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Abstract

Context Whilst the composition and arrangement of

habitats within landscape mosaics are known to be

important determinants of biodiversity patterns, the

influence of seascape patterning and connectivity on

temperate reef fish assemblages remains largely

unknown.

Objectives We examined how habitat patterns at

multiple spatial scales (100–1000 m) explained the

abundance and diversity of temperate reef fish in a

reef-seagrass dominated seascape.

Methods Fish assemblages were surveyed using

remote underwater videos deployed on 22 reefs in

Jervis Bay, NSW, Australia. Using full-subset

GAMMs, we investigated if habitat area, edge,

structural connectivity and a metric for habitat diver-

sity (Shannon’s diversity index) of reef and seagrass

can predict variations in a temperate reef fish

assemblage.

Results A key finding of the study was that temper-

ate reefs close (\ 55 m) to large ([ 6.25 ha) seagrass

meadows contained greater abundance and diversity

of fish. A consistent negative correlation was also

found between reef area ([ 0.01 ha) and the fish

assemblage. The influence of seascape metrics on the

abundance of fishes varied with functional traits

(trophic groups, mobility and habitat associations).

Fish-seascape relationships occurred at a range of

spatial scales with no single scale being solely

important for structuring the fish assemblage.

Conclusions We demonstrate that it is important not

to view reef habitats in isolation, rather consider a

reefs context to adjacent seagrass when predicting the

distribution of temperate reef fish. This finding

improves current understanding of the multi-scale

factors structuring temperate reef fish assemblages and

highlights the importance of reef-seagrass connectivty

for the management of temperate marine ecosystems.
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Introduction

Understanding the factors governing the distributions

of organisms is fundamental in ecology (Andrewartha

and Birch 1954). In terrestrial systems, landscape

ecology has established that the composition (number

and area) and spatial configuration of habitats within

landscape mosaics (i.e. landscape structure) can

profoundly affect patterns of biodiversity and ecolog-

ical processes (Forman and Godron 1986; Turner

2005; Wu 2006). Although these concepts have been

well documented for a range of terrestrial taxa (Turner

2005), the influence of landscape structure on marine

species is less understood. The techniques and

concepts developed in landscape analyses are, how-

ever, being increasingly applied in the marine envi-

ronment (Grober-Dunsmore et al. 2009; Boström et al.

2011). This has led to the establishment of the

burgeoning field of seascape ecology that focuses on

understanding the ecological consequences of spatial

patterning in seascapes across multiple spatiotemporal

scales (Pittman 2017).

There is a growing appreciation that seascape

structure at a range of scales influences the distribution

of fishes. The characteristics of focal habitats, such as

habitat area and edge environment have been high-

lighted as predictors for the observed variation in the

structure of fish assemblages (Jackson et al. 2006;

Smith et al. 2008; Boström et al. 2011). For instance,

positive relationships have been reported between

habitat area and fish diversity and abundance on both

coral and rocky reefs (Sale and Douglas 1984; Acosta

and Robertson 2002; Chittaro 2002; Parsons et al.

2016), however this relationship appears to be more

ambiguous in seagrass habitats (Boström et al. 2011).

Recently, the structural connectivity (i.e. the area and

isolation; Calabrese and Fagan 2004) of habitats has

been identified as a key predictor for fish communities

in tropical seascapes (Grober-Dunsmore et al. 2008;

Olds et al. 2012). For example, coral reefs in tropical

seascapes with large areas of adjacent seagrass

habitats at scales between 100 and 1000 m have been

reported to contain a higher abundance and diversity

of reef fish (Kendall et al. 2005; Grober-Dunsmore

et al. 2007; Olds et al. 2012; Berkström et al. 2013).

There is also evidence that the structural connectivity

of reefs to seagrass may be of more importance for

structuring reef fish assemblages than the area of reef

habitat (Grober-Dunsmore et al. 2007).

In coastal marine ecosystems, reefs are often

embedded within heterogeneous seascapes dominated

by seagrass, mangrove and soft sediment habitats.

Many reef fish species connect multiple habitat types

as they move across the seascape to access resources

throughout their life-histories (Pittman and McApline

2003; Green et al. 2015; Sambrook et al. 2019). These

movements occur over a range of spatial scales, from

10 to 100’s of metres for foraging, diel or tidal

migrations (Beets et al. 2003; Unsworth et al. 2007;

Hitt et al. 2011). Movements may also spand over

large scales (1–100’s of kilometres) for broader-scale

dispersal such as ontogenetic shifts or spawning

(Gillanders et al. 2003; Nagelkerken et al. 2015).

Seagrass meadows are particularly important habitats

for reef fishes, with many species using them as

nursery areas or foraging locations (Gillanders 2006;

Heck et al. 2008; Nagelkerken 2009). Consequently,

the spatial context of reefs to adjacent seagrass

meadows can have a major influence on resource

availability and the structure of fish assemblages

(Grober-Dunsmore et al. 2009).

Research into the effect of seascape patterns on reef

fish has largely been focused in tropical regions

containing coral reefs, mangroves and seagrass habi-

tats (Dorenbosch et al. 2005; Grober-Dunsmore et al.

2007; Olds et al. 2012). Despite rocky reefs and

seagrass being large components of temperate seas-

capes, few studies have explored how reef-seagrass

connectivity influences temperate reef fish distribu-

tions and ecological processes (but see Ricart et al.

2018; Rees et al. 2018; Perry et al. 2018). The

temperate seascape literature has instead investigated

fish-habitat relationships in predominantly reef and

soft sediment seascapes (Moore et al. 2011; Schultz

et al. 2012; Rees et al. 2014; Ortodossi et al. 2018) or

fish assemblages in vegetated habitats (Jackson et al.

2006; Green et al. 2012; Staveley et al. 2016).

Furthermore, few studies in temperate seascapes have

examined how the functional roles (e.g. feeding

groups) and movement capabilities of fish species

affect the response of reef fish to variations in seascape

patterning. This information can elucidate relation-

ships between ecological processes and seascape

patterns, such as the link between trophic dynamics

and the seascape (Berkström et al. 2012; Martin et al.

2018).

An initial investigation by Rees et al. (2018)

suggested the area of seagrass meadows adjacent to

123

2338 Landscape Ecol (2019) 34:2337–2352



reefs may be a key predictor for the distribution of

demersal temperate reef fish. Research from tropical

seascapes have reported that metrics other than

seagrass area, such as the isolation of reefs from

seagrass, reef area and edge can be useful for

predicting variation in fish assemblages (Boström

et al. 2011; Wedding et al. 2011). Here we sought to

better understand how the distribution of temperate

reef fish is associated to seascape structure and

structural connectivity within a seascape dominated

by seagrass (Posidonia australis) and rocky reefs;

which are both habitats considered a high priority for

management. This study builds on the work of Rees

et al. (2018) but incorporates higher levels of replica-

tion and a greater number of seascape metrics. We

predicted that greater abundance of reef fish, individ-

uals in functional groups and diversity would be found

on reefs with low isolation to large seagrass meadows

in comparison to reefs further away. Our expectations

were based on the likelihood of increased resource

availability and immigration rates of recruits from

nursery seagrass habitats to nearby reefs. We also

predicted large reefs will contain a greater abundance

and diversity of fish due to species-area relationships.

Methods

Study site

This study surveyed fish on 22 shallow-water temper-

ate reefs in Jervis Bay, a large oceanic embayment in

south eastern Australia (Fig. 1) that forms the central

section of the Jervis Bay Marine Park. The Jervis Bay

seascape is dominated by rocky intertidal and subtidal

reefs, seagrass meadows (Posidonia australis) and soft

sediments. These habitats are replicated across the

seascape and vary spatially in their size and arrange-

ment (Fig. 1). Therefore, Jervis Bay offers an excel-

lent opportunity to examine how seascape patterns

drive the abundance and diversity of temperate reef

fishes.

Fish surveys

Reef fish assemblages were surveyed using single

camera Remote Underwater Video stations (RUVs)

fromMarch to May in 2016 within Jervis Bay (Fig. 1).

RUVs consisted of a GoPro Hero 3 camera mounted to

a brick fixed onto a metal wire base (Kiggins et al.

2018). Four RUVs were deployed 60 m apart on each

of the 22 reef locations (n = 88). The reef locations

were separated by aminimum linear distance of 500 m

which allowed us to systematically sample nearly

every reef in Jervis Bay (Fig. 1). The RUVs were

deployed at a depth of 2 m on subtidal reefs for a

minimum of 35-min to ensure a 30-min sample of

footage and a 5 min settlement period post deploy-

ment. This set time has been reported to be appropriate

for both baited and unbaited underwater videos

sampling fishes on temperate reefs (Bernard and Götz

2012; Harasti et al. 2015). To minimize potential

spatial and temporal confounding, reefs were sampled

in a haphazard order around the Bay. Sampling was

conducted in daylight hours (08:00–16:00) to mitigate

potential effects of crepuscular feeding behaviours

(Wraith et al. 2013) and restricted to three hours either

side of high tide.

Fish diversity (species richness) and abundance

(MaxN) were recorded from RUV deployments.

MaxN was defined as the maximum number of

individuals for a given species in a single frame

during the 30-min footage (Harvey et al. 2007). Total

MaxN for each deployment (n = 88) was calculated

by summing theMaxN values for all species. Each fish

species was then placed into functional groups based

on their mobility, trophic status and habitat associa-

tions. The mobility groups included three categories;

(i) resident species known to be site attached to focal

reefs or sedentary (10–100’s of metres), (ii) mobile

species which can migrate to adjacent habitat patches

but show site fidelity to a focal reef or move over

scales of 100’s of metres to kilometres, and (iii)

transient species that are highly vagile and move over

the scale of 1–100’s km (Grober-Dunsmore et al.

2007). If limited information was available for a

species movement patterns, they were assigned a

movement group based on their maximum length, as

movement distances generally increase with increas-

ing body size (Green et al. 2015). Trophic groupings

were based on the predominance of prey items and

included; algal invertebrate consumers, generalist

carnivores, invertebrate carnivores, herbivores,

macroinvertebrate carnivores and zooplanktivores

(Wraith et al. 2013). Fish were also grouped on their

associations to seagrass forming two categories; (1)

seagrass associated taxa which have been observed on

seagrass meadows as juvenile or adults, and (2) non-
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seagrass associated taxa not known to reside on

seagrass. We used information from Fish Base (Froese

and Pauly 2010), the Australian Museum Fish

Database (McGrouther 2001), local identification

guides (Hutchins and Swainston 1986; Kuiter 1993),

Bell and Westoby (1986), Ferrel et al. (1993), Hannan

andWilliams (1998), Jelbart et al. (2007), Curley et al.

(2013), Wraith et al. (2013) and personal observations

to classify species into diet or habitat association

groups. In circumstances where no data were available

for a species diet or habitat associations, species were

placed into the group most common for their genus.

Definitions for each functional guild can be found in

Online Appendix S1.

Habitat sampling

The seascape surrounding the 88 deployments were

quantified from existing benthic habitat maps of Jervis

Bay (source: NSW State Government, Office of

Fig. 1 Location of sites

within Jervis Bay and types

of benthic habitats; rocky

reef (brown), seagrass

(green), unconsolidated soft

sediment (dark grey) and

land (light grey). Black

circles represent the 250-m

scale around each of the

twenty-two reef sites where

four RUVs were deployed

(n = 88). Circular insets

illustrate the variability of

the seascape at the 250-m

scale between three sites;

from top, small reef with

extensive seagrass, reef with

a small seagrass meadow

and reef with no seagrass

present (NoteWhite areas in

each inset represent land)
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Environment and Heritage). These data were derived

from swath mapping with a spatial resolution of up to

two meters, Laser Airborne depth sounders (LADS)

and high-resolution aerial photographs (\ 1 m pixels)

and ground-truthing (Williams et al. 2007; Creese

et al. 2009). Seagrass was classified by its presence/

absence, meaning if there was any seagrass within the

seagrass polygons delineated from aerial imagery it

was classified as seagrass (Williams et al. 2007;

Creese et al. 2009). Habitat patterns were depicted

using the patch-matrix model (Boström et al. 2011)

with reef and seagrass habitats embedded in an

unconsolidated sediment matrix.

Seascape patterns surrounding each deployment

were quantified using spatial pattern metrics at four

spatial scales; 100 m, 250 m, 500 m and 1000 m

(Rees et al. 2018). Each scale was measured as radii

centred over each of the 88 deployments. These scales

were selected to provide sufficient data on the

response of fishes to seascape patterning and incorpo-

rate the known home ranges of common reef fish in

JBMP (Curley et al. 2013). Each radii or scale

represented a ‘‘seascape’’ and each seascape (n = 88)

was analysed using spatial pattern metrics quantified

in ArcGIS version 10 spatial analyst extension and

FRAGSTATS 4.2 spatial analysis software. The

metrics selected were based on previous research

showing their potential to explain variations in dem-

ersal fish assemblages and included; (1) the total area

of reef and seagrass (Kendall 2005; Grober-Dunsmore

et al. 2008; Rees et al. 2018), (2) the length of reef and

seagrass edge (Kendall et al. 2011; Moore et al. 2011),

(3) the Shannon’s diversity index, a measure of habitat

diversity where 0 means only one patch is present in

the seascape (no diversity) and increases with a greater

number of habitat types and as the proportion of

different habitat types within the seascape becomes

equal (Wedding et al. 2011; Staveley et al. 2016), and

(4) the edge to edge distance of focal reefs to the

nearest seagrass meadow (Olds et al. 2012). This

metric was calculated irrespective of spatial scale,

with the distance to seagrass measured even if seagrass

was not present within the 1000 m spatial scale.

Statistical analyses

Correlations between the fish assemblage and seas-

cape metrics were examined using generalized addi-

tive mixed models (GAMMs) (Hastie and Tibshirani

1987; Hastie 2017). GAMMs account for non-linear

and non-monotonic relationships between the

response and explanatory variables by the addition

of a smoothed function (Guisan et al. 2002). Prelim-

inary data exploration was performed to assess for

potential outliers, homogeneity and collinearity of the

explanatory variables using the methods outlined in

(Zuur et al. 2009). Pearson’s correlations and Variance

Inflation Factor (VIF) indicated the presence of strong

collinearity between explanatory variables. Spatial

autocorrelation in the data was assessed using spline

correlograms (Bjornstad and Falck 2001) and Morans

I. Spatial autocorrelation was present in the raw data

and was accounted for by adding ‘site’ as a random

effect in the GAMM models (Online Appendix S3–

S8).

To overcome issues with collinearity among

explanatory variables a full subsets approach was

used to construct the GAMMs (Fisher et al. 2018). The

approach constructs all possible combinations of

models and excludes models with collinear variables

specified by a Pearson’s correlation[ 0.28 (Graham

2003). This technique has great utility for ecological

applications exploring the influence of environmental

factors on the distribution of biota (Bond et al. 2018;

Wellington et al. 2018).

The GAMMs for reef fish diversity and the

abundance of macroinvertebrate consumers were

fitted using a Poisson distribution. A Tweedie error

distribution was fitted for all other models due to the

large number of zeroes (Tweedie 1984). The maxi-

mum number of explanatory variables for each model

was limited to three and all continuous variables were

fitted with smoothing splines with the number of knots

k = 4. These parameters were set to prevent overfitting

and create conservative, ecologically inter-

pretable models (Wood 2006; Fisher et al. 2018).

Models were compared using Akaike information

criterion corrected for small sample sizes (AICc), with

the best fitting model having the lowest AICc (Burn-

ham and Anderson 2004). When multiple candidate

models occurred within ± 2 AICc of the best model,

the most parsimonious model(s), that is the

model(s) containing fewest predictors, was selected.

The relative importance of predictor variables for the

model set was determined by summing the weight of

all models containing each variable (Burnham and

Anderson 2004). All statistical analyses and plots were

developed using the statistical computing program R
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(R Core Development Team 2018) and the functions;

FSSGAM 1.11 (Fisher et al. 2018), mgcv (Wood and

Wood 2015), visreg (Breheny and Burchett 2013) and

gamm4 (Wood and Scheipl 2014).

Results

In total, we observed 81 species comprising 40

families of fish on shallow water rocky reefs in Jervis

Bay (Online Appendix S2). Reef area was the most

common predictor explaining variations in the tem-

perate reef fish assemblage (Fig. 2). Other important

seascape variables included the distance to seagrass

and the Shannon’s diversity index, whilst the length of

seagrass edge was the poorest performing predictor

(Table 1; Fig. 2). Fish responded to seascape predic-

tors over a range of spatial scales and no specific scale

appeared to be universally important (Fig. 2).

At the assemblage level, the abundance of reef fish

was found to be greater on reefs close to large seagrass

meadows, with declines in abundance from approxi-

mately 100 on reefs connected (i.e. 0 m) to seagrass

meadows to 50 on reefs 55 m from seagrass (Table 2;

Fig. 3a). Further, reef fish abundance increased from

20 to 75 as the area of seagrass adjacent reefs rose from

0 to 64 hectares (Table 2; Fig. 3a). Reef fish abun-

dance and diversity decreased from 100 to 20

individuals and 13 to 5 species, respectively, with

increasing reef area (Table 2; Fig. 3a, b). Increases in

reef fish diversity from 7 to 14 species were found as

seagrass area increased from 0 to 6.25 hectares before

a sharp decrease (Table 2; Fig. 3b). It is notable, that

the two key predictors for reef fish diversity exhibited

the strongest correlations of any response variables

(R2 = 0.59–0.6) (Table 2).

For the mobility groups, the abundance of resident

taxa exhibited the strongest relationship with seascape

patterns; revealing a negative relationship with reef

edge until a threshold of 1500 m, where abundance

gradually increased (R2 = 0.53; Table 2; Fig. 3c).

Mobile taxa were found to be more abundant on reefs

close to seagrass, with declines from approximately 60

to 20 individuals when a reefs distance from seagrass

increased from 0 to 55 m (Table 2; Fig. 3d). Transient

taxa exhibited no relationship to seascape patterns

(Table 2).

The abundance of trophic groups showed differing

responses to seascape metrics (Table 1; Fig. 2). The

abundance of zooplanktivores and invertebrate con-

sumers showed positive relationships with the Shan-

non’s diversity index, increasing from approximately

0 to 50 and 2 to 8 respectively (Table 2; Fig. 4a, c).

The Shannon’s diversity index was also important for

the abundance of generalist carnivores exhibiting a

negative relationship, declining from 4 to 1 individual

as the Shannon’s diversity index reached 1 (Table 2;

Fig. 4c). Both algal invertebrate and
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Fig. 2 A heat-map

highlighting the relative

importance (calculated as

the sum of the AIC weights/

number of models) for each

explanatory variable (x-

axis) against each of the fish

assemblage variables (y-

axis). The X label indicates

the explanatory variable

selected in the most

parsimonious model(s) for

the given response variable.

See Table 1 for the

acronyms used for each

explanatory variable.

Numbers next to acronyms

represent the spatial scale.

Sqrt and log denote the

variable has either been

square root or log
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123

2342 Landscape Ecol (2019) 34:2337–2352



macroinvertebrate carnivore abundance were found to

have non-linear relationships to the Shannon’s diver-

sity index (Table 2; Figs. 4d, 5). Algal invertebrate

consumer abundance increased to 18 with a Shannon’s

diversity index of 0.7 and then decreased (Fig. 5).

Macroinvertebrate carnivore abundance decreased to

1.5 at a Shannon’s diversity index of 0.6 before

increasing to 2.5 individuals at an index of 0.9 and then

decreasing again (Fig. 4d). The abundance of inver-

tebrate carnivores and generalist carnivores declined

from approximately 8 to 2 and 4 to 2, respectively, as

reef area increased from 0.01 to 0.1225 hectares

(Table 2; Fig. 4b, c). Zooplanktivore abundance had a

non-linear relationship to reef area, showing an

increase from approximately 10 to 30 individuals as

reef size increased from 0.01 to 0.06 hectares before

declining on larger reefs (Table 2; Fig. 4a). Further,

algal invertebrate consumer abundance declined with

reef area, with abundance decreasing from approxi-

mately 35 to 5 individuals as reef area rose from 0.04

to 1.44 hectares (Table 2; Fig. 5). The abundance of

algal invertebrate consumers also declined from 50 to

20 as the distance to seagrass from reefs increased to

10 m and from 40 to 10 individuals as the length of

reef edge increased from 500 to 2000 m (Table 2;

Fig. 5). Lastly, macroinvertebrate consumers abun-

dance on reefs increased from 1.5 to 3 individuals as

the length of seagrass edge habitat increased from 0 to

2000 m (Table 2; Fig. 4d). There were no relation-

ships observed between the abundance of herbivorous

fishes and seascape variables (Table 2).

The abundance of both seagrass associated and

non-seagrass associated taxa was found to correlate

with seascape variables, although the explanatory

power of models was greater for seagrass associated

(R2 = 0.57–0.48) than non-seagrass associated taxa

(R2 = 0.23–0.22) (Table 2). Reductions in the abun-

dance of non-seagrass associated and seagrass associ-

ated taxa were found as reefs became larger, both

decreasing from 40 to 10 individuals as reef size

Table 1 Seascape metrics used to test for ecological patterns related to seascapes. All metrics were calculated using ArcGIS 10 and

FRAGSTATS 4.2

Habitat metric Abbreviation Description Spatial scale (m) Min Max

Distance to seagrass Dist.sg The edge to edge distance (metres) from the

focal reef patch to the closest seagrass habitat

– 0.2 2707

Reef area R.A The total area (ha) of reef habitat in the seascape 100 0.0014 0.0311

250 0.0086 0.1633

500 0.0116 0.541

1000 0.0176 1.41

Seagrass area S.G.A The total area (ha) of seagrass habitat in the

seascape

100 0 1.93

250 0 9.03

500 0 36.48

1000 0 74.4

Reef edge REDGE The sum of the perimeter (m) of all reef patches

within each spatial scale

100 0 816

250 479 2217

500 724 5909

1000 1774 21,424

Seagrass edge SGEDGE The sum of the perimeter (m) of all seagrass

patcheswithin each spatial scale

100 0 669

250 0 1966

500 0 4482

1000 0 17,135

Shannon’s diversity index SHDI An index representing the number of habitats

within the seascape and their proportional

distribution

100 0 1.094

250 0.32 1.092

500 0.332 0.979

1000 0.232 1.079

The minimum and maximum values of each metric at the four spatial scales (radii) are also provided
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increased from 0.005 to 0.03 and 0.01 to 1.44 hectares

respectively (Table 2; Fig. 6a, b). The abundance of

non-seagrass associated taxa increased from 10 to 30

as the area of seagrass adjacent to reefs increased from

0 to 64 hectares (Table 2; Fig. 6a). Non-seagrass

associated taxa also declined from 30 individuals on

reefs with 500 m of reef edge to 10 on reefs with

greater than 2000 m of edge environment (Table 2;

Fig. 6a). Finally, the abundance of seagrass associated

taxa decreased from 70 on reefs with seagrass directly

adjacent to 20 on reefs 55 m from seagrass (Table 2;

Fig. 6b).

Discussion

The spatial context of reefs to adjacent seagrass

meadows has been reported to drive the distribution of

tropical reef fish (Grober-Dunsmore et al. 2007; Olds

et al. 2012; Berkström et al. 2013), but these relation-

ships are largely unknown in temperate seascapes. A

key finding from this study was that temperate reef fish

assemblages had a greater (i) total abundance, (ii)

abundance of mobile taxa, (iii) abundance of seagrass

associated taxa, and (iv) diversity on reefs close to

seagrass (\ 55 m) or with large ([ 6.25 ha) adjacent

seagrass meadows. Additionally, reef area was found

Table 2 Candidate models correlating temperate reef fish assemblage and associated functional groups to seascape variables using

full subset GAMMs

Response variable AICc w

AIC

R2 edf Best model(s)

Total abundance 958.0019 0.099 0.32 12.74 Distance to seagrass (log)

958.5831 0.074 0.31 13.57 Seagrass area 1000 m (H)

958.8751 0.064 0.30 12.03 Reef area 100 m

Diversity 487.4258 0.107 0.59 16.90 Reef area 250 m (H)

488.609 0.059 0.60 17.80 Seagrass area 250 m (H)

Resident taxa abundance 521.541 0.126 0.53 19.23 Reef edge 250 m

Mobile taxa abundance 840.4992 0.245 0.365 15.67 Distance to seagrass (log)

Transient taxa abundance – – – – Null

Herbivore abundance – – – – Null

Zooplanktivore abundance 624.4686 0.241 0.15 9.37 Reef area 500 m (H) ? Shannon’s diversity index

1000 m

Generalist carnivore abundance 435.8685 0.250 0.34 16.87 Reef area 250 m (H) ? Shannon’s diversity index

1000 m

Invertebrate carnivore abundance 481.3837 0.069 0.445 17.32 Shannon’s diversity index 500 m

481.5952 0.062 0.435 17.55 Reef area 250 m (H)

Algal invertebrate consumer

abundance

637.2203 1.562 0.505 20.48 Distance to seagrass (log) ? Reef edge 250 m

637.6041 1.268 0.43 20.15 Reef edge 250 m ? Shannon’s diversity index 500 m

637.9928 0 0.38 18.37 Reef area 1000 m (H) ? Shannon’s diversity index

500 m

Macroinvertebrate consumer

abundance

288.96 0.132 0.25 6.56 Seagrass edge 250 m

290.582 0.059 0.27 7.99 Shannon’s diversity index 250 m

Seagrass associated taxa abundance 745.5288 0.175 0.48 19.14 Reef area 1000 m (H)

747.1506 0.078 0.57 19.58 Distance to seagrass (log)

Non-seagrass associated taxa

abundance

885.9278 0.104 0.215 11.17 Reef area 100 m

887.6425 0.044 0.23 13.11 Seagrass area 1000 m (H)

887.8791 0.039 0.23 14 Reef edge 250 m

The table includes the Akaike information criterion value for small sample sizes (AICc), AIC weights (wAIC), explained deviance

(R2) and the estimated degrees of freedom (edf). All parsimonious models within ± 2 AICc of the best model are included. Square

root (H) and log (log) indicate the transformation employed on the explanatory seascape variable
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to have a consistent negative relationship with reef fish

abundance, diversity and the abundance of several

functional guilds. The importance of adjacent seagrass

meadows structuring temperate reef fish assemblages

found in the current study provides robust support for

the findings of Rees et al. (2018) and the notion that
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Fig. 3 Relationships for the most parsimonious models found

to predict a reef fish abundance (MaxN), b species diversity,

c abundance of resident taxa and d abundance of mobile taxa.

Solid lines illustrate the predictions of the model and shaded

areas define the 95% confidence intervals around the fitted

values. The summary of each model is provided in Table 2. Sqrt

and log denote the variable has either been square root or log

transformed
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temperate systems act in parallel fashion to seascape

patterns as tropical systems (Kendall 2005; Grober-

Dunsmore et al. 2007; Olds et al. 2012). Therefore, we

suggest that generalities exist for the response of reef

fish to the seascape between tropical and temperate

systems and that seascape patterning should be
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Fig. 4 Relationships for the

most parsimonious models

found to predict the

abundance of

a zooplanktivores,

b invertebrate carnivores,

c generalist carnivores and
d macroinvertebrate

carnivores. Solid lines

illustrate the predictions of

the model and shaded areas

define the 95% confidence

intervals around the fitted.

The summary of each model

is provided in Table 2. Sqrt

and log denote the variable

has been either square root

or log transformed
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considered more integral to the ecology of temperate

marine systems.

The size of habitats has been commonly regarded as

a key predictor for species diversity and abundance in

a range of taxa, including reef fish (MacArthur and

Wilson 1967; Simberloff 1976; Boström et al. 2011).

The findings of the present study contradict studies

exploring species-area relationships in both temperate

(Parsons et al. 2016) and tropical marine biomes (Sale

and Douglas 1984; Acosta and Robertson 2002;

Chittaro 2002) with smaller reefs observed to have

greater reef fish abundance, diversity and the abun-

dance of several functional groups. The increased

biodiversity observed on small reefs may be attributed

to the smaller reefs in this study having large seagrass

meadows in close proximity in comparison to the

larger reefs which were surrounded by smaller areas of

seagrass. Conversely, increased biodiversity on small

reefs could be driven by edge effects, as smaller

habitats contain large edge to area ratios (Smith et al.

2008). There have been contradictory findings for the

response of reef fish assemblages to reef edge

environments with both increases and decreases in

abundance and diversity reported (Acosta and Robert-

son 2002; Moore et al. 2011; Rees et al. 2014).

Importantly, these studies were conducted on reefs

with soft sediment boundaries whereas reefs in this

study often bordered seagrass habitats. In comparison

to a boundary between reef and unconsolidated

sediment, the reef-seagrass interface offers greater

structural complexity and provide extra refugial

opportunities for reef fish (Heck Jnr et al. 2003;
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Fig. 5 Relationships for the

most parsimonious models

found to predict the

abundance of algal

invertebrate consumers.

Solid lines illustrate the

predictions of the model and

shaded areas define the 95%

confidence intervals around

the fitted values. The

summary of each model is

provided in Table 2. Sqrt

and log denote the variable

has either been square root

or log transformed
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Dorenbosch et al. 2005). Further, the reef-seagrass

interface may promote greater abundance and diver-

sity because seagrass meadows may subsidize nutri-

ents to adjacent reefs leading to a higher holding

capacity (Parrish 1989; Dorenbosch et al. 2005;

Valentine et al. 2007; Heck Jr et al. 2008).

Reef fish were found to be more abundant on reefs

close to large seagrass meadows, highlighting the

importance of structural connectivity for the compo-

sition of reef fish assemblages. Increased structural

connectivity improves the ability of fishes to move

between habitats and access resources causing

increased diversity and abundance (i.e. landscape

complementation and supplementation; Dunning et al.

1992). For instance, tracking data has revealed routine

movements of temperate reef fish, such as the

generalist carnivore Acanthopagrus australis, to adja-

cent seagrass meadows presumably for foraging

(Taylor et al. 2018). Additionally, many of the species

observed in this study are known to recruit to seagrass

as juveniles and perform ontogenetic migrations to

reefs once a certain age or size class is reached (Gray

et al. 1996; Smith and Sinerchia 2004; Curley et al.

2013). Increased structural connectivity between reefs

and seagrass meadows likely enhances the number of

recruits performing ontogenetic migrations. This is

supported by research comparing the spatial partition-

ing of size classes in fish assemblages between

habitats in tropical seascapes (Dorenbosch et al.

2005, Nagelkerken et al. 2017). For example, Nagelk-

erken et al. (2017) reported the biomass and density of

reef fish that use seagrass meadows as nurseries

declined once reefs were within 4 km from seagrass

and were close to zero at a distance of 14 km. Overall,

our findings suggest not all reefs are equal and it is

important not to view reef habitats in isolation; rather

the context of a reef within the seascape must be

considered when predicting the abundance and diver-

sity of temperate reef fish.

Mobility has been suggested to be an important

functional trait determining how variation in the

abundances of fishes relate to seascape patterning

and our findings support this notion (Caldwell and

Gergel 2013). Resident fishes were more abundant on

reefs with low amounts of edge environments, that is

those which contain greater core reef habitat. Resident

taxa have limited mobility and small home ranges and

have been reported to interact with the within-patch
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Fig. 6 Relationships for the most parsimonious models found

to predict the abundance of a non-seagrass associated taxa and

b seagrass associated taxa. Solid lines illustrate the predictions

of the model and shaded areas define the 95% confidence

intervals around the fitted values. The summary of each model is

provided in Table 2. Sqrt and log denote the variable has either

been square root or log transformed
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features of a reef (Hixon and Beets 1989; Sale 1998).

Movement data of a resident species commonly

observed in this study, the Eastern Blue Groper

(Achoerodus viridis) supports our findings, with

individuals avoiding the reef boundary in their daily

home ranges (Lee et al. 2015). In contrast, mobile taxa

were found to be more abundant on reefs close to

seagrass, a pattern observed on coral reefs (Grober-

Dunsmore et al. 2007). Mobile species migrating

between seagrass and reefs have been reported to play

an important role in transferring nutrients (Davis et al.

2014). Although speculative, the transfer of nutrients

between habitats may be an indirect mechanism

causing increased abundance of non-seagrass associ-

ated taxa on small reefs and reefs with large adjacent

seagrass meadows. In contrast, the abundance of

transient taxa was not influenced by seascape vari-

ables, a finding consistent with previous research

(Grober-Dunsmore et al. 2007). Transient species,

such as Pseudocaranx georgianus and Pomatomus

saltatrix have large home ranges and are less likely to

be associated with seascape patterns (Young et al.

1999; Fowler et al. 2018). Alternatively, it is possible

that transient fish interact with seascape patterning at

scales greater than those investigated in this study.

Seascape features were an important driver for the

abundance of all trophic guilds excluding herbivores.

Generally, fish consuming any invertebrates in their

diets were more abundant in heterogeneous seascapes

or on reefs close to seagrass. These fish likely forage

on the substantial epibenthic and infaunal invertebrate

assemblages found within seagrass meadows (Edgar

and Shaw 1995; Bologna and Heck 2002; Bloomfield

and Gillanders 2005). Generalist carnivores were

found to be more abundant on small reefs in seascapes

with less habitat diversity. This group consisted of

larger, more transient species which can migrate

between small habitat patches in lower diversity

seascapes, comprised largely of sand. Zooplanktivores

showed a small increase in abundance with reef size

before decreasing in numbers on medium to large

([ 0.063 hectares) reefs. Research has suggested that

although smaller reefs deliver better access to zoo-

plankton rich currents, they also have reduced refuge

volumes and higher predation risk. Therefore, causing

reduced numbers of zooplanktivores on both small and

large reefs (Champion et al. 2015).

Our findings highlight the importance of employing

a multi-scale design and considering the ecological

traits of organisms to account for how fishes respond

to seascape patterning at a hierarchy of scales (Kendall

et al. 2011; Ricart et al. 2018). No distinct scale

appeared to be universally important, although the

250 m spatial scale had the most explanatory value.

Further, the abundance and diversity of reef fish was

found to be greater on reefs within 55 m of seagrass.

These scales are smaller than those from studies in

tropical seascapes, where positive correlations

between reef fish abundance and diversity with

seagrass area peak at scales between 500 and

1000 m (Grober-Dunsmore et al. 2007; Kendall

et al. 2011; Berkström et al. 2012). Different species

will respond to similar seascapes in different ways due

to variations in life-history traits. Therefore, future

studies should investigate the influence of the seascape

on temperate reef fish at the species level as this

information can contribute to the management of

harvested species or managing multi-species assem-

blages across a range of scales (Grober-Dunsmore

et al. 2009). In addition, future research should

examine how temperate reef fish respond to both

within-habitat condition (e.g. structural complexity,

canopy structure) and broad-scale seascape patterns

(e.g. van Lier et al. 2018).

In conclusion, this research has established that

seascape patterns, especially the context of reefs to

adjacent seagrass greatly influence temperate reef fish

assemblages. These findings have important implica-

tions for the management of temperate coastal

seascapes, such as the design of marine reserves

(Pittman 2017). Specifically, the placement of

reserves in areas with high structural connectivity

between reef and seagrass may ensure the protection

of increased levels of reef fish abundance and diver-

sity, which is often a goal of management. Further, the

global decline of seagrass meadows may not only

influence seagrass fishes but also have flow on effects

for the abundance and diversity of adjacent reef fish

communities (Waycott et al. 2009; Nakamura 2010).

The challenge for future research is testing the actual

mechanisms underpinning the patterns observed in

this study. This can be achieved using a variety of

techniques such as telemetry, genetics and diet

analyses and will allow for seascape patterning and

connectivity to be better integrated into spatial con-

servation and management (Pittman 2017).
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