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Abstract

Context Functional responses to landscape hetero-

geneity are context-dependent, hampering the trans-

ferability of landscape-scale conservation initiatives.

Japan provides a unique opportunity to test for

regional modification of landscape effects due to its

broad temperature gradient, coincident with a gradient

of historical disturbance intensity.

Objectives To quantify and understand how regional

contexts modify forest bird community responses to

landscape heterogeneity across Japan.

Methods We characterised the functional trait com-

position and diversity of breeding bird communities

from 297 forest sites, and applied a cross-scale

analytical framework to explain regional variation in

community responses.

Results The effects of landscape diversity, coinci-

dent with forest loss, varied in strength and even

direction across the temperature gradient. Cool

regions of Japan with highly forested, homogeneous

landscapes supported bird communities dominated by

forest specialists: those with narrow habitat breadths

and insectivorous diets. Warmer regions comprised
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communities dominated by generalists with wider

habitat breadths, even in contiguous, highly forested

landscapes. Heterogeneous landscapes selected for

generalists, and only promoted functional trait diver-

sity in cool regions where both specialists and

generalists can be supplied by a diverse regional pool.

Conclusions Our results provide evidence that

regional variation in trait responses to landscape

heterogeneity—driven by past environmental filtering

and broad-scale climates—leads to differential com-

munity responses across Japan. Future research that

seeks a nuanced understanding of the regional mod-

ification of landscape variables will better serve to

inform and target real-world conservation efforts.

Keywords Biodiversity � Cross-scale interaction �
Diet � Extinction filter � Functional diversity � Habitat
breadth � Japan � Landscape heterogeneity � Legacy

Introduction

Humans have changed landscape pattern and process

across most of the terrestrial biosphere (Ellis and

Ramankutty 2008; Ellis 2011), yielding significant

changes to biodiversity (Newbold et al. 2015). Studies

documenting the effects of landscape pattern on

biodiversity are increasingly adopting functional,

rather than solely taxonomic perspectives (Laliberté

et al. 2010; Coster et al. 2015; Klingbeil and Willig

2016; Vaccaro et al. 2019), by focussing on the

morphological, physiological or phenological traits

that influence species’ abilities to acquire resources,

disperse and persist (Violle et al. 2007). This is

because functional rather than taxonomic analyses

should hold greater scope for generalisation, espe-

cially when comparing different regions with different

species pools (McGill et al. 2006; Shipley 2007).

However, much idiosyncrasy remains among studies

of functional responses to landscape pattern, whereby

the relative importance of ecological processes seems

to differ from place to place (Rhodes et al. 2008;

Morissette et al. 2019), and findings from one study do

not necessarily apply to others (Randin et al. 2006;

Lessard et al. 2012). Such context-dependency is

poorly understood (Shackelford et al. 2016; Jin et al.

2019), hampering the effective transferability of

landscape-scale conservation and management poli-

cies (Gilroy et al. 2014).

Landscape pattern may be considered as an eco-

logical filter, which selects or excludes species from

the regional species pool according to particular traits

(Duflot et al. 2014). However, variation amongst

regional contexts, as defined by varying climate,

productivity, habitat quality and disturbance history,

and consequently species pools, could potentially

modify the strength and even direction of community

responses to landscape pattern (Mayfield et al. 2010;

Lessard et al. 2012; Conradi and Kollmann 2016). For

example, Morissette et al. (2019) demonstrated

regional differences in the responses of several

wetland-associated bird species to landscapes varying

in boreal forest conversion to agriculture in Canada,

likely because of regional differences in forest types

and species pools. Historically disturbed regions

comprise higher densities of generalists rather than

specialists with distinct traits, a result of the greater

vulnerability of specialists to environmental change

(Clavel et al. 2011). Such functionally homogenous

species pools might constrain any potential ecological

filtering imposed on the community response to

landscape properties. For example, a global meta-

analysis of animal density responses to forest patch

size found weaker relationships from eastern than

western continents (Bender et al. 1998). Eastern

continents are likely to have more area-insensitive

generalists dominate their regional pools, having had

longer histories of large-scale anthropogenic distur-

bance than western regions (Bender et al. 1998).

Similarly, Betts et al. (2019) demonstrated that species

inhabiting landscapes with high levels of disturbances

over historical (evolutionary) time scales, i.e. sub-

jected to an ‘extinction filter’ were more resilient to

new disturbances, likely because sensitive species

have been driven locally extinct or because extant

species have adapted to disturbance.

Regional variation in the effects of landscape

patterns on communities have been primarily detected

through the synthesis of published regional case

studies using meta-analysis. Examples include frag-

mentation effects on nest predation (Chalfoun et al.

2002), habitat amount effects on population densities

(Bender et al. 1998; Connor et al. 2000), and edge

effects on communities (Ries et al. 2004). Method-

ological differences between individual studies that

comprise the meta-analyses have made attribution
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concerning true regional variation in landscape effects

challenging: different studies use different spatial

extents, grains and designs (Spake and Doncaster

2017), sample from different ranges of landscape

metrics that characterise landscape pattern, and often

do not adequately parametrise regional contexts to

allow for a mechanistic understanding (Gerstner et al.

2017). Large-scale empirical tests of regional varia-

tion in functional responses to landscape pattern,

based on standardised sampling, are lacking.

The nation of Japan provides a unique opportunity

to test for regional variation in avian community

responses to local landscape pattern (Yamaura et al.

2011; Spake et al. 2019b). Around two thirds of Japan

is forested, with varying degrees of landscape pattern

from forest to agricultural and urban land uses, leading

to high variability in landscape-level forest cover, and

consequently varying degrees of the diversity of

different land cover types. Indeed, forest cover and

landscape diversity are inextricably confounded in

Japan (Katayama et al. 2014), and we use the term

‘landscape heterogeneity’ to refer to both processes.

The diversity and community composition of birds are

both known to be driven by landscape heterogeneity

(e.g. Yamaura et al. 2008).

Moreover, a temperature gradient covaries strongly

with forest quality and historical land use intensity

across Japan (details in Appendix S1), providing the

opportunity to test for the gradient’s moderation of

avian community responses to landscape heterogene-

ity (Totman 1989; Katayama et al. 2014). Temperature

largely determines the relative abundance of tree

functional types, with forests increasingly dominated

by deciduous broadleaved trees with decreasing

temperatures, coinciding with a decrease in evergreen

broadleaved trees (Suzuki et al. 2015). Because cooler

regions are dominated by broadleaved deciduous

trees, their productivity increases rapidly from spring

to summer to support greater insect abundance so that

they comprise a higher quality food resource during

the breeding season than forests in warmer regions

(Blondel et al. 1993; Huston and Wolverton 2009;

Fujita et al. 2016), as lepidopteran larvae are important

food sources for nestlings (Holmes et al. 1986; Huston

and Wolverton 2009). Moreover, forests in cooler

regions have experienced less historical disturbance

than warmer regions, where evergreen broad-leaved

forests have been exploited by humans for millennia to

support energy-intensive industries such as traditional

ironwork and pottery-making (Totman 1989; Fuka-

sawa and Akasaka 2019). Consequently, cooler

regions in Japan support relatively rich avian species

pools during the breeding season, with a higher

proportion of specialists (Yamaura et al. 2011;

Katayama et al. 2014). Therefore, across the temper-

ature gradient of Japan, which coincides with past

disturbance intensity and productivity, we can expect

the effect of landscape heterogeneity on avian func-

tional traits to interact with the temperature gradient

and exhibit regional variation (i.e., ‘cross-scale inter-

actions’; Peters et al. 2007).

We applied a recently developed framework (Spake

et al. 2019a), to test for and quantify cross-scale

interactions that drive variability in forest bird com-

munity responses (trait composition and diversity) to

landscape heterogeneity using a national-scale stan-

dardized monitoring dataset. This framework helps to

reveal how different regional contexts might constrain

or modify the effects of local drivers on a phenomenon

in question, allowing an understanding of context-

dependence. We were specifically interested in two

main questions: (1) How does the distribution and

diversity of individual avian functional traits respond

to landscape heterogeneity; and (2) is there regional

variation in these responses? Decreasing forest

amount typically concords with a reduction in food

and nesting resources, and habitat quality, due to the

intensification of edge effects (Fletcher 2005). There-

fore, the dominance of forest specialists, i.e. species

that breed only in forest interiors (away from open

habitats and edges; Askins 1992; Kurosawa and

Askins 2003), and species with insectivorous diets

were hypothesised to decline with landscape hetero-

geneity. We predicted this to manifest to an increase in

mean habitat breadth and a decrease in insectivory

(Blake 1983; Gray et al. 2007). We predicted this

filtering to be weaker in warm, historically disturbed

regions where generalists are expected to dominate in

even highly forested landscapes (Fig. 1; Bender et al.

1998). Given that cooler regions in Japan have more

diverse species pools and comprise higher quality

forest (Blondel et al. 1993; Huston and Wolverton

2008), we hypothesised that specialists, which dom-

inate in contiguous landscapes, could also persist in

heterogeneous landscapes in addition to generalists

(Fujita et al. 2016) within cooler regions, and therefore

predicted stronger trait diversity responses to
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Fig. 1 Hypothesised filtering of regional species pools by

landscape heterogeneity in cool (left) and warm (right) regions

of Japan, and consequences for functional trait composition of

forest bird communities. Circles represent generalist species that

utilise multiple habitat types, while varying shapes represent

specialists with specific habitat affinities; different colours

represent different species. Tree colour represents forest habitat

quality (green = high in cooler regions, grey = low in warm

regions). In the cool region, low historical disturbance means

that a species-rich pool can supply both specialist and generalist

species to high quality habitats in diverse landscapes with lower

forest cover, in which specialists can persist. In the warm region,

a depauperate species pool dominated by generalists means that

few specialists can be supported in even highly forested

landscapes, and less so in diverse landscapes with lower forest

cover. Note that sampling is only from forest habitats
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landscape heterogeneity in cooler regions than in

warmer regions.

Methods

We quantified the effects of environmental drivers on

community functional trait means and trait diversity

values by comparing observed communities to null

models simulating random distributions of traits

within communities of a given species richness (Bello

et al. 2012; Concepción et al. 2017). We tested for

cross-scale interactions between temperature and

landscape heterogeneity to identify regional variation

in landscape effects on these trait parameters. We

modelled variation in temperature as surrogate for

variation in historical disturbance intensity, forest

quality as a food resource and regional species pools

(justified in Appendix S1), because temperature is

likely measured with the least error and available

across Japan. We discuss the limitations of this

approach in the discussion.

Study area: Japan

We used data on songbird communities sampled at

forest sites across Japan. Japan is composed of many

islands, with the four largest islands accounting for

most of the land area spanning the warm-temperate

zone to the boreal zone (approximately 31�–45.5� N,
129.6�–145.8� E). In Japan, 68% of the land is

forested, 40% of which consists of conifer plantations,

and the remainder classed as naturally regenerating

following varying degrees of exploitation for raw

materials (Yamaura et al. 2012). In addition to forests,

agricultural land (* 12%) and grassland (* 3%)

have long beenmaintained by human activity, creating

heterogeneous mosaic landscapes known as

‘satoyama’ (Takeuchi 2010). See Appendix S1 for

further details of historical disturbance and forest

quality variation with temperature across Japan.

Forest breeding songbird abundance data

Songbird abundance data were obtained from the

Monitoring Sites 1000 Project, a nationwide monitor-

ing survey of biodiversity across terrestrial and aquatic

ecosystems (Ministry of the Environment 2018;

Appendix S2). We selected only forest sites because

the sampling of other terrestrial habitats (grasslands)

was comparatively rare, and to reduce the likelihood

of ‘detection filtering’, whereby functional traits might

influence the probability of detecting species during a

field survey (Roth et al. 2018) (see discussion). At

each site, a survey was conducted every 1–5 years.

Approximately 10% of sites were surveyed by

ornithologists, while the rest were surveyed by citizen

scientists, many of whom were members of the Wild

Bird Society of Japan (https://www.wbsj.org/en/).

Citizen surveyors also received specialist training in

species identification both indoors and outdoors at

annual training centres located across Japan. These

trained surveyors visited each site four times in the

breeding season (April to July) and recorded all birds

detected. The surveys were conducted on both clear

and cloudy days (from 0400 to 0900 h), on days

without rain or strong winds to minimise variation in

detection probability.

In each site, there was a single 1-km transect with

five point-count locations, which were[ 100-m apart.

Three detection radii were defined during the survey:

(i) within 50-m, (ii) between 50- and 200-m, and (iii)

over 200-m. Survey ranges from each point over-

lapped for the larger radii, so we used data from the

50-m survey radius only to avoid double counting

among surveys. Moreover, the use of a 50-m detection

radius is recommended in point-count surveys (Ralph

et al. 1993; Matsuoka et al. 2014), because it has been

shown that detection probability of songbirds can be

sufficiently high and comparable within this radius for

different species and different habitats (Schieck 1997;

Alldredge et al. 2007; Yamaura and Royle 2017).

We used the survey results from 2009 to 2015

because the same survey method (i.e., point census

counts) was used in each of these years. First, we took

the maximum abundance observed for each species in

five point-count locations for each site in each year.

We used the maximum number of individuals from

four surveys in a single year, based on the assumption

that abundance is generally underestimated by point

counts, and therefore that the maximum number of

birds detected in any visit represents the minimum

number at that location (Bibby et al. 2000). Moreover,

the maximum, rather than the average was used

because averaging values across a breeding season

would produce a misleading estimate for species that

were not present or not singing during one or more

surveys (Miller et al. 2004) and because maximum
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point-counts can better reflect territory abundance

than mean point-counts (Toms et al. 2006).

We then took the maximum values of abundance

across the available sampling years as the analysis

unit, which correlated strongly with the mean abun-

dance among multiple survey years (Appendix S3).

This approach was used instead of a mixed-effects

modelling framework (with site identified as a random

effect), because models can be unstable if sample sizes

across groups are highly unbalanced, i.e. if some

groups contain very few data (Grueber et al. 2011).

Almost half the sites were sampled for one year only

(Appendix S3). Our large number of sites with just a

single year’s data, and therefore number of levels of

the random effect with just one observation, would

artificially reduce the 95% confidence intervals (Har-

rison 2015). Sites outside of the four main islands of

the Japanese Archipelago were excluded, due to their

very different biogeography, outlying values of cli-

mate variables, and to control for island-size effects on

regional species pools (Yamaura et al. 2011; Saito

et al. 2016; Fukasawa and Akasaka 2019; Kawamura

et al. 2019). We also excluded transects for which

environmental data (climate and land cover) could not

be obtained (Katayama et al. 2014), giving a total of

297 forest sites available for analysis (Appendix S2).

Environmental data

Climatic variables were available at a 1-km resolution

(the Mesh Climate Value 2010 provided by the

Meteorological Agency of Japan), and included tem-

perature, rainfall, sunshine duration, and snow depth

based on annual averages between 1981 and 2010

(https://nlftp.mlit.go.jp/ksj/index.html [in Japanese]).

For temperature, we calculated annual averages for

mean temperature, and the mean temperature during

the breeding season. We extracted each site’s eleva-

tion and topographic position index (TPI; the differ-

ence between elevation at the site, and the mean

elevation within a 100-m radius), using a 30-m reso-

lution global digital elevation model (derived from

Shuttle Radar Topography Mission 1 Arc-Second

Global data downloaded from https://earthexplorer.

usgs.gov). Further details of data sources and pro-

cessing are given in Appendix S3.

Characterisation of landscape heterogeneity

We were interested in the effect of the landscape

heterogeneity on forest bird communities. To charac-

terise landscape heterogeneity (i.e. the conversion of

forest to other land uses and so increase in hetero-

geneity), we calculated the proportional cover of the

following land use types in circular buffers surround-

ing focal sites: forest, grassland, wetland, urban,

cropland, using JAXA land cover map available at

30-m resolution for the period 2014–2016 (https://

www.eorc.jaxa.jp/ALOS/lulc/lulc_jindex_v1803.htm

[in Japanese]). JAXA classifies land cover using

Landsat-8 surface reflectance data (collection-1) dis-

tributed by United States Geological Survey and has

an overall accuracy of 82%. We quantified these

metrics in circular buffers surrounding the centre of

the transects with radii 500-m, 1-km, 2-km, 3-km and

5-km. These buffer extents were considered appro-

priate because they (i) encompass the scale of effect of

landscape structure detected in a previous landscape

ecological study of bird communities in Japan

(Katayama et al. 2014); and because (ii) larger extents

reduce both the variability amongst landscapes and

potential for non-overlapping independent landscapes

(Pasher et al. 2013). All forest sites were located in

forested landscapes, ranging from 60 to 100%within a

2-km radius (Appendix S3). In addition to propor-

tional cover, we also quantified a widely used measure

of landscape diversity, the Shannon–Wiener index

using the proportional cover of these land uses.

Forest cover and landscape diversity are highly

correlated across Japan, as shown by a high degree of

collinearity (Spearman’s rho = 0.99 when quantified

within a radius of 1-km, Appendix S3), making it

impossible to distinguish between these components.

In our discussion, we use the term ‘landscape hetero-

geneity’ to refer to the conversion (and loss) of forest

to more diverse, heterogeneous landscapes. We used

model selection to identify which metric (forest cover

or landscape diversity) explained the greatest variation

in the response variables in question (see below).

Functional traits

We analysed variation in the mean and diversity of two

functional traits that related to our hypotheses (see

introduction). Firstly, a species’ habitat breadth is

considered a surrogate of the degree of generalism and
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specialism (Luck et al. 2013), and should confer its

capacity to adapt to environmental change, especially

changes in land cover. The sum of the habitats that

birds are able to breed in, including grassland, forest,

wetland and agriculture (1–4), was taken from

JAVIAN Database (Takagawa et al. 2011). Secondly,

we retrieved data on the proportion of diet composed

of invertebrates (0–1) from Wilman et al. (2014). Diet

type and diet breadth of a species will dictate how they

respond to changes in resource availability (i.e.,

disturbances that impact the resources they consume,

such as invertebrate abundance). During the breeding

season, forest bird specialists will largely be insectiv-

orous (Luck et al. 2013).

Calculation of bird community composition

metrics

In addition to total abundance and species richness at

each site, we calculated two trait-based measures of

community composition for each functional trait, that

are commonly used in functional trait analyses to

understand community responses to landscape vari-

ables using R package FD (Laliberté et al. 2014):

(1) Community-level weighted means of trait values

were calculated as the sum, across all species, of

the products of each species’ trait value and

their relative abundance, divided by the total

abundance (Garnier et al. 2004). Calculating the

mean trait values of a community allows for the

evaluation of the association between trait

dominance and environmental drivers (Garnier

et al. 2004).

(2) Trait diversitywas calculated as Rao’s quadratic

entropy (Rao 1982), the sum of pairwise

distances between species in a community

weighted by their relative abundances, with

functional distances between species calculated

using Gower’s distance metric (Laliberte and

Legendre 2010). As such, Rao’s quadratic

entropy expresses the mean distance between

two randomly selected individuals in a commu-

nity and is a measure of dispersion of species in

trait space (Fig. 1). It has been widely used to

successfully detect trait convergence and diver-

gence of ecological communities in response to

environmental drivers (e.g. Bello et al. 2012;

Spake et al. 2016). Prior to the calculation of

trait mean and diversity values, abundance

values were log-transformed (Ribera et al.

2001), and habitat breadth was square-root

transformed to improve normality as recom-

mended for trait analyses (Villéger et al. 2008;

Blonder et al. 2014).

For the two trait-based measures, we calculated

standardised effect sizes (SES; Gotelli and Mccabe

2007), that measure the number of standard deviations

(SD) that observed trait mean and trait diversity values

(TRAITobs) are above or below the mean value of

random assemblages (TRAITnull), based on a random-

ization of species composition (i.e., independently of

differences in species richness). We used the R

package picante (Kembel et al. 2010) to simulate

1000 assemblages, wherein the species composition

across all sites was reshuffled at random, while

maintaining both the observed species richness and

total abundance of each site. SES were calculated as:

SES = [TRAITobs - mean(TRAITnull)]/

SD(TRAITnull). Positive SES values for trait means at

a site are indicative of higher than average trait values,

while positive SES for trait diversity reflect trait

divergence, where communities are dominated by

species with more distinct traits than expected at

random. Negative SES values for trait means indicate

lower than average trait values, while negative trait

diversity SES values indicate trait convergence, with

communities dominated by species with more similar

traits than expected at random. For brevity, we refer to

the standardised effect sizes simply as trait means and

trait diversity. We also calculated species richness

(total number of bird species at a site) and the Shannon

diversity index as taxonomic metrics of diversity.

Statistical analyses

Statistical modelling of taxonomic and functional

diversity metrics

Generalised linear models were fitted to quantify how

richness and abundance and the community-level trait

mean and trait diversity values varied with environ-

mental drivers including temperature and landscape

heterogeneity variables, and their interactions (Spake

et al. 2019a). Models of total abundance and richness

values (both comprising count data) were fitted via a

generalised linear model with a negative binomial
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distribution and log link function, while normal error

distributions and an identity link function were used

for individual trait mean and trait diversity values. We

created global models that contained the additive main

effects of a landscape heterogeneity variable (land-

scape diversity or forest cover), temperature, rainfall,

sunshine duration, elevation and TPI, in addition to an

interaction between temperature and the landscape

heterogeneity variable as hypothesised, and also

rainfall and the landscape heterogeneity variables

(see Appendix S4 for details of the global model). We

included quadratic or log10 functions of the climatic

and landscape variables, respectively, to test for

plausible nonlinear relationships. Elevation was

log10 transformed to reduce the effect of outliers.

Global models differed in the substitutions of vari-

ables that were highly correlated, i.e. we did not allow

highly correlated variables to feature in the same

global model (those with Spearman’s rank coeffi-

cients[ 0.6, Appendix S4). Also substituted were

landscape metrics if they were non-independent and

quantified the same driver (forest cover or landscape

diversity) but at different extents (buffer sizes). From

these global models, we generated a full set of nested

models, all to be compared with Akaike’s Information

Criterion (AIC) using R (v. 3.4.3; R Core Team 2014)

with the dredge function from package MuMIn

(Bartoń 2016; see Appendix S4). We identified a

single, minimum adequate model as the model with

the lowest AIC value (Burnham and Anderson 2002).

By constructing and comparing models with a specific

interaction among variables (e.g. temperature * land-

scape diversity), that corresponded to an a priori

hypothesis, we distinguish our testing of rigorous

hypotheses from a ‘fishing expedition’ that seeks

significant predictors among a large group of con-

tenders and all of their possible second or third order

interactions (Burnham and Anderson 2002). We used

model selection to obtain model coefficients, rather

than averaging models over multiple models with

similar support (Spake et al. 2019a). This is because

models differing only in the extent of landscape

variables are likely to have very similar support, and

such models cannot be averaged as they are techni-

cally different variables measuring the same quantity

(Freckleton 2011).

The area over which landscape variables influence

an ecological phenomenon at a focal point, the

‘ecological neighbourhood’ (Addicott et al. 1987) or

‘scale of effect’ (Holland et al. 2004), is typically

identified by comparing models with landscape vari-

ables quantified at varying extents (buffer sizes)

surrounding a focal point and selecting the extent

yielding the best fit. The scale of effect of the

landscape-level driver (landscape diversity or forest

cover) was identified as the scale that featured in the

minimum adequate model for the response variable in

question. We favour this approach over the often-used

practice of fitting multiple univariate models for each

extent of each landscape variable (e.g. Holland et al.

2004; Soranno et al. 2015), because univariate models

necessarily omit important variables and interactions,

increasing residual variance and leading to a bias in

the statistical inference (Bradter et al. 2013).

To ascertain relative variable importance, we re-ran

model selection with landscape metric at the scale

selected by the minimum adequate model. AIC was

used to select a set of substantially supported models

(DAIC B 2 according to Burnham and Anderson

2002; Aho et al. 2014). Importance values were then

calculated by summing the Akaike weights of models

that included the term in question (Burnham and

Anderson 2002).

We ensured that generalised linear models satisfied

model assumptions by inspecting standardised resid-

uals using the DHARMa package (Hartig 2018). The

goodness of fit of each model was calculated following

Nagelkerke (1991) for models of richness and abun-

dance. Explanatory variables were centred and scaled

prior to analysis to improve interpretability of regres-

sion coefficients (Schielzeth 2010). Variance inflation

factors were calculated to ensure models were not

subject to multicollinearity using a threshold of 2 for

mean-centred and scaled variables (Zuur et al. 2010).

We used R packages visreg (Breheny and Burchett

2017) and ggplot2 (Wickham 2016) to visualise the

regression outputs.

Results

Taxonomic diversity

A total of 23,077 individuals of 68 species (listed in

Appendix S5) were sampled between 2009 and 2015

across the 297 study sites in total, with site-level

maximum abundance and richness ranging between 9

and 260 (mean = 77.7; SD = 37.4), and 6 to 34
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(mean = 17.0; SD = 4.9), respectively. Species rich-

ness and Shannon diversity were highly correlated

(Spearman’s rho = 0.93, Appendix S3), so only anal-

yses of richness and abundance are presented. Mini-

mum adequate models explained little variation in

richness and abundance (pseudo-R2 values of 0.11 and

0.08, respectively). Richness and abundance exhibited

weak responses to mean annual temperature: richness

a hump-shaped relationship and abundance exhibited

a linear increase (Appendix S5). Both richness and

abundance declined with increasing annual rainfall.

Landscape heterogeneity variables (landscape diver-

sity or forest cover) did not feature in the minimum

adequate model, and was relatively unimportant

across substantially supported models (importance

values\ 0.2; Appendix S5).

Community-level trait means and trait diversity

Contrary to the taxonomic metrics describing bird

communities, functional traits were considerably

explained by the environmental predictors considered

in our study (R2 values ranged between 0.27 and 0.58).

Trait means and diversities exhibited contrasting

responses to environmental drivers. Landscape diver-

sity, rather than proportional forest amount, consis-

tently explained greater variation in functional

responses across all trait measures (mean and diver-

sity). Here we present the results of minimum

adequate models; see Supplementary information for

full results.

Habitat breadth

The mean and diversity of habitat breadth exhibited

contrasting, temperature-dependent, responses to

landscape diversity. The minimum adequate models,

explaining 58% and 34% of variation in the mean and

diversity of habitat breadth, respectively, included

landscape diversity characterised within 500-m of a

forest site, mean annual temperature and their inter-

action, in addition to annual rainfall (Appendix S6).

Overall, temperature exerted positive effects on mean

habitat breadth; cooler regions consisted of commu-

nities dominated by species sharing similar, narrow

habitat breadths. Mean habitat breadth increased

linearly with landscape diversity, with the magnitude

of the effect dependent on temperature; a stronger

landscape diversity effect was observed in cool

regions, and weaker effect in warmer regions

(Fig. 2a). The effect of landscape diversity on habitat

breadth diversity, on the other hand, changed in both

magnitude and direction across the temperature gra-

dient (Fig. 2b). Increasing landscape diversity was

consistent with divergence of this trait in cooler

regions, while increasing convergence was observed

in warmer regions. These results suggest that in cool

regions, homogeneous, contiguous landscapes support

specialists only (species with narrow habitat breadths),

while generalist species (with wider habitat breadths)

inhabit homogeneous landscapes in warmer regions.

Diverse landscapes in cooler regions tend to support

both specialist and generalist species, while in warm

regions, increasingly transformed landscapes support

generalist species with increasingly similar and

widening habitat breadths.

Diet

Mean insectivory (the proportion of diet consisting of

insects) declined strongly with increasing tempera-

ture, while diet diversity increased (Fig. 3; Appendix

S7). The effect of landscape diversity (within a 1-km

buffer) on mean insectivory was weakly negative

overall, while its effect on diet diversity changed in

strength and magnitude across the temperature gradi-

ent, with positive effects in cool regions, and negative

effects in warm regions (Fig. 3). This suggests that in

cooler regions, particularly in highly forested, homo-

geneous landscapes, insectivores dominate bird com-

munities, while in warmer regions communities are

dominated by a variety of dietary guilds (i.e. insecti-

vores, granivores and frugivores), particularly in

homogeneous landscapes. The minimum adequate

models explained 47% and 25% variation in the mean

and diversity of the diet trait, respectively.

Discussion

Our study provides evidence that regional variation in

species pools, a consequence of past historical distur-

bance, broad-scale climate and resource quality (Ap-

pendix S1), leads to differential functional responses

of avian communities to landscape heterogeneity

across Japan. Our findings therefore reveal context-

dependent functional responses to environmental

drivers, which must be understood for effective
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implementation of landscape-scale conservation ini-

tiatives (Spake et al. 2019a). Landscape diversity,

rather than proportional forest amount, consistently

explained greater variation in functional responses

across all trait measures (mean and diversity). As these

variables were highly correlated (Spearman’s rho =

0.99; Appendix S2), we discuss our results in terms of

community responses to ‘landscape heterogeneity’.

The effects of landscape heterogeneity on mean

habitat breadth and habitat breadth diversity varied

with the temperature gradient, as predicted. In cool

regions of Japan, highly forested, homogeneous

landscapes supported bird communities dominated

by forest specialists: those with narrow habitat

breadths and highly insectivorous diets. The abun-

dance of species with generally wider and slightly

variable habitat breadths increased with landscape

heterogeneity. This finding agrees with conceptual and

empirical work showing that heterogeneous land-

scapes can provide more niches or complemen-

tary/supplementary resources for a wider range of

species’ traits (Tscharntke et al. 2012; Duflot et al.

2014), provided that a diversity of traits are present in

the species pool. Warmer regions comprised commu-

nities dominated by species with wider habitat

breadths, even in relatively homogeneous, highly

forested landscapes, reflecting a loss of specialists

from the species pool. Habitat breadth diversity

declined with landscape heterogeneity, towards con-

vergent communities of species with only wide

breadths, suggesting that forest specialists with narrow

breadths were unable to persist within heterogeneous

landscapes. This is consistent with our hypothesis

(Fig. 1). In other words, landscape heterogeneity can

only promote functional trait diversity in regions

where both specialists and generalists are supported by

Fig. 2 Impacts of landscape diversity on mean habitat breadth

(left) diversity (right) of forest bird communties as dependent on

annual mean temperature. Top: Johnson-Neyman confidence

bands surrounding the marginal effects of landscape diversity,

conditional on average annual temperature. Dashed arrows at 5,

10 and 15 �C show effects corresponding to panels below.

Middle: Influence of landscape diversity on habitat breadth

mean and diversitiy at mean annual temperatures of 5, 10 and

15 �C, showing grey-shaded 95% CI in the regression and

partial residual points. Shown are standardised effect sizes;

values above 0 (dashed lines) signify trait divergence, while

values below 0 signify trait convergence. Landscape diversity

represents the log10 of shannon diversity of proportional land

covers measured in a buffer of radius 500-m. Plots used

coefficients of the minimum adequate models. Response

variables were standardised effect sizes, see text
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high habitat quality. A somewhat surprising, yet

important, finding is the strength of the relationships

we detected (as measured by explained variation),

given the relatively narrow range in forest cover

studied (between 60 and 100% within 2-km of survey

sites).

Our result of regional-dependent responses to

landscape heterogeneity concurs with a global meta-

analysis demonstrating weaker patch size-density

relationships in eastern than western continents, which

are dominated by area-insensitive generalists (Bender

et al. 1998). Our findings also agree with observations

that while the species richness and abundance of forest

birds are strongly positively related to forest area in

both eastern North America and Japan, these relation-

ships are weaker in western North America and

Europe, which have experienced more extensive forest

clearing over a longer time period (George and Dobkin

2002; Kurosawa and Askins 2003). Similarly, in a

global analysis of fragmentation effects on 4489

animal species, Betts et al. (2019) found that that the

proportion of fragmentation-sensitive species was

nearly three times higher in regions with low historical

disturbance rates than with regions with high rates of

e.g. fires, glaciation, hurricanes, and deforestation.

The effects of landscape heterogeneity on dietary

diversity also varied with the temperature gradient,

with mean insectivory declining with increasing

temperature and landscape heterogeneity. Our finding

of a higher prevalence of insectivorous diets in less

transformed landscapes with intact forest agrees with

previous demonstrations of lower insectivore richness

and abundance in disturbed than undisturbed forest

(Gray et al. 2007), and landscapes with decreasing

forest cover (Lindenmayer et al. 2015) and patch area

(Watson et al. 2005).We therefore add support to the

finding that insectivorous birds are less resilient to

high-intensity than low-intensity land use (Karp et al.

2011). As expected, a main effect of temperature on

insectivory was detected, as in Japan, forests in cool

regions tend to comprise broadleaved deciduous tree

species that support great densities of caterpillars, and

Fig. 3 Response of mean insectivory (top) and diet diversity

(bottom) to temperature and landscape diversity showing grey-

shaded 95% CI in the regression and partial residual points. Diet

diversity responses to landscape diversity are shown at mean

annual temperatures of - 1, 5 and 11 �C. Shown are standard-

ised effect sizes; values above 0 (dashed lines) signify trait

means that are greater than expected at random, or trait

divergence, while values below 0 signify trait means that are

lower than expected at random, or trait convergence. Landscape

diversity represents the log10 of shannon diversity of propor-

tional land covers measured in a buffer of radius 1-km. Plots

used coefficients of the minimum adequate models
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therefore insectivores, during the growing season

(Blondel et al. 1993; Huston and Wolverton 2008).

Contrary to expectation however, we found dietary

diversity to increase only weakly, towards random

expectation, in cool regions. This might be because

there are abundant immigrant birds even in trans-

formed landscapes, since cooler regions support

abundant food resources. The presence of immigrant

birds could therefore blur or reduce any effects of

landscape heterogeneity on community-level insec-

tivory or diversity in cool regions (Bollinger and

Switzer 2002).

Our study showed that species richness was

explained poorly by landscape heterogeneity, con-

trasting with similar studies measuring biodiversity

responses within focal habitats in Japan (Natuhara and

Imai 1999). Functional rather than taxonomic descrip-

tors of bird communities were better explained by

environmental variation, likely because the scale at

which species interact with, and respond to land-

scapes, depends on their functional traits (Suárez-

castro et al. 2018). Indeed, previous studies that report

strong responses of species richness in Japan have

typically analysed richness within different a priori

functional groupings, e.g. by habitat specialism, range

size (Katayama et al. 2014), or guild (Yoshikawa et al.

2017), consistent with the functional responses we

detected. Total species richness markedly declines

with temperature at macro-scales in Japan (Yamaura

et al. 2011), reflecting a decline in the regional species

pool. Despite this regional decline in richness, similar

numbers of species are supported locally, but comprise

communities differing in functional composition in

forested landscapes, dealt with in this study.

Caveats

We identified a statistical interaction between tem-

perature and landscape heterogeneity gradients in

explaining bird functional responses. However, tem-

perature, historical disturbance and the predominance

of deciduous over evergreen forests (and therefore the

quality of forest as a food resource during the breeding

season) were inextricably confounded in our study

area (Appendix S1), so we could not investigate the

independent effects of temperature. Independently,

temperature could have conceivably exerted opposite

effects on functional trait means and diversity as

historical disturbance, weakening the overall additive

and interactive effect of historical disturbance inten-

sity observed in this study. Understanding community

responses to temperature independently will become

more important under global change, where temper-

ature could decouple with the gradients that it

currently correlates with, yielding novel climates.

We observed weaker effects than hypothesised

(Fig.1). There are several possible reasons for this.

Firstly, an apparent sampling bias towards forest sites

in more heavily forested landscapes, in addition to our

subsampling of data to reduce outliers (see methods),

means that we present trends over a restricted gradient

of forest cover (60–100%; Appendix S2). A wider

gradient encompassing lower forest cover and greater

diversity may have led to greater deviation from null

communities (Brennan et al. 2002; Eigenbrod et al.

2011). Secondly, we present analyses of communities

surveyed from forest sites only due to data limitations.

A stronger trend would likely have been observed if

communities were sampled across all constituent

habitat types (i.e. gamma diversity). Sampling other

habitat types may have sampled non-forest specialists,

such as grassland specialists, leading to a higher

degree of trait divergence, and more so in less

disturbed, cooler regions of Japan that can sustain

such specialists. Finally, a lack of deviation from null

communities in heterogeneous landscapes may signify

the simultaneous effect of multiple, opposing pro-

cesses (Botta-Dukát and Czúcz 2016): habitat filter-

ing, which leads to lower variation in trait values than

random selection from the species pool (convergence),

and limiting similarity, wherein co-existence relies on

species exploiting different niches (divergence). Our

inability to detect and formalise all processes at play is

an enduring issue in ecology; with more potential

processes that structure species assemblages than there

are resulting patterns (Lessard et al. 2016). It would be

interesting to further survey less forested, highly

heterogeneous landscapes, whereby temperature and

historical disturbance are easier to disentangle.

A key challenge to the study of biodiversity

responses to landscape pattern using observational

datasets is multicollinearity among landscape metrics

such as proportional cover and landscape diversity

(Fahrig et al. 2011). This is a particular issue when

conducting analyses across broad geographic extents,

where the landscape attributes that drive measured

diversity may vary regionally. Characterisation of the

data structure (Appendix S2) shows that land cover
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responsible for driving landscape diversity may

exhibit slight regional dependence. In warmer regions,

landscape heterogeneity was driven more by cropland

and wetland habitats, and by grasslands in cooler

regions. Specialists were still able to persist in

transformed landscapes in cooler regions, which may

have been partly due to a less hostile matrix in cooler

than warmer regions. Future survey efforts should aim

to disentangle these effects and sample full gradients

of landscape composition within different biomes in

Japan.

Imperfect detection of species may bias measures

of functional trait composition and diversity, leading

to incorrect estimates of trait-environment relation-

ships due to a process of ‘detection filtering’, where

ecologically important traits, such as body mass,

influence the probability of species detection during

field surveys (Roth et al. 2018). However, measures

are likely to be robust to detection filtering if the

effects of the environment on functional composition

and diversity are larger than the effects of detection

(Roth et al. 2018) or they are not confounded with each

other (Banks-Leite et al. 2014). We did not consider

this to be an issue in our study, because we used a

maximum of a 50-m detection radius, within which the

detection probability of songbirds has been shown to

be high across a range of habitats, and therefore likely

also gradients of landscape heterogeneity (Schieck

1997; Alldredge et al. 2007; Yamaura and Royle

2017). The likelihood of detection filtering was further

reduced by our use of the maximum abundance values

(see methods), assuming that the maximum number of

birds detected in any visit represents the minimum

number at that location (Bibby et al. 2000). In

addition, modelled maximum point-counts have been

shown to produce better model fits with territory

abundance than mean point-counts (Toms et al. 2006).

Moreover, as we only included forest surveys in our

analysis (we excluded surveys conducted in grass-

lands), detection probability is unlikely to have varied

systematically with habitat type. Finally, the effects of

potential covariates on detection probability were

minimised because the bird surveys were only

conducted on days without rain or strong winds to

minimise variation in detection probability, reducing

the likelihood that detection would vary with climatic

gradients (Banks-Leite et al. 2014).

Implications for future research and management

Much research in landscape ecology seeks to identify

whether certain landscape properties, such as land-

scape heterogeneity, have universal effects (e.g. Stein

et al. 2014). Our study shows that regional variation in

climate and disturbance histories, and consequently

species pools, can generate vast differences in land-

scape effects on biotic communities. We therefore

suggest that future research should consider interac-

tions between landscape- and local-level environmen-

tal drivers and regional context, as any contingencies

will have important management implications. Land-

scape management designs developed for one regional

context may not be effectively transferred to others

that differ in climate, habitat quality, or history.

Moreover, funds for biodiversity conservation are

scarce, so we must effectively and efficiently allocate

resources to prevent long-term loss and degradation of

natural systems. Our approach could act as a useful

framework for investigating the context dependence

of landscape effects, allowing us to develop tailored

management plans accounting for regional context.
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