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Abstract

Context It is widely accepted that wildlife is sub-

jected to detrimental human noise within urban

landscapes but little is known about how the intensity

of land use changes soundscapes.

Objectives The objective of this research was to

produce quantitative associations between character-

istics of ambient soundscapes and land use intensity.

These relations were used to examine the 2 kHz

demarcation between anthrophony and biophony and

compare the impact of different sized contributing

areas on ambient soundscape characteristics.

Methods This study related the surrounding land use

intensity of 67 sites in north central Florida (USA) to

several metrics describing their recorded soundscapes.

Land use intensity was measured remotely at three

scales using the landscape development intensity

index (LDI).

Results The analysis revealed that the LDI index had

a statistically significant effect on soundscape charac-

teristics after controlling for important factors such as

climate, season, and attenuation due to hard ground.

The trends between LDI and soundscape confirmed

that human generated sounds are loud, continuous, and

occupy low frequencies. The evenness of the sound

distribution decreased with landscape intensity and

LDI correlated significantly with sound below 3 kHz.

Land use intensity within a 100 and 500-m radius

contributing area were most closely related to sound-

scape metrics.

Conclusions LDI is a tool with the potential to

predict the extent and intensity of anthropogenic noise

disturbance on wildlife from remote sensing data. The

utility of this tool allows for widespread application to

identify and mitigate conflicts in the acoustic realm

between human noise and wildlife.

Keywords Development intensity � Soundscape �
Noise disturbance � Biophony � Anthrophony �
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Introduction

The increasing quantity and intensity of human

generated sound within landscapes has stimulated

interest, in recent years, from the scientific community

and the public. This has led to a significant expansion

in the measurement and characterization of what has

been termed the soundscape, or the composite of

sounds of an environment (Pijanowski et al. 2011b).

The analysis of soundscapes has been fast evolving,

resulting in new perceptions of the interface between

human and the natural soundscape and new tools for

its study. Based primarily on findings of acoustic

signal alteration in birds and amphibians (Brumm and

Slabbekoorn 2005; Laiolo 2010) and evidence of

altered reproductive behavior (Habib et al. 2007;

Bayne et al. 2008; Ware et al. 2015), the anthro-

pogenic portion of soundscapes is increasingly con-

sidered a disturbance. And while it may be intuitively

obvious that human sourced sound intensity is related

to land use intensity, few if any studies have

documented the relation in a quantitative way.

Research documenting the relation between sound-

scape patterns and gradients of human footprint has

been limited. Two recent studies used the percent

cover of specific human dominated land uses to

measure human influence and found negative corre-

lations with soundscape complexity (n = 7) (Pi-

janowski et al. (2011a) and positive correlations with

acoustic intensity below 2 kHz (Joo et al. 2011). Two

earlier studies in western Greece found correlations

between the human perception of the acoustic envi-

ronment and quantitative descriptions of the surround-

ing human landscape (Matsinos et al. 2008; Mazaris

et al. 2009). Tucker et al. (2014) found that the

soundscape characteristics of forest patches in

Queensland, Australia correlated with patch size and

connectivity. In another study, Fuller et al. (2015)

suggested that research linking the soundscape and

landscape has been inhibited by the lack of landscape

evaluation methods.

Soundscape areal dimensions

The physical area that contributes sound to a recorded

soundscape is not easily defined and not standardized

in the literature (Farina and Pieretti 2014). The

physical area of influence for a soundscape is dynamic

since it is dependent on many factors including the

location and loudness of transient sound signals and

changing environmental conditions (ISO 1993, 1996;

Qi et al. 2008). Previous soundscape ecology studies

have assumed areas of influence as circular areas with

radii of 100 m (Pijanowksi et al. 2011a), 175 m

(Mazaris et al. 2009), 300 m (Joo et al. 2011;

Depraetere et al. 2012), and 500 m (Krause et al.

2011). In the above literature, the justification for size

of the influence areas used were not discussed with the

exception of Krause et al. (2011) and Joo et al. (2011)

which based the area on microphone sensitivity

distance.

Anthrophony versus biophony

Studies of the soundscape commonly identify sources

of sound as either anthropogenic or biologic using a

sound frequency cutoff of 2 kilohertz (kHz), where

sounds below 2 kHz are classified as anthropogenic

(anthrophony or technophony) and above as biologic

(biophony) (Joo 2009; Joo et al. 2011; Krause et al.

2011). However, there is evidence that this boundary

is somewhat arbitrary (Sueur et al. 2014). The 2 kHz

boundary was based on observations of the frequency

ranges of biological and anthropogenic sounds (Napo-

letano 2004; Joo et al. 2011; Kasten et al. 2012).

However, human and biological sounds have been

documented crossing the 2 kHz point in the frequency

spectrum (Makarewicz and Sato 1996; Napoletano

2004; Bee and Swanson 2007; Can et al. 2010). It is

important that we understand the limitations of this

boundary, as it is used in studies to infer the relative

contribution of biophony and anthrophony to sound-

scapes (Qi et al. 2008; Gage and Axel 2014; Fuller

et al. 2015).

Landscape development intensity

This study uses a metric of land use intensity called

LDI (Brown and Vivas 2005), to link the sound by-

products of land uses to soundscapes. The LDI index is

a quantitative measure of land use intensity based on

non-renewable resource use per unit area per unit time.

Further, it uses the concept of emergy (Odum 1996) to

express all resource flows supporting land uses in

common units of solar emergy. Expressed in this way,

resource use per unit area per unit time (units = sej

area-1 time-1) becomes aerial empower intensity

(where empower is emergy per time). The LDI of a
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point or area takes into account the aerial empower

intensity of surrounding land uses. The size of the

analysis area depends on the application. The LDI has

been used as a human disturbance gradient to develop

bio-indicators of ecosystem, stream and lake condition

(Fore 2004, 2005; Lane and Brown 2007; Reiss et al.

2010). The LDI correlated with wetland rapid assess-

ment evaluation methods in Florida (Brown and Vivas

2005), South Dakota (Bouchard 2009), Ohio (Mack

2006), and Hawaii (Margriter et al. 2014). It also

correlated with coral reef condition in St. Croix and

wetland condition in Taiwan (Chen and Lin 2011;

Oliver et al. 2011).

The characteristics of a soundscape are impacted by

the attenuation of sound as it travels from the source

(ISO 1993, 1996). Sound attenuation is impacted by

climatic conditions (ISO 1993) and characteristics of

the propagation path (ISO 1996). The effects of these

factors are not consistent across the frequency spec-

trum; high frequency sounds are generally more

susceptible to attenuation than low frequency sounds

(ISO 1993, 1996). Attenuation is an important factor

to consider in addition to sound sources when

predicting soundscape characteristics.

Problem statement and plan of study

In this study, we evaluate several characteristics of

ambient soundscapes generated by landscapes of

varying degrees of development intensity to produce

quantitative associations between sound and land use

intensity and spatial area. In addition, we explore the

2 kHz demarcation between anthrophony and bio-

phony with statistical correlations between land use

intensity and the distribution of sound across the

frequency spectrum.

Methods

Description of study sites

This study collected data from 67 sites in north central

Florida (Fig. 1) selected to capture a variety of land

use/land cover (LU/LC) classes across a spectrum of

anthropogenic influence. Six different LU/LC classes

were targeted as follows, conservation (CON; n = 10),

recreational park (RP; n = 10), single family residen-

tial (SFR; n = 16), industrial (IND; n = 8),

commercial shopping center (CSC; n = 13), central

business districts (CBD; n = 4), and mixed uses

(including roadsides and agriculture, MU; n = 6).

These classifications coincided with the Florida Land

Use, Cover and Forms Classification system

(FLUCCS) as described in Table 1.

Data collection

The soundscapes of each site were sampled using a

Fostex fr-2le field recorder and a Seinheisser ME 62

omni-directional microphone. The frequency response

of the microphone was 20–20,000 Hz. The recordings

were 30 min long and used a waveform format with a

24-bit depth and 48 kHz sampling rate. The recordings

took place between 0900 and 1000 on week days over

2 years from April 2013 until March 2015. This time

of day was selected for its ambient nature, avoiding

known times of increased acoustic activity like dawn

chorus (Stacier et al. 1996) or early morning rush hour

traffic (Mennitt and Fristrup 2016). A tripod ensured

that the recording equipment was consistently 1 m off

the ground. Recordings were not taken if the wind in

the area exceeded 10 mph or if it was raining. The

location of the recording was documented with a

handheld GPS unit.

At each site, climatic conditions were documented

at the time of the recording. This information was

taken from real time data available online from the

closest weather station.

Acoustic analysis

The analysis of the acoustic data utilized two different

divisions of the frequency spectrum to describe the

soundscapes. First, the entire frequency spectrum

(20–20,000 Hz) was analyzed as a whole. Second,

each site’s spectrogram was divided into twenty,

1 kHz wide frequency bands. All analysis was

confined to above 20 Hz, the limit of the microphone’s

frequency response.

Acoustic metrics

The metrics used in this study to describe the

soundscapes were calculated from spectrograms made

with Raven Pro 1.4 (Bioacoustics Research Program

2011) software. The spectrograms used a Hann

window with a discrete Fourier Transform size of
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256 samples and 188 Hz grid size that slightly favored

spectral resolution over time resolution since this was

the focus of the study. The metrics were based on the

power spectral density (PSD), the amount of sound per

unit frequency (dB/Hz), of the frequency-time bins in

the spectrogram, which was calculated internally

within Raven using Fourier Transforms. The decibel

units are relative to an arbitrary reference of 1. Five

different metrics were calculated using the PSD values

from each recording: inband power, average PSD,

delta power, aggregate entropy, and center frequency.

The acoustic metrics were the dependent variables in

the statistical analysis. A brief description of each

measure is given in Table 2. Aggregate Entropy was

calculated within Raven according to the following

formula (Charif et al. 2010):

Hselection ¼
Xf2

f¼f1

Ebin

Eselection

� log2
Ebin

Eselection

� �� �
ð1Þ

where Hselection is the aggregate entropy for the part of

the frequency spectrum selected for analysis and f1
and f2 are the upper and lower limits of the selected

frequency spectrum, respectively. Ebin is the energy

Fig. 1 Location of the 67

sites where data was

collected for this study
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contained within a specific frequency bin and Eselection

is the total energy within the selection (summed over

all bins). The frequency bin size is the grid size of the

spectrogram (188 Hz).

Analysis of total frequency spectrum

The analysis of the total frequency spectrum

(20–20,000 Hz) applied the inband power, aggregate

entropy, delta power, and center frequency measures.

These measures were selected because they were

expected to indicate the presence of anthropogenic

sound in the soundscape. Human sound is known to be

powerful and concentrated in low bands (Warren et al.

2006; Slabbekoorn and Ripmeester 2008; Barber et al.

2010; Pieretti and Farina 2013). It was anticipated that

relative to sites surrounded by natural landscape, the

soundscapes of sites surrounded by high landscape

development intensity would have more sound. This

was expected to result in higher overall power spectral

density, spectrums with sound concentrated in low

frequencies, and increased disparity between high and

low frequencies.

Analysis of 1 kHz frequency bands

The 1 kHz band analysis looked at the pattern of sound

in each frequency band and the relation between the

sound and the landscape development and other

covariates. The average PSD measure was used over

Table 1 Land use descriptions of study sites

LU/LC class FLUCCS codes

Conservation (CON) 4000 (Upland Forest); 6300 (Wetland Forested Mixed); 6170 (Mixed Wetland Hardwood)

Recreational Park (RP) 1860 (Community Recreation Facilities); 1850 (Parks and Zoos); 2110 (Improved Pasture)

Single Family Residential

(SFR)

1200 (Residential, Medium Density); 1100 (Residential, Low Density)

Industrial (IND) 1530 (Mineral Processing); 8300 (Utilities)

Commercial Shopping

Center (CSC)

1400 (Commercial and Services)

Central Business District

(CBD)

1400 (Commercial and Services)

Mixed Use (MU) 8100 (Transportation); 2100 (Cropland & Pastureland); 4410 (Pine Plantation); 6000 (Wetlands);

2600 (Other Open lands); 1300 (Residential, High Density); 4340 (Hardwood Conifer Mixed)

Table 2 Acoustic metrics used to describe the soundscapes Metric descriptions adapted from Charif et al. (2010) and Joo et al.

(2011)

Measure Definition

Average Power Spectral

Density (dB/Hz)

The total PSD within the selection of spectrogram divided by the number of time–frequency bins

Average Inband Power (dB/

Hz)

The PSD within the selection averaged over time, summed over frequency and then multiplied by

the size (Hz) of the frequency bins to convert to total time-averaged spectral power. This value is

then divided by the sampling rate of the recording

Aggregate Entropy This measure quantifies sound disorder. The measure is high if sound is evenly spread throughout

the frequency spectrum. Selection of spectrogram is broken up into frequency bands. The PSD

value is summed over time for each frequency band. The diversity of the band power values is

calculated

Delta Power (dB) The difference in time-averaged PSD at the upper and lower frequency limits of the selection

Center Frequency (Hz) The point in the frequency spectrum that splits the selection into two equaled energy parts
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inband power to avoid bias that could result from the

first band having a slightly smaller frequency range.

The aggregate entropy, delta power, and center

frequency measures were not used because they did

not inform the study when applied to the 1 kHz

frequency bands.

Site condition characteristics

Landscape development intensity (LDI)

LDI measures human influence based on the amount

of nonrenewable resource use in a determined area of

influence surrounding the system (point) of interest.

The surrounding areas of influence for this study were

circular areas centered at the point where the micro-

phone was placed during site recordings. Three

different sized circular areas were used with 100,

500, and 1500-m radii to compute the LDI. Within

each area of influence, the area of each unique LU/LC

was calculated in ArcMap 10.3 (ESRI 2014), using the

most recent land use and cover layers from the Florida

Geographic Data Library (FGDL 2015). LU/LC

classes were confirmed from observations on site

and discrepancies were updated before analysis.

Aerial empower intensities for the LU/LC classes

(Table 3) were multiplied by the fraction of total area

of each LU/LC class and summed to compute land use

areal empower density (emPDLU=LC). The LDI index

for each area of influence was computed using the

equation presented in Reiss et al. (2010) as follows:

LDI ¼ 10log
emPDTotal

emPDRef

� �
ð2Þ

where the total empower density (emPDTotal) was

calculated as the sum of emPDLU=LC and the empower

density of the background environment (emPDRef ) as

follows:

emPDTotal ¼ emPDLU=LC þ emPDRef

emPDRef ¼ 1:97E þ 15sejha�1y�1

In addition, a distance weighted LDI was calculated

for each landscape scale. For these index values, the

aerial empower intensity of each LU/LC was area

weighted and divided by the distance (meter) from the

center to reflect attenuation due to geometric diver-

gence (ISO 1996).

Supplemental landscape variables

Wetland habitats support a large abundance of wildlife

(Mitsch and Gosselink 2007), many of which use

acoustic communication. A wetland indicator variable

was used to specify sites near wetlands where this

influence may affect the soundscape. If there was a

wetland system within 100 m of the sampling location,

the wetland indicator variable was given a value of

one, otherwise the variable was zero. This determina-

tion was done post-sampling in ArcMap 10.3 (ESRI

2014) using the latest National Wetland Inventory

shapefile from US Fish andWildlife, accessed through

the Florida Geographic Data Library (FGDL 2015).

Roads contribute a lot of sound to soundscapes

(Forman et al. 2003; Dooling and Popper 2007;

Kociolek et al. 2011; Nega et al. 2013). Roads were

included in LDI values but the physical area they cover

is relatively small compared to the amount of sound

emitted from this LU/LC. To capture a more realistic

impact of roads, a separate variable that captured the

proximity and intensity of roads was created to

identify the exaggerated acoustic effect of roads. This

measure was computed as the distance (meters) from

each site to the nearest large-scale road (collector or

arterial) and the annual average daily traffic (AADT)

on the road. These values were calculated from the

AADT shapefile accessed through the Florida Geo-

graphic Digital Library (FGDL 2015). The variable

was calculated as the product of the AADT and the

inverse distance (meter) of the closest road to each

site.

RoadProx ¼ AADT � 1

distancetoroad mð Þ

� �� �

ð3Þ

Hard ground variable

Ground attenuation impacts sound propagation out-

doors. This effect is a function of sound absorption

from porous ground over the sound propagation path

(ISO 1996). To control for this effect, a proportion

hard ground variable was included in all regressions.

This variable was estimated by calculating the

proportion of impervious surface of each area of

influence used for the LDI index (100 m, 500 m, and

1500 m). Impervious surface estimates for each LU/
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LC (SJRWMD 2012) were used to calculate area

weighted approximations for the proportion of hard

ground surrounding each recording site.

Seasonal Variables

Soundscapes have seasonal patterns (Schafer 1977;

Truax 2001; Krause et al. 2011; Gage and Axel 2014).

Temporal trends can affect component sounds such as

the seasonality of dawn chorus characteristics (Stacier

et al. 1996; Brunni et al. 2014) or the thermo-regulated

sound power of cicada calls (Fonseca and Revez 2002;

Suer and Sanborn 2003). Variables were included to

capture the temporal variation present in the sound-

scapes. The season indicator included four categories

defined by the month the site was sampled during.

Winter sites were defined as sites sampled in Decem-

ber, January, and February, spring as March through

May, summer as June through August and fall as

September through November.

Climate variables

Temperature and humidity are known to affect the

attenuation of sound as it propagates outdoors (ISO

1993). Temperature and relative humidity were

included in all regressions to control for this effect.

The temperature variable was the observed tempera-

ture in Celsius rounded to the nearest integer at the

beginning of the sample. Relative humidity was

rounded to two decimal places normalized between 0

and 1.

Statistical analysis

The relations between the landscape and the sound-

scape variables were described with multiple ordinary

least squares (OLS) linear regressions with robust

standard errors using Stata SE13 software (StataCorp

2013). This analysis was applied to both divisions of

the frequency spectrums (total spectrum and 1 kHz

band analysis).

Variable selection and total spectrum analysis

The model selection procedure assessed the six

versions of the LDI (3 scales, flat and distance

weighted) and the potential inclusion of the supple-

mental landscape variables (road proximity and wet-

land indicator). The hard ground, seasonal and climate

variables were included in all model variations. The

acoustic metrics describing the total spectrum were

used to select the explanatory variables. The regres-

sions between each of the six LDI variables and each

acoustic metric were compared and the best fit was

selected using the Akaike’s Information Criterion

(AIC). Generally, lower AIC values represent better

models. Each of the supplemental landscape variables

was added to each model to determine if they

increased the explanatory power using Partial

R-Squared and AIC. If the addition of each variable

Table 3 Non-renewable areal empower intensities for LU/LC

classes used to calculate the LDI index values Adapted from

Reiss et al. (2010)

Land use Non-renewable

areal

empower intensity

(E15 sej ha-1

year-1)

Natural land/open water 0.00

Pine plantation 0.51

Low intensity open space/recreational 0.52

Unimproved pasture (with livestock) 0.53

Low intensity pasture (with livestock) 3.38

High intensity pasture (with livestock) 5.93

Medium intensity open space/

recreational

6.06

Citrus 7.76

General agriculture 15.10

Row crops 20.30

High Intensity agriculture (dairy farm) 50.40

Recreational/open space (high-intensity) 123.00

Single family residential (low-density) 197.50

Transportation—2 lane highway 308.00

Single family residential (med-density) 658.33

Single family residential (high-density) 921.67

Institutional 4042.20

Multi-family residential (low density) 4213.33

Transportation 4 lane highway—high

intensity

5020.00

Low intensity commercial (comm strip) 5175.40

Industrial 5210.60

High intensity commercial (mall) 8372.40

Multi-family residential (high rise) 12771.67

Central business district (avg 2 stories) 16150.30
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had a positive Partial R-Squared and decreased the

model AIC, the variable was included.

1 kHz band analysis

The 1 kHz band analysis described the relation

between the average PSD and the LDI index and

covariates in separate regression analysis for each

band. Significant relations between LDI and average

PSD were compared across bands with a Wald test

using Stata SE13 software (Stata Corp, College

Station, Texas).

Data availability

The datasets analyzed for this study are available in

the Mendeley repository at the following link: https://

data.mendeley.com/datasets/wpb5fx6x6g/1.

Results

Variable selection

Results from the total spectrum analysis show that the

flat weighted LDI100 was the best performing LDI

score for the inband power predictions and the flat

weighted LDI500 was the best performing LDI score

for the delta power, aggregate entropy, and center

frequency measures. The road proximity and wetland

indicator variables were not selected for any of the

models. The regression results for all of the explana-

tory variable combinations are provided in Online

Resource 1.

Total spectrum analysis

The results for the regressions with the preferred

specifications that describe the relation between LDI

and the soundscape are provided in Table 4. The

inband power regression model results indicate that a

one-unit increase in LDI100 for a site was associated

with a 0.32 decibel (dB) increase in inband power.

This relation, scaled to the sample standard deviation

of the LDI100 scores (Table 5), provides a reference

for the impact of change. The model predicts that a one

standard deviation change in a site’s LDI100 score

(15.27) results in an increase in inband power of

4.89 dB (50% of inband power’s standard deviation).

In all four models, the LDI variables demonstrated a

statistically significant (p\ 0.01) relation with the

acoustic metrics. LDI had a positive relation with

inband power and a negative relation with delta power,

aggregate entropy, and center frequency.

1 kHz frequency band analysis

The frequency band regression analysis described the

average PSD and the relation between average PSD

and other covariates in each band. The constant terms

in the frequency band regression results (Table 6)

reflect the pattern of average PSD across the frequency

spectrum independent of controls included in the

models. The average PSD was highest in the first band

and generally decreased as frequency increased. The

LDI100 coefficients in the models (Table 6) describe

the relation between LDI and the average PSD of each

frequency band. This relation was significantly

(p\ 0.01) different from zero in the first three

frequency bands. The 3–4 kHz band was marginally

significant (p\ 0.1). The maximum positive relation

occurred in the 1–2 kHz band and decreased in

subsequent bands.

The Wald test indicated that the relation between

LDI100 and average PSD was similar for frequency

bands 1 and 2 and frequency bands 3 and 4 (Table 7).

The first and second frequency bands and third and

fourth bands were not significantly different (p[ 0.1).

The LDI100 coefficients between bands 3 and 1 were

marginally different (p\ 0.1). All other combinations

between the first four frequency bands were signif-

icantly different (p\ 0.05).

The LDI100 and hard ground variables were

strongly and positively correlated (correlation coeffi-

cient = 0.856). LDI100 and hard ground had a positive

relation with average PSD when either was a signif-

icant contributor to the model. Generally, LDI had a

significant influence on average PSD below 3 kHz and

hard ground had a significant influence above 4 kHz.

Discussion

The analysis reveals that the LDI index had a strong

and statistically significant effect on soundscape

characteristics even after controlling for important

factors such as climate, season, and attenuation due to

hard ground. There is a limited amount of research that
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establishes methods that describe landscape configu-

ration as it is related to soundscapes (Fuller et al.

2015). Joo et al. (2011) used over ten variables to

capture site variability with the surrounding land-

scape. Alternatively, the LDI index considers the

presence and footprint of all LU/LC classes using one

continuous variable versus a multiple variable LU/LC

indicator. Additionally, LDI weights the land use

configuration by the areal intensity of resource

consumption, which could be interpreted as an indi-

cator of human sound production in this context.

The LDI index explained a substantial amount of

variance in the sound metrics describing the total

frequency spectrum. This was bolstered by the result

that the supplemental landscape variables were not

selected for inclusion in the models. Further, when the

supplemental landscape variables were included in the

models, the qualitative relation between LDI and the

acoustic metrics and LDI’s statistical significance

were robust.

The trends between LDI and the soundscape

measures reflect the generally accepted concept that

human generated sounds are loud, continuous, and

occupy low frequencies. Specifically, the results

confirmed the expectation of Pijanowski et al.

(2011a) that soundscape complexity (as measured by

aggregate entropy) decreased as human influence

increased (as measured by the LDI index). The LDI

index provides a promising framework for predicting

the effect of anthropogenic development on sound-

scapes from easily available LU/LC data.

To the best of our knowledge, our study is the first

to compare the impact of different sized contributing

areas on ambient soundscape characteristics. Inband

Table 5 Summary statistics for LDI and soundscape metrics

Variable Mean Std dev Minimum Maximum

LDI100 24.51 15.27 00.00 41.70

LDI500 26.71 13.58 00.00 41.00

LDI1500 26.18 11.59 00.10 38.50

Inbnd pwr 113.07 09.69 89.60 136.20

Avg PSD 117.21 09.65 93.50 140.10

Delta pwr 52.86 09.97 - 73.10 - 30.90

Entropy 03.00 00.86 00.96 05.33

Cntr freq 962.69 1581.55 187.50 7125.00

Table 4 Regression results

for total frequency spectrum

models

Asterisks indicate statistical

significance: *p\ 0.1,

***p\ 0.01. Parentheses

indicate the heteroskedastic

robust errors

Inband pwr Delta pwr Entropy Cntr Freq

LDI100 0.32***

(0.08)

LDI500 - 0.49*** - 0.06*** - 73.61***

(0.12) (0.01) (19.90)

% Hard ground 0.06* - 0.02 0.01 8.35*

(0.03) (0.06) (0.00) (4.64)

Temp - 0.21 0.31 0.02 22.15

(0.18) (0.25) (0.03) (46.38)

Rel humid - 1.59 1.14 0.57 1,385.84

(4.78) (6.31) (0.56) (913.59)

Winter

Spring - 0.67 - 5.13 - 0.72 90.40

(3.04) (4.29) (0.45) (530.50)

Summer 0.05 - 3.05 - 0.29 - 736.24

(6.23) (4.58) (0.43) (770.52)

Fall - 3.25 - 2.51 0.04 - 110.93

(2.39) (3.05) (0.31) (402.14)

Constant 108.96*** - 43.03*** 3.63*** 1076.01

(5.13) (8.09) (0.75) (1316.46)

R-Sqrd 0.66 0.49 0.43 0.35
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power was most closely related to the surrounding area

within a 100-m radius. The metrics that considered the

distribution of sound across frequency (delta power,

aggregate entropy, and center frequency) were more

strongly correlated with LDI500. This suggests that

overall sound intensity was most influenced by sound

sources within 100 m of the microphone but sound

sources up to 500 m away were more important to how

sound varied across the frequency spectrum.

The patterns observed between acoustic and land-

scape metrics in this study should be interpreted as

resulting from the combined effect of differences in

sound sources and attenuation from the landscape. In

the 1 kHz band analysis, LDI100 and hard ground had a

positive relation with average PSD when either was a

significant contributor to the model. Generally, LDI100
had stronger significance in the models below 3 kHz

and hard ground was a stronger influence above

4 kHz. These results highlight hard ground as an

important control variable in the analysis.

The 1 kHz band analysis also described the relative

PSD within each band independent of LDI100 and hard

ground (as indicated by the constants in the models).

The coefficients for these variables indicated that the

lower frequency bands had higher PSD than the higher

frequencies, independent of LDI. This pattern could be

the result of attenuation since higher frequencies are

generally more susceptible to attenuation due to

atmospheric absorption (ISO 1993), propagation

through foliage (ISO 1996), and scattering due to

industrial installations (ISO 1996).

The average PSD of the 20–3,000 Hz soundscape

region had a statically significant relation with LDI100,

an indicator of human influence (Table 6). Further,

there was evidence of a moderate relation between

average PSD and LDI100 in the 3–4 kHz band as well.

This does not support the commonly used 2 kHz

division between the anthropogenic and biologic

sourced portions of the soundscape. The greatestT
a
b
le

6
co
n
ti
n
u
ed

B
an
d
1
1

B
an
d
1
2

B
an
d
1
3

B
an
d
1
4

B
an
d
1
5

B
an
d
1
6

B
an
d
1
7

B
an
d
1
8

B
an
d
1
9

B
an
d
2
0

F
al
l

0
.6
4

0
.9
5

1
.0
9

0
.4
2

0
.8
0

0
.6
5

-
1
.0
8

-
2
.3
7

-
4
.1
9

-
5
.7
0

(3
.5
3
)

(3
.6
6
)

(3
.8
6
)

(3
.8
3
)

(3
.7
7
)

(3
.8
3
)

(4
.1
4
)

(3
.8
2
)

(3
.8
6
)

(3
.8
4
)

C
o
n
st
an
t

8
5
.4
6
*
*
*

8
4
.7
9
*
*
*

8
4
.2
2
*
*
*

8
5
.0
5
*
*
*

8
1
.3
5
*
*
*

8
0
.6
2
*
*
*

8
3
.2
0
*
*
*

8
0
.3
4
*
*
*

8
2
.7
3
*
*
*

8
1
.0
7
*
*
*

(6
.1
7
)

(6
.1
8
)

(6
.4
4
)

(6
.7
4
)

(6
.4
7
)

(6
.2
3
)

(6
.2
6
)

(5
.8
2
)

(6
.1
7
)

(6
.2
5
)

R
-S
q
rd

0
.3
3

0
.2
8

0
.2
1

0
.1
4

0
.1
8

0
.1
9

0
.1
5

0
.1
4

0
.1
2

0
.1
4

A
st
er
is
k
s
in
d
ic
at
e
st
at
is
ti
ca
l
si
g
n
ifi
ca
n
ce
:
*
p
\

0
.1
,
*
*
p
\

0
.0
5
,
*
*
*
p
\

0
.0
1
.
P
ar
en
th
es
es

in
d
ic
at
e
th
e
h
et
er
o
sk
ed
as
ti
c
ro
b
u
st
er
ro
rs

F
re
q
u
en
cy

b
an
d
la
b
el
s
re
p
re
se
n
t
th
e
h
ig
h
es
t
ex
te
n
t
o
f
th
e
fr
eq
u
en
cy

b
an
d
in

k
H
z.

F
o
r
ex
am

p
le
,
B
an
d
2
ra
n
g
ed

fr
o
m

1
to

2
k
H
z

Table 7 p values for results of Wald tests comparing the LDI

coefficients in the 1 kHz band regression analysis

Band 2 Band 3 Band 4

Band 1 0.718 0.060 0.024

Band 2 0.020 0.008

Band 3 0.585
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effect (as described by the LDI100 coefficients in the

regression analysis) was within the 20–2000 Hz range

and this effect was generally significantly larger than

for the 2000–4000 Hz range. However, the LDI100
coefficients for frequency bands 1 and 3 were only

marginally significantly different (p\ 0.1). Further,

Fig. 2a, c and d show examples of anthropogenic

sounds present at frequencies higher than 2 kHz

within the study sample. Our results suggest that

although ambient soundscapes below 2 kHz are the

most influenced by surrounding land use development,

higher frequency ranges are also be impacted by

human influence.

The regions of the soundscape associated with

LDI100 indicate regions with sound resulting from

human footprint and therefore, areas of potential

acoustic disturbance for animals. Anthropogenic

sound can mask important acoustic cues for animals

Fig. 2 Examples of spectrograms from study sample covering

ten minutes from four different sites. a The black outlines

highlight vehicular brake sound, b the black outlines highlight

sounds sourced from insects, birds, and amphibians, c the black

outlines highlight sounds sourced from birds in lower frequen-

cies and broad band insect sound up to 20 kHz, and d a

spectrogram showing acoustic calls from wildlife overlapping

with sound from a truck and boat
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that it overlaps in the frequency realm, such as calls or

predator footfalls (Brumm and Slabbekoorn 2005;

Dooling and Popper 2007). Animals use a broad range

of frequencies for communication with a high con-

centration of acoustic activity between 1 and 9 kHz

(Marler 1955; Napoletano 2004). Acoustic signals by

amphibians, birds, and insects captured in this study’s

samples occupied frequencies from 300 to 20,000 Hz

but were most concentrated from 4 to 8 kHz (see

Fig. 2b, c for examples). The frequency overlap of

these sounds with human sound suggests that a conflict

exists that could inhibit the transmission of ecologi-

cally valuable information.

This study presented evidence of a strong relation

between ambient soundscapes and landscape devel-

opment intensity; however, the sample collection was

limited. The study captured background sound but a

more extensive sample collection could reveal addi-

tional details about specific sound events like rush

hour traffic. Additionally, using automatic recording

unites to expand the data collection at each site to

encompass diurnal and seasonal temporal variation

may provide additional findings.

Conclusions

Research within soundscape ecology and its umbrella

discipline of ecoacoustics is trying to determine the

extent and intensity of anthropogenic noise distur-

bance on wildlife. Tools that accurately predict

soundscape characteristics from remote sensing data

like the LDI index have high value in this pursuit. The

results from this study have shown that ambient

soundscape characteristics can be predicted by the

landscape features surrounding a point. The applica-

tions of this tool are vast, ranging from site specific

impact assessments to noise mitigation for pre-exist-

ing disturbance across vast areas. With increasing

open access to remote sensing data, the ability to

duplicate this study and characterize soundscapes on

large scales is a reality. The LDI index could help

identify locations where mitigation measures have the

highest potential to resolve conflicts between anthro-

pogenic noise and wildlife.
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