmental variables at

four distinct scales (Boscolo and Metzger 2009;

Shirley et al. 2013). We used focal statistics in

ArcMap to calculate mean values for structural and

topographic variables at 165 m, 315 m, 615 m, and

1215 m radii from cell centers. For land cover

variables, we used focal statistics to calculate percent

land cover at each of the same four scales. These radii

were selected to characterize the environmental vari-

ables at scales ranging from the local point count scale

to small landscapes. They are large enough to include

multiple territories of all species and are within a range

of scales previously shown to be important to territo-

rial songbirds (Boscolo and Metzger 2009; Baladrón

et al. 2016). Furthermore, smaller scales would not be

adequately represented by the unadjusted unlimited-

distance counts used here as many detected birds

would fall outside of the area in which habitat was

characterized.

SDMs and abundance model framework

We used BRTs for occurrence and abundance mod-

eling (Fig. 1; Elith et al. 2008). Although there is no

single best SDM method (Qiao et al. 2015), BRTs are

often among the top performing SDM algorithms

(Guisan et al. 2007; Elith and Graham 2009; Garcı́a-

Callejas and Araújo 2016). For each model run, we

withheld a random 20 percent of the data for model

evaluation. We used the remaining 80 percent for

model training. When comparing model performance

more generally, it is better to use a checkerboard

approach to partition data into training and evaluation

sets (Wilsey et al. 2016). In this study, however,

because our objective is to compare models from the

same dataset, all data are subject to the same spatial

structure, and checkerboarding is unnecessary. To

evaluate the stochasticity of splitting the data into

training and evaluation data sets, as well as the

inherent stochasticity of boosted regression trees, we

ran 20 iterations of each model (Barker et al. 2014;

Wilsey et al. 2016). We optimized learning rates of

boosted regression trees to allow best models of a
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minimum of 1000 trees. We held tree complexity and

bag fraction constant at 3 and 0.75, respectively (Elith

et al. 2008; Johnston et al. 2015). We used AUC (area

under the curve) to evaluate SDM performance.

Although AUC may be an inappropriate metric of

true SDM performance (Lobo et al. 2008), it is a valid

measure of SDM performance within a single species

and study extent (Edrén et al. 2010).

We ran abundance models using a zero-inflation

framework (Fig. 1; Johnston et al. 2015). Hurdle

models such as these require data to pass an initial

‘‘hurdle’’ before proceeding with the model (Kulhanek

et al. 2011; Oppel et al. 2012). Specifically, we (1) ran

SDMs as above, (2) used species prevalence as a

threshold to convert continuous habitat suitability to

binomial suitable and unsuitable habitat (Liu et al.

2005) (3) restricted our data to suitable habitat, then

(4) ran Poisson BRTs with the same parameters as the

above SDMs to model abundance within suitable habi-

tat. Due to outliers and non-normal distributions of

data, we evaluated abundance models with Kendall’s

rank correlation. True abundance at any site is an

unknown latent variable (Welsh et al. 2013). Without

accounting for imperfect detection, we estimated an

index of abundance (i.e. relative abundance; Wilsey

et al. 2016). For brevity, however, we use the term

abundance throughout.

Pseudo-scale optimization

For each species, we conducted pseudo-scale opti-

mization by running single-scale SDMs at each of the

five environmental scales (McGarigal et al. 2016). The

single-scale SDM with the greatest mean AUC was

Table 1 Environmental variables included in occurrence and abundance models

Source Type Statistic Variable name

National gap analysis

project

Land cover Percent Temperate forest

North Pacific Oak Woodland

Temperate, Grassland, Meadow & Shrubland

Western North American Freshwater Wet Meadow &

Marsh

Willamette Valley Upland Prairie and Savanna

Willamette Valley Wet Prairie

Pasture/Hay

Orchards vineyards and other high structure agriculture

Cultivated cropland

Developed, open space

Developed, low intensity

Developed, medium intensity

Developed, high intensity

Gradient nearest neighbor Forest structure &

composition

Mean Canopy cover of conifers

Canopy cover of hardwoods

Total canopy cover

Quercus canopy cover

Shrub cover

diameter diversity index

Density of live trees C 2.5 cm dbh

Basal area of live trees C 2.5 cm dbh

Oregon spatial data Library Topographic Elevation

Slope

Compound topographic index

Distance Distance to Water
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designated the pseudo-optimized single-scale SDM.

The single-scale SDMwith the lowest mean AUC was

designated the unoptimized single-scale SDM. We

developed multi-scale models by running SDMs that

included all environmental variables at all scales. For

abundance models, we conducted pseudo-scale opti-

mization as described above using Kendall’s rank

correlation as the metric of model performance. As

above, the models with the greatest and lowest mean

Kendall’s rank correlations were designated the

pseudo-optimized and unoptimized single-scale abun-

dance models, respectively. We developed multi-scale

abundance models by running Poisson BRTs that

included all environmental variables at all scales.

Multi-scale and single-scale model comparison

We used mixed-effects models to compare multi-

scale, unoptimized single-scale, and pseudo-opti-

mized single-scale model performance. We assigned

multi-scale, unoptimized single-scale, and pseudo-

optimized single-scale to each SDM or abundance

model output as a categorical variable. We treated

species as a random effect and used AUC and

Kendall’s rank correlation as the dependent variable

for SDMs and abundance models, respectively. Ran-

dom effects account for species-specific differences in

the predictability of occurrence and abundance, which

is not of interest in this study. Significantly positive

coefficients indicate higher performance for that

subset of models. For mixed-effects models with

AUC as the dependent variable, we used beta distri-

butions, but results did not differ, so we report only

normal mixed-effects models here.

To further clarify the differences between multi-

scale SDMs, pseudo-optimized single-scale SDMs,

and unoptimized single-scale SDMs, we calculated

mean AUC for each species and the percent difference

from the species mean AUC for each model. The

species mean AUC was defined as the mean AUC

from all models of a single species. By calculating

percent difference from the mean performance of each

species, species-specific effects are mitigated and

contrasts between the performance of multi-scale

models and single-scale models across species are

more evident. We used an identical approach to

examine differences in Kendall’s rank correlation

from abundance models. Finally, we used t-tests to

compare AUCs from multi-scale SDMs to unopti-

mized and pseudo-optimized single-scale SDMs for

each species individually. Similarly, we used t-tests to

compare Kendall’s rank correlations from multi-scale

abundance models to unoptimized and pseudo-

Fig. 1 Flow chart of modeling method used for multi-scale

SDMs and multi-scale abundance models. The boosted regres-

sion tree algorithm, which is robust to overfitting, allows all

environmental variables to be included in multi-scale models at

each scale of environmental characterization
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optimized single-scale abundance models for each

species individually.

Multicollinearity and overfitting

Because multi-scale models include each covariate at

each scale, the number of covariates can be high and

multicollinearity and overfitting must be considered.

Multicollinearity is not problematic for predictive

models if the collinearity structure is retained in the

test and training datasets (Dormann et al. 2012).

Though BRTs are robust to overfitting, due to the high

number of variables in multi-scale models, we felt that

it was essential to explicitly test for overfitting. To do

this, we ran models with the full environmental

covariates and two reduced covariates sets: (1) only

the most influential covariates and (2) only three

topographic covariates (Shirley et al. 2013). To select

the most influential covariates for each species, we

used the relative influence of each covariate on

occurrence or abundance (Elith et al. 2008; Illan

et al. 2014). Due to the stochasticity inherent in BRT

and data splitting, relative covariate influence changed

from iteration to iteration. To address this, we counted

the number of times each covariate was within the top

five influential covariates in the 20 iterations of the full

model. We did this for occurrence and abundance

separately at each of the four scales. Any covariate that

was within the top five influential covariates in at least

five of the 20 models was added to the influential

environmental covariate models. The number of

influential environmental covariates ranged from 6

to 11 and 7 to 11 in SDMs and abundance models,

respectively.

To check for overfitting in SDMs, we ran a mixed-

effects model on the AUCs of multi-scale SDMs built

on the three separate covariate sets: influential,

topographic, and full. Species was treated as a random

effect to control for species-specific differences. To

check for overfitting in the abundance models, we ran

a similar mixed-effects model on the Kandall’s rank

correlation for multi-scale models built on the three

covariates sets with species as a random effect. In both

mixed-effects models, higher model performance in

the influential or topographic covariate sets, which

have far fewer variables, would indicate overfitting in

the full covariate models.

Results

Species distribution models

The mixed-effects model comparing the AUC of

multi-scale, unoptimized, and pseudo-optimized sin-

gle-scale models showed a strong negative effect of

unoptimized single-scale models across species

(Table 2). Contrastingly, there was only a minor

difference in multi-scale and pseudo-optimized sin-

gle-scale models. At the individual species level,

multi-scale SDMs performed significantly better than

unoptimized single-scale SDMs in 89% (25/28) of our

study species (Fig. 2, Online Resource 1). Multi-scale

SDMs performed significantly better than pseudo-

optimized single-scale SDMs in only 21% (6/28) of

our study species. Multi-scale SDMs had higher mean

AUC than pseudo-optimized single-scale models in

93% (26/28) of our study species, and never performed

significantly worse than single-scale models.

Mean multi-scale AUCs ranged from 0.70 to 0.94

with an overall mean AUC of 0.81 across species

(Figs. 2 & 3a, Online Resource 2). Sixty-eight percent

(19/28) of our study species had mean multi-scale

AUCs above 0.80, and 14% (4/28) had mean multi-

scale AUCs above 0.90. Both overall SDM perfor-

mance and the improvement in AUC between single-

scale and multi-scale models was species-specific. The

mean improvement in AUC between pseudo-opti-

mized single-scale and multi-scale SDMs was 0.008

and the maximum improvement for any species was

0.034; improvements of one and four percent, respec-

tively. The mean improvement in AUC between

unoptimized single-scale and multi-scale SDMs was

0.031, with a maximum improvement of 0.112;

improvements of 4 and 14%, respectively. We found

no evidence of overfitting in any of our SDMs or

abundance models (Online Resource 3).

Although we found a clear scale-dependence of

species’ response to the environment across species,

the strength of that dependence was strongly species-

specific (Online Resource 2). Among six species of

warbler, two and three pseudo-optimized single-scales

were identified for SDMs and abundance models,

respectively. Likewise, three species of wren had three

pseudo-optimized single-scales for both SDMs and

abundance models. We found a negative relationship

between scale and the number of species for which that

scale was best. For example, in our SDMs there were
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eleven species that had a pseudo-optimized single-

scale of 165 m, while only two had a pseudo-

optimized single-scale of 1215 m.

Abundance models

The mixed-effects model comparing the Kendall’s

rank correlations of multi-scale, unoptimized single-

scale, and pseudo-optimized single-scale models

showed a negative effect of unoptimized single-scale

models across species (Table 2). There was nearly no

difference in multi-scale and pseudo-optimized sin-

gle-scale models. Multi-scale abundance models per-

formed significantly better than unoptimized single

scale abundance models in 39% (11/28) of our study

species (Fig. 4, Online Resource 3). Multi-scale

abundance models performed significantly better than

pseudo-optimized single-scale abundance models in

only one species but never performed significantly

worse than single-scale models. The pseudo-opti-

mized single-scale for abundance was species-specific

and differed from the pseudo-optimized single-scale

for SDMs in 50% (14/28) of our study species (Online

Resource 2).

Mean multi-scale Kendall’s rank correlations

ranged from 0.25 to 0.60 with an overall mean of

0.42 across species (Figs. 4 and 3b, Online Resource

2). Fifty-seven percent (16/28) of our study species

had mean multi-scale Kendall’s rank correlation

above 0.40 and 29% (8/28) had mean multi-scale

Kendall’s rank correlation above 0.5. Both overall

abundance model performance and the improvement

in Kendall’s rank correlation between single-scale and

multi-scale models was species-specific. There was no

mean improvement in performance between pseudo-

optimized single-scale and multi-scale abundance

models across species. The maximum improvement

in Kendall’s rank correlation between pseudo-opti-

mized single-scale and multi-scale abundance models

was 0.037, or nine percent. The mean improvement in

Kendall’s rank correlation between unoptimized sin-

gle-scale and multi-scale SDMs was 0.022, with a

maximum improvement of 0.050; five and 13 percent,

respectively.

Discussion

The need for explicit consideration of scale

Our mixed-effects models showed that across species

multi-scale models performed as well or better than

pseudo-optimized single-scale models in both distri-

bution and abundance modeling. The significantly

poorer performance of unoptimized single-scale dis-

tribution and abundance models indicates that choos-

ing an arbitrary environmental scale risks creating less

predictive models. The consideration of scale through

pseudo-optimized or multi-scale models will not

unilaterally increase model performance. The arbi-

trary selection of a single environmental scale could

result in a model with similar performance. The

advantage to pseudo-optimized and multi-scale mod-

els is therefore in removing the guesswork and

ensuring the use of environmental scales that result

in higher performing models.

Results from the investigation of individual species

strengthen our findings that (1) multi-scale distribution

models perform as well or better than pseudo-

optimized single-scale models and (2) the explicit

Table 2 Coefficients from mixed-effects models examining the effects of scale (multi-scale, unoptimized single-scale, and pseudo-

optimized single-scale) on AUCs from SDMs and Kendall’s rank correlation from abundance models of 28 species of passerine

Coefficient Estimate Std. error t value

Species Distribution Models Intercept* 0.817 0.012 69.9

Multi-scale 0.008 0.001 5.2

Unoptimized single-scale - 0.023 0.001 - 15.5

Abundance Models Intercept* 0.427 0.018 23.9

Multi-scale 0.001 0.003 0.2

Unoptimized single-scale - 0.021 0.003 - 8.4

*Intercept represents the pseudo-optimized model
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consideration of environmental scale through multi-

scale or pseudo-optimized single-scale modeling

ameliorates the risks of arbitrary scale selection.

Though at the individual species level multi-scale

models performed significantly better than pseudo-

optimized single-scale models in only 21% of the

study species, multi-scale distribution models outper-

formed pseudo-optimized single-scale models in all

but two species. If we were to increase sample sizes by

running more iterations of each model, the number of

significantly higher performing multi-scale models

would no doubt increase. This indicates that multi-

scale models do perform better than pseudo-optimized

single-scale models. The risk of arbitrary scale

selection is highlighted at the individual species level

by the significantly lower performance of unoptimized

single-scale models in nearly 90% of the study species.

Results from abundance models appear to corroborate

these findings.

The degree of improvement between the modeling

frameworks is species-specific and can be ecologically

significant. Although multi-scale distribution models

Fig. 2 Mean model

performance (AUC) and

95% confidence intervals for

the unoptimized single-

scale, pseudo-optimized

single-scale, and multi-scale

SDMs for 28 passerine

species. Significantly higher

performance of multi-scale

models than unoptimized

and pseudo-optimized

single-scale models

indicated by * and **,

respectively
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generally outperformed pseudo-optimized models, the

mean improvement was relatively minor. The

improvement between unoptimized single-scale mod-

els and multi-scale models, however, was much

higher, especially for specific species. Brown Creeper,

for example, had an improvement of over 0.1 AUC

from unoptimized to multi-scale distribution models.

Researchers interested in identifying suitable habitat

and estimating populations often follow a similar

process to what we used here: (1) run a SDM to

estimate habitat suitability, (2) use a threshold such as

prevalence to convert continuous suitability to bino-

mial suitable and unsuitable habitat, and (3) run an

abundance or density model to get population esti-

mates within suitable habitat. When we use unopti-

mized single-scale models to estimate suitable habitat,

abundance, and population size for Brown Creeper

(converted abundances to densities naively assuming

200 m area surveyed), we estimate 13 percent more

suitable habitat and a 14 percent smaller population

size in our study area than when we use multi-scale

models (Fig. 5). For common species such as Brown

Creeper, these differences have little conservation

impact, but similar discrepancies in species of con-

servation concern could result is poorly informed

management decisions.

Advantages of our multi-scale approach

First, this multi-scale approach is a simple and concise

method of explicitly accounting for environmental

scale in distribution and abundance models. BRTs, as

seen in this study, are robust to overfitting. This allows

researchers to include environmental covariates char-

acterized at many scales in a single multi-scale model.

Pseudo-scale-optimization techniques generally

include making a model for each environmental scale,

then comparing model performance or AIC. More

comprehensive approaches include making separate

models for each environmental covariate at each

environmental scale, to optimize each covariate indi-

vidually. Theoretically, this allows optimization to

account for a species responding to different environ-

mental forces at different scales. In practice, this

results in a large number of complex models, or few

environmental covariates considered. Such complex-

ity may be the reason that scale-optimization remains

uncommon (McGarigal et al. 2016). Even studies that

specifically address scale may fail to explicitly

investigate the appropriateness of the scales they use

(e.g. Fournier et al. 2017). The multi-scale approach

employed here allows species to respond to difference

environmental covariates at different scales all within

a single model.

Second, by including all environmental covariates

characterized at each scale in the same model, we

allow for the relative influence of each to adjust in

relation to other included covariates (Table 3). As

described above, other multi-scale model frameworks

Fig. 3 Boxplots of a mean percent difference in model

performance (AUC) from overall species mean in unoptimized

single-scale, pseudo-optimized single-scale, and multi-scale

SDMs for 28 species of passerine and bmean percent difference

in model performance (Kendall’s Predictive Correlation) from

overall species mean in unoptimized single-scale, pseudo-

optimized single-scale, and multi-scale abundance models for

28 species of passerine
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optimize the scale of each covariate separately before

combining the optimized covariates together in a

single multi-scale model. These covariates, however,

may have different optimal scales in single-covariate

models than multi-scale models that include other

similarly optimized covariates. Covariates that explain

overlapping variance at one scale may explain more

residual variance at other scales. Studies that include

such comprehensive approaches may therefore use

final models that fail to incorporate the optimal scale

for each variable. This issue is irrelevant with the

multi-scale modeling method presented here.

Fig. 4 Mean model performance (Kendall’s predictive corre-

lation) and 95% confidence intervals for the unoptimized single-

scale, pseudo-optimized single-scale, and multi-scale abun-

dance models for 28 passerine species. Significantly higher

performance of multi-scale models than unoptimized and

pseudo-optimized single-scale models indicated by * and **,

respectively
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Considerations when choosing scales

No single scale is appropriate for all organisms (Wiens

1989; Levin 1992; Nadeau et al. 2017). The negative

relationship between scale and the number of species

for which that scale was best is likely a product of

species selection. Most of our study species have small

territory sizes that fall within the smaller radii used.

Table 3 Example of the

mean relative influence of

the top ten variables in 20

iterations of a multi-scale

SDM of White-crowned

Sparrows. Scale is the

radius from cell centers

used for characterization of

the environmental variable

Variable Scale Relative influence

Total canopy cover 165 4.6541

Quercus canopy cover 1215 4.1105

Western North American Freshwater Wet Meadow & Marsh 1215 3.7455

Orchards Vineyards and other high Structure agriculture 315 3.5103

Elevation 165 3.0409

North Pacific Oak Woodland 1215 2.6958

Elevation 1215 2.4385

Total canopy cover 315 2.3887

Orchards Vineyards and other high Structure agriculture 1215 2.1227

Density of live trees C 2.5 cm dbh 165 1.7421

Fig. 5 Brown Creeper abundance maps in suitable habitat throughout the study area predicted by a the unoptimized single-scale and

b multi-scale abundance models
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SDMs of species with larger territories, such as

raptors, would likely require topographic and land

cover variables to be characterized at larger scales

than considered here. Scale must be considered for

each species independently.

We based the scales used in our study on similar

songbird distribution modeling efforts (e.g. Boscolo

and Metzger 2009; Shirley et al. 2013; Baladrón et al.

2016). We chose to use unlimited distance counts

because we wanted our methods to be applicable to the

eBird database. Given that birds were frequently

detected over 100 m from the observer, we chose not

to include smaller environmental scales that might be

relevant to single territory sizes. This framework,

however, could be used to build multi-level models

with scales that range from microhabitat structures to

landscapes (Meyer and Thuiller 2006). The inclusion

of vastly different scales might further improve model

performance and with this framework, the inclusion of

poorly predictive scales should have little effect on

overall model performance.

The pseudo-optimized single-scale of any ecolog-

ical process is also influenced by the environmental

covariates examined. There is a hierarchical structure

of driving environmental forces in species’ distribu-

tions (Pearson and Dawson 2003). Climatic factors

drive species’ distributions at the largest scales.

Topographic then land cover factors are the dominant

environmental forces driving distributions as scale

decreases. Local factors such as habitat structure and

composition drive distributions at more local scales.

Biotic interactions may be important, especially at

smaller scales where competitive exclusion may cause

unoccupied sites in otherwise suitable habitat (Pear-

son and Dawson 2003; Araújo and Luoto 2007; Wiens

et al. 2009). Recently, authors have argued that biotic

interactions can and should be included at all scales

(Wisz et al. 2013; Blois et al. 2013), but such

interactions can be complex and difficult to model.

Since environmental factors influence biotic interac-

tions, environmental variables can be good predictors

of distributions that are driven by biotic interactions

(Godsoe et al. 2016). The pseudo-optimized single-

scale is therefore dependent on the environmental

covariates included in models. If only climatic factors

were included, pseudo-optimized single-scales would

increase. When using spectral bands to characterize

the environment for SDMs, Shirley et al. (2013) found

a most-influential-scale of nearly three times the

largest scale used in our study. Spectral bands likely

represent a mix of environmental forces that fall

higher on the hierarchy than those considered here.

Caveat on modeling abundance

The less pronounced pattern in abundance model

performance between single- and multi-scale models

may be due to the inherent complexity in modeling

abundance. Raw point counts can be poor indicators of

abundance at the point count scale (Toms et al. 2006).

At small scales, stochastic events may be highly

influential on processes such as abundance and

abundance is a larger scale process than occurrence

(Wiens et al. 1989). Furthermore, behavioral interac-

tions that were not considered here, may play a larger

role at smaller spatial scales (Wiens et al. 2009).

Studies that model abundance at larger spatial grains

tend to have higher predictive performance (i.e. Illan

et al. 2014; Barker et al. 2014).

Imperfect detection also adds to the noise in

abundance modeling (Nichols et al. 2009). Estimation

of imperfect detection can be used to create offsets to

model ‘‘true’’ abundance in place of the raw observed

abundance (Solymos et al. 2013). In doing so, ‘‘true’’

abundance is treated as an unverifiable latent variable

(Welsh et al. 2013). Inclusion of detection probability

may provide a useful extension to our modeling

framework in the future. For a more complete

discussion of the complexity in modeling abundance

please refer to the Online Resource 4.
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Garcı́a-Callejas D, Araújo MB (2016) The effects of model and

data complexity on predictions from species distributions

models. Ecol Model 326:4–12

Godsoe W, Franklin J, Blanchet FG (2016) Effects of biotic

interactions on modeled species’ distribution can be

masked by environmental gradients. Ecol Evol 7:654–664

Guisan A, Graham CH, Elith J, Huettmann F (2007) Sensitivity

of predictive species distribution models to change in grain

size. Divers Distrib 13:332–340

Hallman TA, Robinson WD (2020) Deciphering ecology from

statistical artefacts: competing influence of sample size,

prevalence and habitat specialization on species distribu-

tion models and how small evaluation datasets can inflate

metrics of performance. Divers Distrib. https://doi.org/10.

1111/ddi.13030

Halstead KE, Alexander JD, Hadley AS, Stephens JL, Yang Z,

Betts MG (2019) Using a species-centered approach to

predict bird community responses to habitat fragmentation.

Landsc Ecol 34:1919–1935

Hudson M-AR, Francis CM, Campbell KJ, Downes CM, Smith

AC, Pardieck KL (2017) The role of the North American

breeding bird survey in conservation. Condor 119:526–545

Illan JG, Thomas CD, Jones JA, Wong WK, Shirley SM, Betts,

MG (2014) Precipitation and winter temperature predict

long-term range-scale abundance changes in Western

North American birds. Glob Change Biol 20:3351–3364

Johnston A, Fink D, Reynolds MD, Hochachka WM, Sullivan

BL, Bruns NE, Hallstein E, Merrifield MS, Matsumoto S,

Kelling S (2015) Abundance models improve spatial and

temporal prioritization of conservation resources. Ecol

Appl 25:1749–1756

Kulhanek SA, Leung B, Ricciardi A (2011) Using ecological

niche models to predict the abundance and impact of

invasive species: application to the common carp. Ecol

Appl 21:203–213

Landscape Ecology, Modeling, Mapping, and Analysis (2014)

GNN Structure Maps. https://lemma.forestry.oregonstate.

edu/data/structure-maps. Accessed 6 Sep 2016

Levin SA (1992) The problem of pattern and scale in ecology:

the Robert H. MacArthur award lecture. Ecology

73:1943–1967

Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting

thresholds of occurrence in the prediction of species dis-

tributions. Ecography 28:385–393
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