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Abstract

Context Remote sensing has been a foundation of

landscape ecology. The spatial resolution (pixel size)

of remotely sensed land cover products has improved

since the introduction of landscape ecology in the

United States. Because patterns depend on spatial

resolution, emerging improvements in the spatial

resolution of land cover may lead to new insights

about the scaling of landscape patterns.

Objective We compared forest fragmentation mea-

sures derived from very high resolution (1 m2) data

with the same measures derived from the commonly

used (30 m 9 -30 m; 900 m2) Landsat-based data.

Methods We applied area-density scaling to binary

(forest; non-forest) maps for both sources to derive

source-specific estimates of dominant (density

C 60%), interior (C 90%), and intact (100%) forest.

Results Switching from low- to high-resolution data

produced statistical and geographic shifts in forest

spatial patterns. Forest and non-forest features that

were ‘‘invisible’’ at low resolution but identifiable at

high resolution resulted in higher estimates of dom-

inant and interior forest but lower estimates of intact

forest from the high-resolution source. Overall, the

high-resolution data detected more forest that was

more contagiously distributed even at larger spatial

scales.

Conclusion We anticipate that improvements in the

spatial resolution of remotely sensed land cover

products will advance landscape ecology through re-

interpretations of patterns and scaling, by fostering

new landscape pattern measurements, and by testing

new spatial pattern-ecological process hypotheses.

Keywords Chesapeake Bay land cover � Forest
spatial patterns � NLCD � Spatial resolution remote

sensing

Introduction

Landscape ecology was born out a new technology—

remote sensing. Carl Troll (1899–1975) is credited

with the insight because of his observation that the

image in an aerial photograph was a picture of an

ecosystem (Troll 1971). As he points out in his 1971

paper, Troll introduced the concept of landscape

ecology in 1939 (Troll 1939; see also Butzer 2004).

Aerial photography was emerging as a new technology
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in 1939, recognized for its military applications and,

somewhat later, for its academic value (Estes et al.

1980).

Landscape ecology found its way to the United

States by the 1980s (Risser et al. 1984), and similarly

relied on remotely sensed data to articulate its main

concepts. Indices of landscape pattern (O’Neill et al.

1988), still the most-cited paper in the journal

Landscape Ecology (Wu 2013), used digital land

cover maps derived from interpretation of aerial

photography to show how measures commonly

applied in ecological field studies (e.g. Brower and

Zar 1977) could be used to provide ecological insight

over a much broader geographic area using a domain

of ecological organization other than species. The

paper stimulated an enthusiastic investigation of

landscape pattern, including a wide array of pattern

measurements as well as software to calculate the

measurements (Turner et al. 1989; Baker and Cai

1992; McGarigal and Marks 1995; Riitters et al. 1995)

Remote sensing advanced as landscape ecology

developed. The paper by O’Neill et al. (1988) used

land cover from the U.S. Geological Survey (USGS)

Land Use Data Analysis (LUDA) program. LUDA

was based on high-altitude aerial photography that had

a 4-ha minimum mapping unit (mmu) for urban

classes and a 16-ha mmu for all other classes

(Loveland 2012). The data were eventually converted

to raster format (Loveland 2012) at a 4-ha pixel-1

spatial resolution (Fegeas et al. 1983). The raster

formatted LUDA data were the basis of the research

reported by O’Neill et al. (1988) and others (e.g.,

Riitters et al. 1995; Turner et al. 1989). By the late

1990s, through the formation of the multi resolution

land characteristics (MRLC) consortium (Homer et al.

2004; Wickham et al. 2014; Yang et al. 2018), remote

sensing of land cover had advanced to producing land

cover for the conterminous United States from the

Landsat satellite series (Vogelmann et al. 2001;

Homer et al. 2007), which had a native resolution of

0.09 ha pixel-1. The 4500% increase in spatial reso-

lution increased confidence in the assumption of

homogeneity for a pixel’s land cover class label and

obviated the need for ‘‘mixed’’ classes (e.g., cropland

and natural vegetation) that were typically necessary

at coarser spatial resolutions (e.g., Loveland et al.

2000). The wider availability of higher resolution land

cover data permitted more meaningful measurements

of landscape patterns for riparian zones, urban areas,

and feature (e.g., forest) connectivity (Jones et al.

1997;Wickham et al. 1999). Examples of new insights

attributable to the availability of higher resolution land

cover data distinguished forest edge, interior, and

perforations for the conterminous United States

(Heilman et al. 2002; Riitters et al. 2002). The higher

resolution permitted more accurate overlays with

ancillary data such as road maps (Heilman et al.

2002) and better characterization of the components of

fragmentation (Riitters et al. 2002). The pattern

metrics derived from the land cover data were

subsequently included in national ecological assess-

ments such as the Montréal Process (Riitters et al.

2004) and Heinz Center (2008).

Nearly two decades have passed since measure-

ment of landscape indicators from Landsat-based land

cover maps became commonplace, and we may be on

the cusp of another significant technological advance.

The United States Department of Agriculture

(USDA), Farm Service Agency (FSA) now provides

raster images at 1 m2 spatial resolution for the United

States through its National Agriculture Imagery Pro-

gram (www.fsa.usda.gov/programs-and-services/

aerial-photography/imagery-programs/naip-imagery/).

Use of NAIP imagery for land cover mapping and

other applications is widespread (Popkin 2018). In

addition, the National Oceanic and Atmospheric

Administration (NOAA), Coastal Change Analysis

Program (C-CAP) plans to map land cover from NAIP

for the coastal portions of the United States (N. Herold

pers. comm.; coast.noaa.gov/digitalcoast/data/), and

NAIP-based land cover is available for about 25 U. S.

metropolitan areas through the Environmental Pro-

tection Agency (EPA), EnviroAtlas project (www.epa.

gov/enviroatlas). Because of ever-increasing com-

puting capability (both desktop and cloud) and con-

tinued advances in remote sensing technology, it is

likely that land cover from high resolution sources will

become the preferred choice in the future, replacing

land cover data from Landsat and similar satellites

(e.g., Sentinel-2).

The objective of this paper is to provide a glimpse

into that future as it relates to measurement of

landscape pattern. We compare measurements of

forest fragmentation (Riitters et al. 2002) derived

from high-(1 m2 pixel-1) and low-resolution

(900 m2 pixel-1) data (hereafter, fine grain and coarse

grain, respectively). NLCD 2011 land cover data

(Homer et al. 2015) were used as the coarse-grain
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dataset and land cover data derived from NAIP for the

Chesapeake Bay region (chesapeakeconservancy.org/

conservation-innovation-center/high-resolution-data/

land-cover-data-project/) were used as the fine-grain

(i.e., 1 m2 pixel-1) dataset. The behavior of landscape

pattern measures across a range of grain sizes has been

the topic of several studies (e.g., Turner et al. 1989;

Corry and Lafortezza 2007; Buyantuyev et al. 2010;

Wu 2013). Here we specifically test the assertion in

Riitters et al. (2002) that forest fragmentation would

be more severe if the analysis had been undertaken

with finer grain land cover data. The rationale was that

the greater detail available from a finer grain will

improve detection of interruptions in the forest

canopy, thereby reducing forest density where forest is

abundant, and, by extension, increase forest density

where forest is less abundant. The shift in forest pat-

terns expected from improved spatial resolution has

broad implications for landscape assessments and

ecological interpretation of landscape data. Notwith-

standingmap accuracy issues, more perforated interior

forest, realized from an assessment based on finer

grain data (Foreman 1995), may trigger changes in

forest management locally or regionally (Riitters et al.

2018). Similarly, increases in the amount of forest in

exurban to urban contexts may have implications for

water quality management (Claggett et al. 2013) and

spatial variation in the magnitude of the urban heat

island (UHI) effect (Quattrochi and Ridd 1996).

The concept of ‘‘forest’’ is both intuitive and

ambiguous. Comparison of fragmentation from 1 m2 -

pixel-1 (0.0001 ha pixel-1) and 900 m2 pixel-1

(0.09 ha pixel-1) land cover data may be questioned

because the grain size of the former represents

individual trees rather than forests. However, defini-

tions of what constitutes a ‘‘forest’’ depend on the

objective of the assessment or analysis (Chazdon et al.

2016). Not all definitions of forest include a minimum

area, and those that do are not consistent in their

minimum area threshold. Our view is that the

comparison is valid because forest minimum area

criteria vary with the ecological question (Kapos

1989; Wiens and Milne 1989). Furthermore, the

minimum area criterion for the UN Framework

Convention on Climate Change (UNFCCC) is

0.05 ha (Chazdon et al. 2016), and the remote sensing

rule-of-thumb is that the spatial resolution of the

sensor must be smaller than a feature for it to be

detected accurately (https://www.nrcan.gc.ca/node/

9407). Thus, a sensor with a 0.0001 ha pixel-1 spa-

tial resolution would bemore appropriate than a sensor

with a 0.09 ha pixel-1 to map forests as small as

0.05 ha.

Methods

Comparison of forest fragmentation measurements

from fine- and coarse-grain land cover datasets was

undertaken in the 248,000 km2 Chesapeake Bay

region (Fig. 1) because of the availability of NAIP-

based (1 m2) land cover (see URL in the ‘‘Introduc-

tion’’). The fine-grain land cover mapping effort was

sponsored by the Chesapeake Bay Program (www.

chesapeakebay.net) to support improved water-quality

modeling of the Chesapeake Bay. The six-class data-

set, produced from 2013 NAIP imagery and ancillary

data, included water, barren, tree canopy and shrubs,

herbaceous, impervious (roads), and impervious

(other). User’s and producer’s accuracies for the tree

canopy and shrubs class were 83% and 81%, respec-

tively (Pallai andWesson 2017). The NLCD 2011 land

cover data, nominally 2 years older than the Chesa-

peake Bay land cover data, were clipped and aligned to

the Chesapeake Bay land cover dataset for the com-

parison. The pixels in both land cover datasets were

then reclassified into forest and non-forest (forest = 1;

non-forest = 0). The forest class for the Chesapeake

Bay land cover data was the tree canopy and shrub

class; all other classes were masked (set to null).

Deciduous forest, evergreen forest, mixed forest, and

woody wetlands comprised the forest class the NLCD

2011 land cover. User’s and producer’s accuracies for

the NLCD 2011 three upland forest classes were 94%

and 88%, respectively, and the corresponding values

for the woody wetlands class were 74% and 87%,

respectively (Wickham et al. 2017). Total forest area

was approximately 16.4 9 106 ha based on the fine-

grain (Chesapeake Bay) land cover data and

14.8 9 106 ha for the coarse-grain (NLCD) land cover

data.

We used forest density (Fd) as our measure of forest

fragmentation. Forest density was estimated for five

window sizes using the binary (forest or non-forest)

land cover maps by summing the number of pixels

labeled as forest in a given window and assigning the

result to the center pixel in the window. The square

window side lengths in meters (m) were 150, 270, 810,
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Fig. 1 NLCD 2011 land cover for the Chesapeake Bay region
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2430, and 7290, which is equivalent to side lengths of

5, 9, 27, 81, and 243 in pixels for the NLCD 2011 land

cover data. The areas of the window sizes were

2.25 ha, 7.29 ha, 65.61 ha, 590.49 ha, and

5314.41 ha, respectively. An additional 1 m of side

length was added to each of the window sizes for the

Chesapeake Bay land cover data so that windows had a

clearly defined center pixel. Results are reported only

for pixels labeled as forest in the original land cover

maps, i.e., forest density for forested locations rather

than forest density for all locations (Riitters et al.

2002).

For each forest location and at each spatial scale

(window size), we report the area of forested locations

meeting or exceeding eight forest density thresholds

from 40 to 100% in 10% increments and 95%. The

range of thresholds provide a convenient and flexible

means for interpreting forest connectivity and frag-

mentation. We used the thresholds C 60%, C 90%,

and 100% to define ‘‘dominant,’’ ‘‘interior,’’ and

‘‘intact’’ forest classes, respectively. There were

different levels of precision available for defining the

thresholds because of the different spatial resolutions

of each land cover dataset. The number of pixels for

each forest density threshold at each scale was

determined by multiplying the number of pixels in

the window by the specified percentage and then

rounding up to the next integer value when the result

was a real number. Rounding up, regardless of

whether the fractional portion of the threshold was

greater than or equal to 0.5, ensured that the density

threshold was met.

Results

There was substantially less intact forest (100%

threshold) identified by the fine-grain land cover

data across all spatial scales examined (Table 1).

The substantial reduction of intact forest resulting

from the change in grain size occurred even though

the increase in spatial resolution resulted in an

increase in total forest area (see ‘‘Methods’’). At the

smallest spatial scale (2.25 ha), the area of intact

forest from the coarse-grain data exceeded the area

of intact forest from the fine-grain data by more than

1.3 million hectares (Table 1). The magnitude of the

differences of coarse-minus fine-grain estimates

declined to approximately 36,600 ha at the 590.49-

ha scale, as the requirement of uninterrupted forest

Table 1 (A) Fine- minus

coarse-grain forest area

difference (ha) and

(B) coarse-grain forest area

Forest density (%) Spatial scale

2.25 ha 7.29 ha 65.61 ha 590.49 ha 5314.41 ha

(A)

C 40 2,083,356 2,285,500 2,522,520 2,682,915 3,255,486

C 50 2,064,895 2,202,949 2,409,862 2,554,352 3,185,795

C 60 1,865,597 2,100,951 2,267,121 2,447,152 2,794,899

C 70 1,920,957 1,963,893 2,096,673 2,267,732 2,583,227

C 80 1,600,523 1,801,353 1,852,927 1,830,003 1,724,465

C 90 1,547,598 1,670,675 1,500,392 1,193,555 933,480

C 95 896,156 1,252,675 1,289,377 807,657 499,474

100 - 1,341,996 - 1,259,004 - 694,544 - 36,622 0

(B)

C 40 13,515,224 13,121,687 12,539,116 12,198,415 11,960,452

C 50 13,108,508 12,640,428 11,790,328 11,245,707 10,920,015

C 60 12,669,873 11,938,866 10,750,083 9,813,411 9,151,595

C 70 11,775,833 11,022,699 9,390,184 7,953,038 6,796,658

C 80 11,020,195 9,836,200 7,710,290 5,837,902 4,386,764

C 90 9,568,374 8,097,989 5,545,623 3,434,862 1,803,283

C 95 9,068,566 7,100,068 3,998,056 1,996,101 629,882

100 8,481,661 5,920,466 1,811,752 121,844 0

123

Landscape Ecol (2019) 34:2169–2182 2173



became harder to attain with increasing spatial scale

for both coarse- and fine-grain data. Intact forest did

not occur in either land cover dataset at the 5314.41-

ha scale.

The substantial reduction in intact forest that

resulted from switching from coarse- to fine-grain

land cover data was accompanied by a substantial

increase in the percentage and amount of interior

forest (C 90% threshold). The amount of interior

forest detected using the fine-grain land cover data

was greater than the amount detected by coarse-grain

land cover data by more the 900,000 ha across all

window sizes (Table 1). This pattern remained for a

more conservative interior forest threshold (C 95%).

Overall, the fine-grain estimate indicated that there

was more forest that was more contagiously dis-

tributed even at larger spatial scales (Fig. 2). Exclud-

ing intact forest, the fine-grain estimates of

percentage of dominant and interior forest exceeded

their coarse-grain counterparts across all spatial

scales.

The area differences between fine- and coarse-grain

forest spatial patterns were accompanied by geo-

graphic differences. Intact forest was less predominant

in the Appalachians and elsewhere in the fine-grain

data because the fine-grain data detected non-forest

features ‘‘invisible’’ to the coarse-grain data (Fig. 3).

The ability of the fine-grain land cover data to detect

features ‘‘invisible’’ to the coarse-grain data also

resulted in detection of forest missed at the coarser

spatial resolution, which contributed to the substantial

increase in the amount of interior forest (along with a

decline in intact forest) across all spatial scales

(Table 1; compare Figs. 4, 5). There was a consider-

able amount of interior forest outside that the

Appalachian region that was not detected by the

coarse-grain data at the larger spatial scales (Fig. 6;

compare Figs. 4, 5).

Discussion

Despite uncertainties in the future of the USDA NAIP

program (Popkin 2018), it is plausible that land cover

from high resolution sources will be commonplace

across the United States in the near future, supplanting

land cover data from Landsat and other platforms with

similar spatial resolution. It is likely that such an

increase in spatial resolution will influence what we

see, how we measure what we see, and how we

interpret what we measure (Mandelbrot 1982). In this

study, using a previously established measurement

method (forest density from spatial convolution), we

found that use of finer grain maps influenced both what

we saw and our interpretations of what we saw. By

switching from coarse- to fine-grain resolution we

found that forest fragmentation was less severe rather

than more severe, except for the intact forest class, and

that interior forest was more uniformly distributed

across the region. The earlier improvement in resolu-

tion from 4 to 0.09 ha pixel-1 permitted meaningful

quantification of landscape features (Jones et al. 1997;

Riitters et al. 2002; Vogt et al. 2007; Wickham et al.

2010) that were recognized earlier (Forman and

Gadron 1986; Zipperer 1993) but less meaningful

when measured using land cover data with

4-ha pixel-1 spatial grain. Apart from improved

spatial precision of pattern indices, another substantial

increase in spatial resolution (e.g., 0.09 ha pixel-1 to

0.0001 ha pixel-1) may result in the identification and
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Fig. 3 Spatial distribution of intact forest (forest density (Fd) = 100%) at the 7.29-ha scale (‘‘?’’ = 40�N, 75�W; 40�N 80�W)
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Fig. 4 Interior forest (Fd C 90%) from NLCD at 590.49-ha scale
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Fig. 5 Interior forest (Fd C 90%) from 1 m2 land cover data at 590.49-ha scale
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Fig. 6 Fine- and coarse-grain interior forest (Fd C 90%) in the vicinity of Richmond, VA
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measurement of new landscape patterns and indices.

The amount of bare ground, an important indicator of

rangeland condition in arid and semi-arid environ-

ments (Booth and Tueller 2003; Breckenridge and

Dakins 2013), is one example of a well-established

metric whose quantification would become more

feasible and meaningful with higher resolution land

cover data.

New applications of landscape pattern analysis are

another aspect of a future landscape ecology fostered

by finer grain land cover data. Urban ecology is one

example where finer grain land cover data are already

being used to link spatial pattern and process. Several

studies that have used high-resolution land cover data

have found an inverse correlation between urban

vegetation and the magnitude of the Urban Heat Island

(UHI) effect and human heat stress (Zhou et al. 2011;

Jenerette et al. 2016; Li et al. 2016). Use of high-

resolution land cover in urban settings extends beyond

linkages between spatial patterns of vegetation and

surface temperatures, including linkages between

spatial patterns of urban vegetation and spatial

patterns of socio-economic factors (e.g., income,

ethnicity) (Schwarz et al. 2015); mapping of grass-

lands around airports to identify areas suitable for

alternative energy production (DeVault et al. 2012);

the effect of shifting proportions of trees and grass on

urban watershed management (Claggett et al. 2013;

Beck et al. 2016); spatial association between urban

vegetation and disease vectors (Landau and van

Leeuwen 2012); and the identification of new land-

scape features characteristic of urban settings that are

difficult to detect at the spatial resolution of Landsat

(Singh et al. 2018). Some other examples of spatial

pattern detection that can be undertaken with

improved spatial resolution include shrub encroach-

ment (Davies et al. 2010), bare ground identification in

arid and semi-arid environments (Breckenridge and

Dakins 2013), and impacts of shale gas extraction on

forest spatial patterns (Drohan et al. 2012).

The interaction between spatial pattern and eco-

logical process has been a motivating concept and a

defining principle of landscape ecology (Gustafson

2018; Turner 1989). Perhaps less well recognized is

the interaction between pattern and policy. What

surrounds a park or refuge (landscape context) is as

germane to their management as their contents (Gross

et al. 2009; Jones et al. 2009). Others have also shown

management of the landscape may be a more effective

means of promoting forest sustainability than man-

agement of the forests themselves (Riitters et al.

2009). The differences between fine- and coarse-grain

estimates of dominant, interior, and intact forest

reported here are perhaps most relevant to how they

might contribute to forest management and policy

issues. It is possible that the more conservative, fine-

grain estimate of remote, roadless, intact forest

(Riitters and Wickham 2003) will motivate a renewed

look at preservation in the Appalachians and else-

where. It is also possible that the improved estimates

of interior forest outside that Appalachian region

could motivate interest in management of forest from a

landscape perspective (Thompson 2006; Riitters et al.

2009).

We searched all issues Landscape Ecology for the

termNAIP, and it appeared in 19 papers. Five of the 19

papers, all published since 2016, used NAIP data as a

source of land cover to examine relationships between

spatial pattern and ecological processes (Berg et al.

2017; Jenerette et al. 2016; Miller et al. 2017; Shahan

et al. 2017; White et al. 2018). Here, we used high-

resolution land cover to confirm a hypothesis about the

effect of landscape grain on forest fragmentation

patterns and briefly discussed the implications (man-

agement and policy relevance) of the results. We

expect that future landscape analyses will rely rou-

tinely on land cover data derived from high resolution

sources. The shift from Landsat-based land cover to

high-resolution land cover will likely open the door to

a wider range of spatial pattern-ecological process

evaluations. If funding of NAIP continues, we would

expect it to foster further advances landscape ecology.

Acknowledgements This document has been reviewed by the

U.S. Environmental Protection Agency, Office of Research and

Development, and approved for publication. The views

expressed in this paper are those of the authors and do not

necessarily reflect the views or policies of the US Environmental

Protection Agency. We also wish to thank Don Ebert (EPA),

Mike McDonald (EPA), and anonymous reviewers for their

thoughtful comments on earlier versions of the paper.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unre-

stricted use, distribution, and reproduction in any medium,

provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Com-

mons license, and indicate if changes were made.

123

Landscape Ecol (2019) 34:2169–2182 2179

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


References

Baker WL, Cai Y (1992) The r.le programs for multiscale

analysis of landscape structure using the GRASS geo-

graphical information system. Landscape Ecol 7:291–302

Beck SM, McHale MR, Hess GR (2016) Beyond impervious:

urban land-cover pattern variation and implications for

watershed management. Environ Manag 58:15–30

Berg MD, Wilcox BP, Simmons GS, Daugherty MP (2017)

Spatiotemporal distribution of an invasive insect in an

urban landscape: introduction, establishment and impact.

Landscape Ecol 32:2041–2057

Booth DT, Tueller PT (2003) Rangeland monitoring using

remote sensing. Arid Land Res Manag 17:455–467

Breckenridge RP, Dakins ME (2013) Evaluation of bare ground

on rangelands using unmanned aerial vehicles. GISci

Remote Sens 48:74–85

Brower JE, Zar JH (1977) Field and laboratory methods for

general ecology. Wm. C. Brown and Company Publishers,

Dubuque, IA

Butzer DW (2004) Practicing geography in a totalitarian state:

(Re)casting Carl Troll as a Nazi Collaborator. Erde

135:223–231

Buyantuyev A, Wu J, Gries C (2010) Multiscale analysis of the

urbanization pattern of the Phoenix metropolitan landscape

of USA: time, space and thematic resolution. Landsc Urban

Plan 94:206–217

Chazdon RL, Brancalion PHS, Laestadius L, Bennet-Curry A,

Buckingham K, Kumar C, Moll-Rocek J, Vieira ICG,

Wilson SJ (2016) When is a forest a forest? forest concepts

and definitions in the era of forest and landscape restora-

tion. Ambio 45:538–550

Claggett PR, Irani FM, Thompson RL (2013) Estimating the

extent of impervious surfaces and turf grass across a large

region. J Am Water Resour Assoc (JAWRA)

49:1057–1077

Corry RC, Lafortezza R (2007) Sensitivity of landscape mea-

surement to changing grain size for fine-scale design and

management. Landsc Ecol Eng 3:47–53

Davies KW, Petersen SL, Johnson DD, Davis DB, Madsen MD,

Zvirzdin DL, Bates JD (2010) Estimating juniper cover

from National Agriculture Imagery Program (NAIP) ima-

gery and evaluating relationships between potential cover

and environmental variables. Rangel Ecol Manag

63:630–637

DeVault TL, Belant JL, Blackwell BF, Martin JA, Schmidt JA,

Wes Berger Jr L, Patterson JW Jr (2012) Airports offer

unrealized potential for alternative energy production.

Environ Manag 49:517–522

Drohan PJ, Brittingham M, Bishop J, Yoder K (2012) Early

trends in landcover change and forest fragmentation due to

shale-gas development in Pennsylvania: a potential out-

come for the northcentral Appalachians. Environ Manag

49:1061–1075

Estes JE, Jensen JR, Simonett DS (1980) Impacts of remote

sensing on U.S. geography. Remote Sens Environ

10:43–80

Fegeas RG, Clarie RW, Guptill SC, AndersonKE, Hallam CA

(1983) Land Use and Land Cover Digital Data. U.S.

Geological Survey, Open-File Report 82-22 https://pubs.

usgs.gov/of/1982/0022/report.pdf. Accessed 15 Nov 2018

Foreman RTT (1995) Land Mosaics: the ecology of landscapes

and regions. Cambridge University Press, Cambridge

Forman RTT, GadronM (1986) Landscape ecology. JohnWiley

& Sons, New York

Gross JE, Goetz SJ, Cihlar J (2009) Application of remote

sensing to parks and protected area monitoring: Introduc-

tion to the special issue. Remote Sens Environ

113:1343–1345

Gustafson EJ (2018) How has the state-of-the-art for quantifi-

cation of landscape pattern advanced in the twenty-first

century? Landscape Ecol. https://doi.org/10.1007/s10980-

018-0709-x

Heilman GE Jr, Strittholt JR, Slosser NC, Dellasala DA (2002)

Forest fragmentation of the conterminous United States:

assessing forest intactness through road density and spatial

characteristics. Bioscience 52:411–422

Heinz Center (2008) The State of the Nation’s Ecosystems

2008: measuring the lands, waters, and living resources of

the United States. The H. John Heinz III Center for Sci-

ence, Economics, and the Environment, Washington, DC

Homer C, Dewitz J, Fry J, CoanM, Hossain N, Larson C, Herold

N, McKerrow A, VanDriel N, Wickham J (2007) Com-

pletion of the 2001 National Land Cover database for the

conterminous United States. Photogramm Eng Remote

Sens 70:829–840

Homer C, Huang C, Yang L, Wylie B, Coan M (2004) Devel-

opment of a 2001 national land cover database for the

United States. Photogramm Eng Remote Sens 73:337–341

Homer C, Dewitz J, Yang L, Jin S, Danielson P, Xian G,

Coulston J, Herold N, Wickham J, Megown K (2015)

Completion of the 2011 National Land Cover Database for

the conterminous United States - representing a decade of

land cover change information. Photogramm Eng Rem

Sens 81:345–354

Jenerette DG, Harlan SK, Buyantuev A, Stefanov WL, Declet-

Barreto J, Ruddel BL, Myint SW, Kaplan S, Li X (2016)

Micro-scale urban surface temperatures are related to land-

cover features and residential heat related health impacts in

Phoenix, AZ USA. Landscape Ecol 31:745–760

Jones DA, Hansen AJ, Bly K, Doherty K, Verschuyl JP, Paugh

JI, Carle R, Story SJ (2009) Monitoring land use and cover

around parks: a conceptual approach. Remote Sens Envi-

ron 113:1346–1356

Jones KB, Riitters KH, Wickham J, Tankersley RD, O’Neill

RV, Chaloud DJ, Smith ER, Neale AC (1997) An eco-

logical assessment of the United States mid-Atlantic

region: a landscape atlas. United States Environmental

Protection Agency, Office of Research and Development

EPA/600/R-97/130, Washington, DC. https://www.srs.fs.

usda.gov/pubs/misc/epa_600_r-97_130.pdf. Accessed 15

Nov 2018

Kapos V (1989) Effects of isolation on the water status of forest

patches in the Brazilian Amazon. J Trop Ecol 5:173–185

Landau KI, van Leeuwen WJD (2012) Fine scale spatial urban
land cover factors associated with adult mosquito abun-

dance in Tucson, Arizona. J Vector Ecol 37:407–418

Li X, Li W, Middel A, Harlan SL, Brazel AJ, Turner BL II

(2016) Remote sensing of the surface urban heat island and

land architecture in Phoenix, Arizona: combined effects of

123

2180 Landscape Ecol (2019) 34:2169–2182

https://pubs.usgs.gov/of/1982/0022/report.pdf
https://pubs.usgs.gov/of/1982/0022/report.pdf
https://doi.org/10.1007/s10980-018-0709-x
https://doi.org/10.1007/s10980-018-0709-x
https://www.srs.fs.usda.gov/pubs/misc/epa_600_r-97_130.pdf
https://www.srs.fs.usda.gov/pubs/misc/epa_600_r-97_130.pdf


land composition and configuration and cadastral-demo-

graphic-economic factors. Remote Sens Environ

174:233–243

Loveland TR (2012) History of land cover mapping. In: Giri CP

(ed) Remote sensing of land use and land cover. CRC

Press, Taylor and Francis Group, Boca Raton, FL,

pp 13–22

Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L,

Merchant JW (2000) Development of a global land cover

characteristics database and IGBP DISCover from 1 km

AVHRR data. Int J Remote Sens 21:1303–1330

Mandelbrot BB (1982) The fractal geometry of nature. WH

Freeman, New York

McGarigal K, Marks BJ (1995) FRAGSTATS: Spatial pattern

analysis program for quantifying landscape structure. U.S.

Department of Agriculture, Forest Service, Pacific North-

west Research Station, General Technical Report PNW-

GTR-351. http://www.fs.fed.us/pnw/pubs/pnw_gtr351.

pdf. Accessed 15 Nov 2018)

Miller JED, Samschen EI, Ratajczak Özdoğan M (2017)
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