
RESEARCH ARTICLE

Resource landscapes and movement strategy shape
Queensland Fruit Fly population dynamics

Florian Schwarzmueller . Nancy A. Schellhorn . Hazel Parry

Received: 12 October 2018 /Accepted: 23 September 2019 / Published online: 2 November 2019

� Springer Nature B.V. 2019

Abstract

Context Animal population dynamics are shaped by

their movement decisions in response to spatial and

temporal resource availability across landscapes. The

sporadic availability and diversity of resources can

create highly dynamic systems. This is especially true

in agro-ecological landscapes where the dynamic

interplay of insect movement and heterogeneous

landscapes hampers prediction of their spatio-tempo-

ral dynamics and population size.

Objectives We therefore systematically looked at

population-level consequences of different movement

strategies in temporally-dynamic resource landscapes

for an insect species whose movement strategy is

slightly understood: the Queensland Fruit Fly (Bac-

trocera tryoni)

Methods We developed a spatially-explicit model to

predict changes in population dynamics and sizes in

response to varying resources across a landscape. We

simulated the temporal dynamics of fruit trees as the

main resource using empirical fruiting dates. Move-

ment strategies were derived from general principles

and varied in directedness of movement and move-

ment trigger.

Results We showed that temporal continuity in

resource availability was the main contributing factor

for large and persistent populations. This explicitly

included presence of continuous low-density

resources such as fruit trees in urban areas. Analysing

trapping data from SEAustralia supported this finding.

We also found strong effects of movement strategies,

with directed movement supporting higher population

densities.

Conclusions These results give insight into structur-

ing processes of spatial population dynamics of

Queensland Fruit Fly in realistic and complex food

production landscapes, but can also be extended to

other systems. Such mechanistic understanding will

help to improve forecasting of spatio-temporal hot-

spots and bottlenecks and will, in the end, enable more

targeted population management.

Keywords Spatially-explicit modelling �
Bactrocera tryoni � Resource dynamics � Spatio-
temporal dynamics

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10980-019-00910-y) con-
tains supplementary material, which is available to authorized
users.

F. Schwarzmueller (&) � N. A. Schellhorn � H. Parry
CSIRO, GPO Box 2583, Brisbane, QLD 4001, Australia

e-mail: florian.schwarzmueller@senckenberg.de

F. Schwarzmueller

Senckenberg Biodiversity and Climate Research Centre,

Senckenberganlage 25, 60325 Frankfurt am Main,

Germany

123

Landscape Ecol (2019) 34:2807–2822

https://doi.org/10.1007/s10980-019-00910-y(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0001-9751-0565
http://orcid.org/0000-0002-6747-3182
https://doi.org/10.1007/s10980-019-00910-y
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-019-00910-y&amp;domain=pdf
https://doi.org/10.1007/s10980-019-00910-y


Introduction

One of the biggest challenges in managing species

populations for suppression or conservation is know-

ing ‘‘where are they when?’’ The spatio-temporal

dynamics and spatial patterns of populations are the

combined result of a dynamic resource landscape, as

well as species intrinsic population dynamics and

movement strategies (Mueller et al. 2011; Teitelbaum

et al. 2015). The underlying drivers and mechanisms

have been studied under the unifying concept of

movement ecology (Getz and Saltz 2008; Nathan et al.

2008; Revilla and Wiegand 2008). This framework

suggests that the underlying mechanisms for animal

movement (such as animals searching for food, shelter

or mates) are universal across taxa. Studying these in

small animals, such as pest insects, however, proves to

be difficult simply because of technical limitations due

to size (Schellhorn et al. 2014).

Additionally, the majority of movement ecological

studies consider landscape structure as a static distri-

bution of habitats either distinguishing patches and

matrix (as summarized in Fahrig 2003) or comparing

habitats of different quality (Fahrig et al. 2011).

However, especially in agricultural systems, land-

scapes also encompass resources of different temporal

availability creating a highly dynamic resource space

(Thierry et al. 2017). The influence of the temporal

availability of resources and especially of resource

continuity on the population dynamics of a species

within a landscape has recently been emphasized with

respect to the persistence of populations of beneficial

insects (Schellhorn et al. 2015; Fernández et al. 2016).

This is also of interest when, for example, assessing

the susceptibility of agricultural landscapes towards

the establishment of pest insects. To forecast their

populations in complex heterogeneous environments,

a mechanistic understanding of how these processes

shape population dynamics is needed (Zalucki et al.

2016; Bastille-Rousseau et al. 2017).

Ecological modelling can assist in identifying

important landscape features in the population dynam-

ics of species (Parry et al. 2017; Grant et al. 2018) and

can also be used to explore consequences of different

movement strategies on population distributions

(Mueller and Fagan 2008; Bourhis et al. 2017). In

this study, using spatially-explicit simulations for the

model pest Queensland fruit fly (QFly, Bactrocera

tryoni Frogatt), we explore three main aspects that

shape spatio-temporal population dynamics: (1) the

dynamics and distribution of resources with differing

quality across a landscape, (2) species intrinsic

population dynamics in response to these resources,

and (3) species movement strategies towards these

resources.

The model builds on existing knowledge of QFly’s

biology and combines it with general mechanistic

foraging hypotheses and the complex structure of

horticultural landscapes in South-East Australia. We

use this system as an example to answer the following

questions:

1. What spatio-temporal aspects of a landscape, such

as the amount, configuration and duration of

resources, promote higher population densities of

QFly in an agricultural landscape?

2. How does the movement strategy of QFly influ-

ence its population dynamics and spatial

distribution?

3. How does a continuous low density resource

supply (i.e. urban backyards) contribute to the

persistence of the QFly population?

Findings of this study aim to shed light on the role

of continuous resource availability and advance our

understanding of landscape level movement of QFly.

Furthermore, a better understanding of the general

spatio-temporal dynamics and evidence on the role of

urban areas will allow for more effective management,

particularly using area-wide management approaches.

Methods

Study system

We study the case of Queensland Fruit Fly, a

polyphagous and major insect pest of fruit and

vegetables in east Australia. Apart from its economic

impact, it is also an interesting case study for a species

with a very broad range of potential hosts that differ in

quality and seasonal availability (Hancock et al.

1999). Once QFly has access to these oviposition

resources, populations can build up quite quickly

because of a high oviposition rate (Fanson et al. 2009).

QFly can also endure phases without hosts because of

its extensive longevity of up to 120 days and some-

times more (O’loughlin et al. 1984; Harris 2009). The

mode in which QFly forages for its resources in a
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landscape, however, is still unknown. There is some

evidence that flies are probably not moving when

resources are abundant (Balagawi et al. 2012), but

other studies reported that QFly can potentially fly

several kilometres (Dominiak 2012). This suggests

that populations of QFly can be fast growing, highly

dynamic in terms of spatial distribution, and respon-

sive to landscape structure and dynamics. In addition,

their ability to endure phases without hosts contributes

to make them very persistent in a landscape: once they

are established in an area, eradication is a big

challenge.

Model overview

We developed a spatially-explicit model to explore

multiple movement strategies of QFly across land-

scapes of varying spatio-temporal resources that

consists of three components:

1. A cell-based landscape model that allows a

systematic exploration of different resource

compositions,

2. A stage-structured matrix model of QFly popula-

tion dynamics that is simulated within each

landscape cell,

3. A movement model that incorporates four possi-

ble QFly movement strategies, based on what is

known about their behaviour.

In the following, we describe the rationale and data

that we used for the different parts of the model. For a

detailed model description, please refer to the Online

Appendix.

Landscape model

The landscapes consist of hexagonal cells with each

cell representing a single commodity at a spatial

resolution of 1 ha/cell. We chose hexagonal cells to

simplify dispersal rules (see below). For each com-

modity, we obtained values for their quality as an

oviposition resource (or host) for QFly and their

seasonality. Resource quality (larval development

success and fruit density) was informed by literature

and expert opinion (Lloyd et al. 2013). The informa-

tion on the seasonality of commodities was gathered

via a survey among growers in south-eastern

Australia.

We also included urban areas into our model. Cells

with the ‘‘urban commodity’’ were modelled as an all

year round host with only a low density of fruit (see

Table 1, DavidWilliams, NSWDPI, and Tony Filippi,

pers. comm). The commodities shown in Table 1 were

used to design landscapes that were used as an input

into the model (see Table 2).

Population model

The dynamics of QFly populations in a single cell are

calculated using a stage-structured approach with two

stages: adults and juveniles. The juvenile stage

integrates all immature stages (egg, larvae, pupae

and teneral/infertile adult). (Mature) Adult flies are the

reproducing and dispersing life stage.

The model simulates fruit fly populations within

each landscape cell using a daily timestep. The number

of adult flies N in a cell p at time t ? 1 is defined as.

Ntþ1;p ¼ Nt;p þ At;p � mhpNt;p � Et;p þ It;p; ð1Þ

where A is the number of newly emerged adults, m is

the daily adult mortality (see Table 3), hp is the

hostility of cell p. These growth and mortality terms

are so-called intra-cell dynamics (Hanski 1998; Lei-

bold et al. 2004), because they are calculated for the

population in each cell. Two ‘inter-cell’ parameters,

E and I, represent the emigration out of and the

immigration into the cell, respectively. These inter-

cell parameters are calculated between neighbouring

cells at each timestep (see Movement Model section

below and in the Online Appendix).

Movement model

The other important component of spatially-explicit

simulation models is the movement of individuals

from one location (or cell) to another. Movement data

in QFly is almost solely restricted to so-called release-

recapture experiments, where a given number of flies

is marked and then released at a given point. After-

wards flies are trapped in the surrounding landscape

often with extremely low recapture rates (Dominiak

2012). These kind of studies therefore can give an

estimate on the distribution of dispersal distances from

an origin over time. However, these studies do not give

mechanistic insight into movement strategies (but see

Balagawi et al. 2012) and ignore effects of the

resource landscape on the movement behaviour.
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A mechanistic way of looking at species move-

ments suggests to split the process into emigration

(moving away from where they are now), actual

movement (moving across a landscape towards a new

location) and immigration (arriving at a new location)

and study the respective influencing factors separately

(Bonte et al. 2012; Schellhorn et al. 2014). In our

model, we focussed on the two processes emigration

and movement. We tested two hypotheses for each of

the processes (directed or undirected movement;

constant or triggered emigration) and by using a full

factorial combination, yielded four possible move-

ment strategies.

The number of emigrating individuals is often

considered as being influenced by local conditions,

whereas the actual movement and the resulting

immigration is regarded as a function of the neigh-

bourhood. In general:

Ep ¼ dpNp ð2Þ

and

Ip ¼
X

q

aqpEq; ð3Þ

where dp gives the proportion of individuals emigrat-

ing and aqp is the fraction of individuals emigrating

from cell q that arrives at cell p. The total immigration

into cell p (Ip) is the sum over the immigrations from

all neighbours (q).

We combine contrasting emigration and movement

strategies into four scenarios, which differ in the way d

and a are calculated: ‘‘constant emigration and ran-

dom movement’’ (d is constant, a is the same for all

neighbours), ‘‘constant emigration and directed move-

ment’’ (d is a constant, a is dependent on resource

availability of the surrounding cells), ‘‘triggered

emigration and random movement’’ (d varies with

resource availability, a is the same for all neighbours),

and ‘‘triggered emigration and directed movement’’ (d

varies with resource availability, a is dependent on

resource availability of the surrounding cells). Please

refer to the Online Appendix for a detailed description.

Modelling procedure and data analysis

We ran the model on 480 different landscapes (see

Table 2) to look at the effect of the resource compo-

sition. We also studied the effect of movement by

running the model with all four different movement

strategies across the landscape gradients.

All simulations were carried out using C?? and the

GNU scientific library (gsl, Gough 2009). The model

operates on a daily timestep. Each simulation ran for

the equivalent of 10 years (3600 days) to reach a

steady state (same population values for consecutive

years). All results shown are from the 11th year.

Whenever the population density in a cell dropped

below 10-8 (which corresponds to 1 fly per 100 km2),

the population in this cell was considered extinct and

the corresponding value was set to zero.

We conducted a full sensitivity analysis for the

population model and the movement model under

varying landscape scenarios. The examined parameter

ranges can be found in Table 4 together with the

default values used in the rest of this study. For results

of the sensitivity analyses, please refer to the Sensi-

tivity Analyses section in the Online Appendix.

We plotted all values for mean annual population

densities as a boxplot (Fig. 7 in the Online Appendix).

However, the amount of landscape variables (Table 2)

in combination with the four movement strategies

makes it difficult to compare values and analyse how

Table 1 Commodity parameters used in the model

Commodity Seasonality s Initial fruit

density (m-2) F0

Development

success E

Patch

hostility h
Oviposition

likelihoodb o

Citrus May–September 5 0.05 2 0.5

Grapes November–April 50 0.1 3 0.5

Stonefruit November–March 10 0.3 3 0.5

Urban All year 0.1a 0.3 1 0.5

Pasture All year 0 0 4 0

aFruit density in urban cells are kept constant at this value
bOviposition likelihood is the same for all commodities because there is yet no empirical evidence for active preferences (Fitt 1984)
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each variable contributes to population densities. We

therefore decided to plot the data in a different way

(Fig. 3) where we looked at each variable’s states and

whether one of these states is more likely to contribute

to high or low population densities (above or below the

median). To do this, we created two histograms for

each input variable one for the lower (Fig. 3, left) and

one for the higher (Fig. 3, right) values in population

densities. We then also calculated the difference for

each state of the input variable (points in Fig. 3) in the

frequency distributions. This makes it robust towards

different sample sizes, which allows a comparison to

the empirical data presented in Fig. 4. Whenever a

point is on the left side of the axis, this state of the

variable is more likely to produce low population

densities, when it is on the right side populations are

generally higher under these conditions. We can then

compare the different states of the variables and

whether they are more likely to produce high or low

population sizes. For a detailed example of this

analysis, please refer to the respective section in the

Online Appendix.

Table 2 Full factorial landscape design

Factor Commodity Amount Urban Aggregation Replicates n

Levels Citrus, grapes, stonefruit, mix 3 30%, 60%, 90% 3 Yes, No 3 High, Low 3 =

n 4 3 2 2 10 480

Table 3 Reported lifespans of QFly and their conversion into a mean daily mortality

Reported lifespan (days) Mean daily adult mortality Type of Study Reference

61 (females), 108 (males) (mean) 0.011 (females), 0.006 (males) Lab-study Harris (2009)

25-48 (dependent on diet) 0.027–0.014 Lab-study Fanson and Taylor (2012)

91.5 (mean on a very good diet) 0.0075 (mean as 50% mortality). Lab-study (on single flies) Fanson et al. (2009)

136.2 (max on a very good diet) 0.022 (max as 95% mortality) Lab-study (on single flies) Fanson et al. (2009)

50% mortality after 100 days, 0.0069

0.014

Cages O’loughlin et al. (1984)

90% mortality after 160 days 0.014 Cages O’loughlin et al. (1984)

Up to 31 days (± 2.3) 0.022 Lab study on steriles Reynolds and Orchard (2011)

Table 4 Parameter ranges explored in the sensitivity analyses and default values used throughout the rest of the study

Sign Variable Unit Eqn. Range in the sensitivity analysis Default value

m Daily adult mortality % per day (1), (7) 0–0.1 0.02

e Egg laying rate (flies 9 m-2 9 day)-1 (8) 0–30 12

e Development success % (10) 0–1 See Table 1

D Development time days (10) 8–70 30

B0 Half saturation density Fruits 9 m-2 (7), (13) 0–5 2

F0 Fruit density Fruits 9 m-2 (4), (9) 0–50 See Table 1

d Constant emigration rate % (2) 0.001–0.25 0.01

dmax Maximum emigration rate % (11) 0.01–0.5 0.25
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Trapping data

To assess model realism, we compared model outputs

with data obtained from 1146 traps located in the

Sunraysia region (a horticultural area along the

Murray River in both Victoria and New South Wales).

These traps are part of the area-wide fruit fly

monitoring programme and are checked every week

to every fortnight. For each trap, we acquired the

landuse data of the landscape in a 500 m radius around

the trap. We used the catchment-scale landuse maps

from the Australian Collaborative Land Use Manage-

ment Program (ACLUMP, Australian Bureau of

Agricultural and Resource Economics and Sciences)

and combined it with crop survey data from SunRISE

Mapping and Research (Sunrise 21 2015) to get more

detailed information on the crop-type (see Online

Appendix on how this data was obtained and

combined).

We analysed mean annual population densities in a

landscape (measured as mean annual QFly densities

observed in the traps) and looked at the effect of the

amount of horticultural and urban area in a 500 m

radius on the trap catches. We wanted to know if these

show trends that are similar to the ones observed in the

model. Following the analysis of the model data, we

also split the empirical data at the median and looked

at the frequency distributions of different levels of the

respective landuse type in the upper and lower half of

the population data. We also calculated the difference

for each level to account for differences in sample

sizes and computed Spearman’s Rho to estimate the

strengths of the correlation. We tested for a temporal

correlation of mean annual trap catches, using the

same method, where a high correlation means that the

same traps have similar values for both years. We also

tested for a correlation between the landuse types in

the landscapes. If there were only two landuse types in

the data, we would expect a correlation of - 1.

We also carried out Kruskal–Wallis rank sum tests

and Pairwise Wilcoxon rank sum tests on the mean

annual trap catches in both years of data and for the

two explanatory variables, respectively. The pairwise

tests were only performed when Kruskal–Wallis rank

sum tests were significant. p-values of Pairwise

Wilcoxon rank sum tests were adjusted using the

Holm–Bonferroni method.

Data availability

The datasets analysed during the current study may be

made available from the corresponding author on

reasonable request. However, note that restrictions

apply to consultant landuse data and trapping data

obtained from Australian State Government Depart-

ments, which were used under license for the current

study.

Results

Modelled population dynamics of QFly followed a

general pattern (see Fig. 1 for an example) that is

sensitive towards the respective landscape structure

and movement strategy (Fig. 1b). The highest popu-

lation densities occurred at the end of summer

(March–April) near the end of the Stonefruit and

Grape season. When these were harvested, fly num-

bers started declining. Although citrus came into

season in May this did not stop the decline, as the

developmental success in citrus is low. The drop to the

lowest numbers happened in November which, in this

model, was just before the first new adults were

emerging from the summer crops (Stonefruit and

Grapes). When looking at the effect of movement

strategies, we found that the date of the peak as well as

the strength of population growth and decline varied

with the different movement strategies. The increase

in November, caused by the first new flies emerging,

was stronger when movement was triggered by the

availability of resources (movement strategies with a

triggered emigration). The further increase during

summer and autumn was similar between movement

strategies except for the one with a triggered emigra-

tion and directed movement, which was probably

experiencing a density dependent limitation. All fly

densities in Fig. 1b are shown on a log scale to

pronounce differences at lower population densities

(please refer to Fig. 8 in the Online Appendix for a

non-log visualization).

While numbers in Fig. 1b were averaged over the

whole landscape, Fig. 1c shows the variability

between cells (as coefficient of variation). This gives

an indication of how flies were distributed in the

landscape. During the growth phase in summer, the

Coefficient of Variation (CV) between cells remained

constant. This shows that, although growth was only
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happening in some cells, spill-over effects were large

and created a more or less even distribution of flies

across the landscape. When the high quality crops

were harvested, trajectories for the different move-

ment strategies began to diverge. For the movement

strategy with a triggered emigration and random

movement, the CV plummeted to very low values,

indicating an almost homogenous distribution of flies.

On the other extreme, in movement strategy with

triggered emigration and directed movement the CV

increased drastically which is a sign for a highly

patchy fly distribution. The other two strategies

showed intermediate values.

The general trend in spatial population dynamics

can also be visualised with density maps at different

times of the year (Fig. 2). These maps produced by the

model can give an impression on how fly densities and

distributions were linked with host availability. Fig-

ure 2 shows an example of this for the landscape

presented in Fig. 1a under the different movement

strategies. We chose to present four time steps that are

representative of the different seasons. The upper row

shows the fruit availability at the respective time step,

whereas the other rows show the spatial distribution of

fly densities at the same time for the four movement

strategies. Comparing the spatial alignment between

resources and fly density hot spots shows the interac-

tive influence of resource availability and movement.

In summer (January), when host trees were typi-

cally abundant with susceptible fruit, we found that

QFly populations grew in cells containing these hosts.

With directed movement, we found a pattern of spatial

alignment between resources and flies where fly

populations appeared in cells where resources were

growing, but neighbouring cells with no resources had

no or few flies (Fig. 2). With undirected movement,

we found somewhat higher populations in cells with

available resource (due to local population growth) but

other than that an almost even distribution across the

landscape. Later in the year (April), hosts in some cells

were already harvested and available fruit density was

lower in the remaining host cells. However, fly

Po
pu

la
tio

n 
de

ns
ity

 (1
/m

²)A B

10-5

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

2

4

C

1
0

3

Jan Apr Jul Oct Jan

5

10-3

10-1

101

Citrus Grapes Stonefruit

UrbanPasture

Time
Random Movement

Random Movement
Directed Movement

Constant Emigration, 

Directed Movement

Constant Emigration, 
Triggered Emigration, 
Triggered Emigration, 

Fig. 1 Example of one of the landscapes used in the model (a),

the respective population dynamics (in flies per m2) under

different movement scenarios (b) and the between patch

variation in population densities expressed as Coefficient of

Variation (c). Colours (red, green, orange, grey) represent the

different commodities and their spatial location (a) as well as

their respective fruiting times (b and c). Landscape in A:

ID = 499, crop = ‘‘Mix’’, cover = 60%, 10% urban, 30%

pasture, aggregation score\ 0.3
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densities were at their maximum which led to spill-

over effects into the surrounding cells. This led to a

more even distribution of flies even under directed

movement. When simulating a movement with trig-

gered emigration and directed movement, we found

QFly populations starting to accumulate in urban cells.

Spatial alignment between hosts and QFly populations

remained weak throughout winter (July). However,

populations with a simulated ‘‘directed movement’’

showed hotspots in urban areas and around remaining

resources (i.e., Citrus). At the beginning of spring (1.

October) with no hosts currently in season, we found

populations shrinking and reducing to urban areas and

surroundings under directed movement. In summary,

spatial alignment of resources and flies was weak

throughout the year when movement was undirected.

When movement was directed, population distribu-

tions were patchier especially when resource abun-

dance was low. Under triggered emigration and

directed movement, spatial dynamics were strongest

and matched best the changes in resource abundance,

Fig. 2 Resource

availability (upper panel)

and density maps of fly

populations (lower panel) in

the landscape shown in

Fig. 1a at four time

shapshots representing the

different seasons. Different

rows in the lower panel

correspond to different

movement strategies.

Colour scale in the lower

panel is scaled

logarithmically
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indicating that this was the most successful strategy

for tracking resource changes.

Effect on mean annual population densities

The above mentioned results suggest a strong effect of

both the underlying resource landscape and the

movement strategy on the size of populations. We

systematically explored this effect over a wide

parameter space (Fig. 3).

Effect of movement

As suggested by the previously mentioned results, we

found that the ability to track changes in the resource

landscape is positively related with higher population

densities. Movement strategies with a directed move-

ment are therefore likely to lead to high population

densities. In contrast, triggered emigration with undi-

rected movement will almost always lead to low

densities.

Effect of resource availability and distribution

In terms of resource effects, we found a weak negative

effect of resource abundance (number of cells with

horticultural commodities) but a strong effect of host

type; with Stonefruit showing the most positive effect,

monocultures of Grapes and Citrus seem to support

only low annual fly densities. Mixed landscapes that

offered a continuous supply of hosts showed a strong

tendency towards high densities. When looking at the

effect of urban areas in a landscape we found a strong

positive correlation: the more urban area in a land-

scape the more likely the simulation will yield high fly

numbers. Together, these results indicate the strong

positive effect of a continuous resource supply on fly

populations, even when it is only of low density (in the

case of urban areas). We found only a weak effect of

landscape level aggregation with highly aggregated

landscapes showing a slightly more favourable con-

dition. There was no effect of overall amount of

resource in a landscape. However, when all other

aspects of the landscape are the same, there was

sometimes a weak positive effect on mean annual fly

densities (see Fig. 7 in the Online Appendix).

Empirical data

We compared our modelling results for the generated

landscapes to the trapping data by splitting the

population data at the median and compared the

landscape composition in the upper and the lower half

of QFly population sizes (Fig. 4). Similar to our

simulations, we found a weak negative effect of the

amount of horticultural area on fly numbers. We also

found that there is a strong positive relationship

between the amount of urban area in a landscape and

the likelihood of the corresponding trap catching a

Fig. 3 Effect of movement strategies and landscape character-

istics on population densities. Bars to the left show the

distribution of different variable states in the lower half of

resulting population densities. Bars to the right show those in the

upper half, respectively. Points are calculated as the difference

between left and right
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high number of flies. Figure 4 shows the mean flies per

trap and day for 2015 and 2016.

For a more quantitative analysis between the fly

numbers and the characteristics of the surrounding

landscape, we calculated Spearman’s rho to check for

correlation. We found that the amount of urban area in

a landscape showed a positive correlation with mean

fly numbers (2015: q = 0.464 (p\ 0.001), 2016:

q = 0.328 (p\ 0.001)), whereas the amount of hor-

ticultural area scaled negatively with trap catches

(2015: q = - 0.359 (p\ 0.001), 2016: q = - 0.06

(p = 0.045)). Mean numbers of flies caught per trap

were also correlated between years [Pearson’s linear

correlation coefficient was 0.313, Spearman’s

q = 0.605 (p\ 0.001)]. Finally, the amount of urban

area was negatively correlated with the amount of

agricultural area [q = - 0.357 (p\ 0.001)) but it is

very different from - 1, which means that landscapes

with less agricultural area do not have more flies,

simply because they have more urban area.

A Kruskal–Wallis rank sum test showed that the

groups (0%,\ 10%, \ 30%, \ 60% and[ 60% in

Fig. 4) of the two explanatory variables ‘‘amount of

urban area’’ and ‘‘amount of horticultural area’’ were

significantly different in terms of mean annual fly

densities (with the exemption of ‘‘amount of horticul-

ture’’ in 2016). Using a post hoc Pairwise Wilcoxon

rank sum test with Holm–Bonferroni p value adjust-

ments, we could show that the differences are

significant between most of the groups (please see

Table 5 for the exact results). This indicates that there

is a strong correlation between the values of mean

annual fly densities and the respective explanatory

variable (positive for ‘‘amount of urban area’’ and

negative for ‘‘amount of horticulture’’).

Discussion

Landscape-scale population dynamics are influenced

by processes at multiple spatial and temporal scales

(Kromp and Steinberger 1992; Bowler and Benton

2005), ranging from the everyday foraging of indi-

viduals (Schellhorn et al. 2014) to seasonal landscape-

level resource availability (Mueller and Fagan 2008).

In this study, we focussed on Queensland Fruit Fly

(Bactrocera tryoni) a polyphagous pest species of

Australian horticulture, and its interaction with fruit

trees as the resource for oviposition. Using a spatially

explicit model, we showed that continuity, not abun-

dance, of available oviposition sites is the main

determining factor for large and persistent popula-

tions. This finding extends explicitly to continuous

low level resources such as backyard trees in urban

areas. We also showed that assuming a directed

movement strategy for QFly leads to larger and more

persistent populations, possibly overriding resource

effects.

Fig. 4 Empirical data of 2015 (A) and 2016 (B) showing the

effect of the amount of horticultural or urban area in the 500 m

surrounding of a trap on the respective trap catches (mean

annual flies/trap*day). Bars to the left show the distribution of

different variable states in the lower half of measured population

densities. Bars to the right show those in the upper half,

respectively. Points are calculated as the difference between left

and right
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Continuity of the resource landscape leads to high

and persistent populations

Our findings, that resource quality and continuity are

more important than simple resource abundance, are in

line with a recent review of empirical studies on pest

population dynamics (Veres et al. 2013), which also

found mixed results for pure resource abundance.

Veres and colleagues suggest that resource abundance

is not a good predictor of pest populations when a part

of the pest’s life cycle occurs outside the crop. In our

model, we find that the presence of another host (either

another crop or urban areas) is necessary for popula-

tion persistence (Online Appendix Fig. 7). This effect

of a second limiting resource is overriding the

abundance effect of the primary resource. Schellhorn

et al. (2015) called this pattern a ‘spatio-temporal

resource bottleneck’ that shapes population dynamics.

In the same vein, our results suggest that this

bottleneck appears outside the crop and determines

landscape level pest-persistence. This stresses the

importance of sequential resource use and the contin-

uous low-level resource availability in urban areas for

QFly populations.

If resources are continuously available, the model

showed also an effect of resource quality (expressed in

terms of fruit density and developmental success),

with Stonefruit generally supporting the highest

population densities, followed by Grapevines. This

suggests that developmental success was actually

more important than fruit density in determining

resource quality, as this was higher in Stonefruit than

in Grapevines (fruit density was higher in

Grapevines).

Surprisingly, we found only a weak effect of

landscape-level resource aggregation. This seems to

be in contrast to previous modelling work or empirical

studies that identify patch sizes and connectivity as

important for persistent populations (Fahrig and

Merriam 1985; Hanski 1998; Wilson et al. 2016).

Although it is currently debated on whether existing

measures of landscape configuration are appropriate

(Fahrig and Triantis 2013; Hanski 2015), it seems that

aggregation and connectivity are less important when

habitat patches cover more than 20% of the landscape

(Hanski 2015). Additionally, recent literature suggests

that a decrease in habitat aggregation (e.g., due to

habitat fragmentation) is not necessarily associated

with lower population densities (Fahrig 2017). A

recent modelling study, for example, looking at

oviposition resource use in butterflies found the lowest

landscape level fecundity when resources were aggre-

gated (Zalucki et al. 2016). In their study, a resource

spread out across a landscape was actually beneficial,

Table 5 Results of Kruskal–Wallis rank sum tests and Pairwise Wilcoxon rank sum tests on the mean annual trap catches in both

years of data and for the two explanatory variables, respectively
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which is due to the high mobility of the butterflies. The

fact that we found only weak effects of aggregation is

probably due to the size of the landscape and the range

of the resource cover (resources were generally

abundant, i.e. in a range from 40 to 100%; in contrast

to Zalucki et al. (2016) which investigated levels as

low as 1%).

Our model findings were also supported by the

empirical data when analysed in a similar manner to

the model output, as we also found no effect or even a

negative effect of the amount of horticulture in a

500 m radius around a trap. We did find, however, that

there is a strong positive relationship between the

amount of urban area in a landscape and the likelihood

of the corresponding trap catching a high number of

flies. The temporal correlation between mean annual

fly numbers suggests that these trends are quite

consistent between years. All of this shows that urban

areas can in fact contribute to the severity of a QFly

problem by: (1) providing resources for QFly growth

(backyard fruit trees) when production areas are not,

(2) providing shelter and thus reducing mortality, and

(3) by being so close to production areas that flies can

move in and out within normal foraging distances. In

addition to this, urban areas might become a problem

when it comes to managing QFly populations. The

amount of management strategies that are suitable for

an urban setting are limited and the number of people

that would need to get involved is significantly higher

than would be in a pure production setting.

Directed movement leads to higher population

densities

Interactions between the underlying resource land-

scape and animal movement has been recently

reported in a review of movement modes and distances

in vertebrates (Teitelbaum et al. 2015) with animals

moving less when resources are plenty. A mechanistic

model by Farnsworth and Beecham (1999) suggests

that the interplay between resource abundance distri-

bution and animal resource perception shapes the

distribution of animals in a landscape. They show, that

the most important mechanisms are how far animals

can perceive and how they judge resource quality.

Whether they then choose one resource or over

another and how much these respective resources

contribute to population growth can influence popu-

lation sizes and ultimately lead to selection pressure

(Pulliam and Danielson 1991). Consequently, Mueller

and Fagan, (2008) suggest that, in the long term,

certain resource landscapes would favour different

movement strategies that optimise animal behaviour

towards the amount and predictability of resources in

these landscapes. However, such mechanistic move-

ment models are lacking in current QFly literature, in

turn impacting our ability to forecast and manage

populations (Clarke et al. 2011).

We showed that a directed movement strategy led

to tighter spatial alignment between QFly populations

and resources. This in turn yielded higher population

densities which is in line with other modelling studies

looking at insect movements (such as Zalucki et al.

2016). In their model for Monarch butterflies (Danaus

plexippus), increasing the virtual insect’s perception

range and the directionality of movement led to a

better detection of host plants and consequently

increased landscape level egg-laying (Zalucki et al.

2016); the effect was stronger in landscapes where

resources were scarce and fragmented. Similarly, in

our simulations where we assumed directed move-

ment, populations grew to high values and persisted

even in landscapes with a relatively poor supply of

resources. Mechanistically, this is due to the closer

alignment between fly populations and resources

(Fig. 2). In contrast, in our simulations with undi-

rected movement, populations only persisted when

resource continuity or quality was high (see Fig. 7 in

the Online Appendix).

Higher and persistent fly populations also occur

when a directed movement is triggered by local

conditions; low resource density can result in an

indirect positive density dependent movement as

higher densities of flies reduce resources, and in turn

increase emigration. Positive density dependent

movement (direct and indirect) is found in a number

of insect species (Dermo and Peterson 1995), but also

in some birds and mammals (Matthysen 2005). In the

same vein, a study on QFly found that movement is

negatively correlated with resource availability (Bala-

gawi et al. 2012). In theoretical studies, positive

density dependent emigration (or density dependent

dispersal) was shown to stabilize metapopulations in

heterogeneous environments, creating so-called

souce-sink dynamics (e.g., Amarasekare, 2004). How-

ever, if undirected (i.e., random), triggered movement

leads to the most extinctions according to our results.

This is because flies were equally distributed across
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the whole landscape, including empty cells without

any potential for population growth. In contrast,

directed movement results in flies locating even

poor resources, where populations grow year-round

and mortality rates are low. Once, the horticultural

crop comes back into season, these populations can

move back into the landscape and start a new

population cycle (Thomas and Kunin 1999 call this

kind of habitats ‘‘Sieves’’).

Caveats

Given the theoretical scope of this study, there are

some caveats that require mention here and that could

potentially be addressed moving forward. First, in this

study we looked at the three commodities that are most

prominent in the horticultural areas in south-eastern

Australia. We are confident that this captures the

essential dynamics of the system. However, there are a

lot more susceptible commercial crops. On top of that

there can be some non-commercial host with an

unknown resource quality. These can be incorporated

into future realizations of the model if the relevant

parameters (seasonality, quality and fruit density) can

be estimated. Second, the information that we

included on host quality and seasonality for the three

commodities studied was qualitative data based on

grower interviews. The fruit-availability data (host

seasonality) probably included different varieties. As a

consequence, the temporal resource availability might

be shorter in reality. Again, this can be overcome by a

more detailed parameterization. Third, most of the

biological rates included in the population model are

based on lab and field cage experiments or on expert

opinion. There is no evidence on how these might

change in the field. We can assess how things might

change from the sensitivity analysis which, for

example, showed that adult mortality has the most

influence on the results (Online Appendix). Fourth,

previous research suggests that there is a strong

influence of temperature on the included parameters

(especially the development time, Pritchard 1970,

Merkel et al. 2019). We considered temperature to be

constant (biological rates do not change over the year)

as this allows us to focus on the key questions of this

study relating to movement strategies and resource

continuity in theoretical landscape scenarios. Increas-

ing temperature will allow higher numbers of gener-

ations per year (Sutherst and Yonow 1998) and

thereby potentially enable population spread and

establishment (Sultana et al. 2017). Fifth, most of

the aspects of the movement model are drawn from

general assumptions that hold across various mobile

insect species. We have no evidence for other

hypotheses such as an active preference for specific

hosts or a direct density dependence of emigration

(positive or negative). An active preference for

specific hosts would lead to an even more patchy

distribution of flies (as would a negative density

dependent emigration), a positive density dependent

emigration (avoidance of conspecifics) would act as a

trigger of movement independent of hosts status. This

could change fly distributions to be more equal across

the landscape. If future studies were able to report any

of these, our model assumption on the general

directedness and the timing of movement might alter.

Sixth, we modelled movement only between neigh-

boring cells. This assumes absence of long range

resource perception beyond the next cell (in our model

beyond 100 m). We also chose a hexagonal grid to

have simple and consistent movement rules between

neighboring cells. However, hexagonal grids are still

rarely used in landscape ecological studies which one

would have to bare in mind when comparing respec-

tive results directly (Birch et al. 2007).

Summary and implications

In this study, we found that temporal resource

continuity was far more important for persistent

populations than the amount of (a single) resource or

the resource quality. A high resource quality (in terms

of ‘‘developmental success’’) led to higher maximum

population sizes but having a second crop or a

continuous low level resource supply (urban area) in

the landscape had the strongest influence on persis-

tence. We also showed that a directed movement

strategy that is triggered by local conditions (resource

availability) yielded the highest population densities.

This has implications for future research in at least

two main areas: (1) the model clearly identified the

movement strategy as one of two important compo-

nents in QFly population stability. Field studies, that

look into triggers, directedness and distances of

movement can therefore greatly advance our under-

standing of a landscape level resource use and

population dynamic; and (2) Urban areas have previ-

ously been shown to inhabit populations of QFly or the

123

Landscape Ecol (2019) 34:2807–2822 2819



behaviourally similar Mediterranean Fruit Fly (Cer-

atitis capitata Weidemann) (Fletcher 1974; Econo-

mopoulos and Rempoulakis 2018) causing

speculations about their role in pest dynamics. This

study demonstrates the potential mechanisms in which

urban areas can contribute to a QFly problem. Future

management strategies should therefore be designed

with regards to these findings.

Conclusions

The model and results presented in this study, are an

example of mechanistically understanding and pre-

dicting landscape level population dynamics. Studies

like these can bridge the gap to landscape ecological

studies that often solely focus on landscape structure

in space and lack temporal dynamics. Such thorough

understanding of the spatial and temporal structure of

population dynamics, and where and when they

provide ecosystem services or disservices, is crucial

for landscape level population assessments and for

developing effective management strategies.
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