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Abstract

Context Forest cover change analyses have revealed

net forest gain in many tropical regions. While most

analyses have focused solely on forest cover, trees

outside forests are vital components of landscape

integrity. Quantifying regional-scale patterns of tree

cover change, including non-forest trees, could benefit

forest and landscape restoration (FLR) efforts.

Objectives We analyzed tree cover change in South-

western Panama to quantify: (1) patterns of change

from 1998 to 2014, (2) differences in rates of change

between forest and non-forest classes, and (3) the

relative importance of social-ecological predictors of

tree cover change between classes.

Methods We digitized tree cover classes, including

dispersed trees, live fences, riparian forest, and forest,

in very high resolution images from 1998 to 2014. We

then applied hurdle models to relate social-ecological

predictors to the probability and amount of tree cover

gain.

Results All tree cover classes increased in extent, but

gains were highly variable between classes. Non-

forest tree cover accounted for 21% of tree cover

gains, while riparian trees constituted 31% of forest

cover gains. Drivers of tree cover change varied

widely between classes, with opposite impacts of

some social-ecological predictors on non-forest and

forest cover.

Conclusions We demonstrate that key drivers of

forest cover change, including topography, road

distance and historical forest cover, do not explain

rates of non-forest tree cover change. Consequently,

predictions from medium-resolution forest cover

change analyses may not apply to finer-scale patterns

of tree cover. We highlight the opportunity for FLR

projects to target tree cover classes adapted to local

social and ecological conditions.

Keywords Forest and landscape restoration �
Reforestation � Panama � Live fences � Silvopasture �
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Cadastral data � Remote sensing � Land cover change �
Trees outside forests

Introduction

Calls for forest and landscape restoration (FLR) to

recover ecosystem function across hundreds of mil-

lions of hectares of degraded landscapes are gaining

global traction (Chazdon 2008; WRI 2012; Aronson

and Alexander 2013; Pinto et al. 2014; Chazdon et al.

2015; Suding et al. 2015). These FLR projects seek to

conserve biodiversity, mitigate climate change,

increase social-ecological resiliency in the face of

climate change (i.e., adaptation), and enhance the

provision of a variety of ecosystem services (Chazdon

2008; Zhou et al. 2008; Alexander et al. 2011;

Pramova et al. 2012; Barral et al. 2015; Latawiec

et al. 2016; Omeja et al. 2016). Ambitious goals of

restoring forest cover at regional scales are partly

inspired by evidence that widespread increases in

forest cover are already occurring across many

tropical countries (Meyfroidt and Lambin 2011; Aide

et al. 2013). Analyses of forest cover change over large

spatial extents could promote FLR by informing

policies that enable favorable socioeconomic condi-

tions for reforestation (Sloan 2015), identifying bio-

physical factors that increase forest recovery rates

(Poorter et al. 2016), and locating sites where natural

regeneration may be sufficient to restore forest cover

(Chazdon and Uriarte 2016). However, while FLR

emphasizes the importance of a diverse range of tree

cover in agricultural landscapes, from native sec-

ondary forest, to agroforestry, to pasture trees (Harvey

et al. 2008; Chazdon et al. 2015), regional scale

analyses of non-forest tree cover change are rare

(Plieninger et al. 2012; Schnell et al. 2015).

Our limited understanding of trends in non-forest

tree cover at regional scales is problematic because the

ecological integrity of agricultural landscapes depends

on heterogeneous, often non-forest, tree cover (Harvey

et al. 2008; Perfecto and Vandermeer 2008). Non-

forest tree cover enhances the provisioning of ecosys-

tem services such as carbon storage, seed dispersal,

pollination, pest control, soil stabilization and hydro-

logical function, while also facilitating biodiversity

conservation (Guevara et al. 2004; Ricketts 2004;

Bianchi et al. 2006; Harvey et al. 2006; Ilstedt et al.

2007; Van Bael et al. 2008; Tscharntke et al. 2011;

Mendoza et al. 2014; Zomer et al. 2016). Dispersed (or

‘scattered’) trees in pastures and agricultural fields are

a keystone ecological feature that provide ecological

functions and services disproportionately greater than

the space they occupy in the landscape (e.g., biodi-

versity maintenance, nutrient cycling; Manning et al.

2006; Fischer et al. 2010). Live fences increase

connectivity between otherwise isolated forest frag-

ments, reducing the likelihood of local extirpations

(Harvey et al. 2005; Francesconi 2006; Pulido-

Santacruz and Renjifo 2011). A variety of agroforestry

systems (e.g., silvopastures, shade coffee, cocoa and

cardamom) provide habitat for a greater diversity of

species in the agricultural matrix than conventional

agricultural and pastoral systems, with some agro-

forestry systems nearing the species richness and

composition of forests (Saenz et al. 2007; Perfecto and

Vandermeer 2010; Buechley et al. 2015). Non-forest

tree cover also has the potential to balance food

production and conservation (e.g., ‘‘land-sharing’’;

Perfecto and Vandermeer 2010; Tscharntke et al.

2012). Because non-forest tree cover is critical for

both human livelihoods and ecosystem services,

changes in agricultural tree cover could have large

impacts on the success of FLR projects (Harvey et al.

2008).

Challenges to measuring changes in tree cover in

agricultural landscapes at regional scales are related to

limitations of remotely sensed and field data. Medium-

resolution satellite imagery used to analyze forest

cover change is often classified as either ‘‘forest’’ or

‘‘non-forest’’ (e.g., Aide et al. 2013; Hansen et al.

2013), broad categories that overlook continuous

variation in tree cover on agricultural land. A recent

study in a Panamanian landscape dominated by cattle

production found that discrete forest categories may

substantially underestimate total tree cover increases,

possibly because discrete categories overlook

increases in agricultural tree cover (Caughlin et al.

2016b). Scaling up field sampling to the extent

required to measure agricultural tree cover is a

considerable challenge (Schnell et al. 2015). Field

plots are often limited to a small spatial extent, thus

while several field studies in pastoral systems have

predicted declines in tree cover based on limited

regeneration at the seedling or sapling stage (Lathrop

et al. 1991; Plieninger et al. 2004; Fischer et al. 2009),
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whether these predicted declines are occurring at

regional scales remains unknown. High-resolution

imagery enables broader scale measurement of sparse

and highly variable tree cover such as live fences and

dispersed pasture trees (Platt and Schoennagel 2009;

Aksoy et al. 2010), but historical imagery necessary

for change analysis is often unavailable, particularly

for tropical regions. A final challenge is accounting for

differences in tree cover classes, (e.g. live fence vs.

dispersed trees) over large areas. Different classes of

tree cover provide different ecosystem services (Har-

vey et al. 2006; Ibrahim et al. 2007) and trends in tree

cover change can vary dramatically between tree

cover classes (Plieninger et al. 2012). To restore and

reforest vast expanses of degraded agricultural land it

will be necessary to accurately assess the state of tree

cover in agricultural landscapes, including both forest

and non-forest tree cover.

Understanding the causal pathways that lead to tree

cover change in agricultural landscapes will also aid

plans for FLR (Uriarte and Chazdon 2016). Analyses

of forest cover change at landscape to regional scales

have revealed several biophysical and socioeconomic

drivers of reforestation, including topography, popu-

lation density, distance to markets and historical forest

cover (Yackulic et al. 2011; Bonilla-Moheno et al.

2012; Newman et al. 2014; Call et al. 2017). In Latin

America, economic development, leading to abandon-

ment of agriculturally marginal land and/or insuffi-

cient labor to clear encroaching trees off pasture, has

emerged as a causal pathway that can explain national-

scale forest transitions (i.e., a shift from net forest

cover loss, to net forest cover gain; Rudel et al. 2002;

Wright and Samaniego 2008; Redo et al. 2012; Sloan

2015). However, whether national-scale predictors of

forest cover change are related to the dynamics of non-

forest tree cover remains unclear. In part, this knowl-

edge gap relates to the disparate scales at which forest

versus non-forest tree cover is measured. Because

most studies of non-forest tree cover take place at the

farm or plot scale, explanations for why farmers allow

trees in pastures often involve data on households,

such as survey data (Barrance et al. 2003; Calle et al.

2009; Garen et al. 2011; Metzel and Montagnini

2014), rather than larger-scale, spatial variables, such

as distance to market. Bridging the gap between forest

cover change at regional scales and landholder deci-

sion-making at the household scale could enable better

predictions for where and how to promote trees

outside forests in working landscapes.

In Panama, the Azuero peninsula provides an ideal

case study for quantifying the amount and drivers of

agricultural tree cover change. Continental, national,

and regional-scale studies have all found net increases

of forest cover in the Azuero peninsula, suggesting

that a forest transition is occurring (Wright and

Samaniego 2008; Metzel 2010; Aide et al. 2013;

Bauman 2015; Sloan 2015). Yet while estimates of

forest cover change are similar across studies (ap-

proximately ? 4% from 1990 to 2009), estimates of

total forest cover vary dramatically (e.g., from 7 to

34%) due, in part, to differences in how forest cover is

defined (Metzel 2010; Sloan 2015). One explanation

for these divergent estimates of regional forest cover is

that some studies include small scale (\ 4 ha) patches

of tree cover, while others do not (Caughlin et al.

2016b). To identify trends and drivers of tree cover,

we used high-resolution imagery to digitize tree

cover—often accounting for individual tree

crowns—and classify tree cover into classes with

varying ecological functions in the landscape. Our

study is unique because we quantify patterns of fine-

scale tree cover change at a broad spatial extent,

encompassing 1589 km2. Furthermore, by linking

imagery to individual parcels, we are able to relate

patterns of tree cover change to social-ecological

predictors that reflect regional trends, landscape

context, and landholder decision-making. We use this

approach to answer three questions: (1) what are the

patterns of agricultural tree cover change from 1998 to

2014, (2) how do changes in tree cover differ between

forest and non-forest tree cover, and (3) how do social-

ecological predictors of tree cover change vary

between tree cover classes?

Methods

Study region

Our study takes place in Los Santos province, located

in the southeast corner of the Azuero peninsula in

southwestern Panama (\ 2% of our plots are in the

neighboring Herrera province; Fig. 1a). The region is

classified as tropical dry forest, with an average annual

precipitation of 1,700 mm, an average annual temper-

ature of 25 �C, and a 5-month dry season. Regional
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deforestation peaked during the first half of the 20th

century, as forest was cleared for cattle production.

Currently, the landscape is dominated by pasture, but

also includes annual crops, riparian forest buffers,

various stages of fallow, secondary forest fragments,

and a small number of teak (Tectona grandis)

plantations (Heckadon-Moreno 2009; Griscom et al.

2011). More recently, there has been a shift towards

tourism and other industries, as well as environmental

restoration projects (Bauman 2015). Altogether, rural

economic development has likely caused an increase

in regional forest cover (Sloan 2015).

Tree cover classification and change analysis

Our tree cover classification was derived from a

combination of aerial photographs, taken in 1998 and

obtained from the Tommy Guardia National Geo-

graphic Institute of the Republic of Panama, and

Google Earth images, taken in 2014 (Google 2014).

Both datasets offer very high resolutions (B 0.5 m)

that allow small patches of tree cover (often including

individual tree crowns) to be mapped. Because results

of land cover change studies vary depending on spatial

scale (Evans et al. 2002; Call et al. 2017), choosing an

appropriate unit of analysis is critical. In Los Santos

Province, most land ([ 95%) is privately-owned

property used for cattle ranching (ANATI 2000). In

the province, property boundaries create discrete units

(parcels) that explain variability in tree cover in the

landscape and reflect landholder decision-making

(Caughlin et al. 2016b). Thus, we chose parcels as

our unit of analysis. We began with a cadastral dataset

of property boundaries in 2000 (ANATI 2000). From

the 4343 parcels located within coverage of aerial

photos, we randomly selected 438 parcels for our

study. In each of these parcels, we randomly placed

one 2.25 ha square plot (excluding parcels too small or

narrow to accommodate a 150 m 9 150 m plot;

Fig. 1 Study region and

sampling design. a Our

study region is outlined in

black in the southeast corner

of the Azuero peninsula.

b Stratified sampling design;

white squares are 2.25 ha

sampling plots and black

lines represent parcel

boundaries. c Transition
from fallow and riparian

forest in 1998 to forest in

2014. d Growth of dispersed

trees and establishment of

live fence by 2014
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Fig. 1b). Within these squares, tree cover was hand

digitized in Google Earth Pro (Google 2014).

Digitization was conducted by research assistants at

an altitude of 350 ± 50 m with terrain and tilting

turned off. While automated methods for segmenta-

tion and object-oriented classification show great

promise for assessing fine-scale patterns of woody

vegetation cover (Fauvel et al. 2013; Meneguzzo et al.

2013; Adhikari et al. 2017), the capacity of machine

learning techniques to distinguish between function-

ally-different tree cover types (e.g. live fence vs.

riparian corridor) remains unknown. Because our

main objective was to identify these tree cover types,

we used hand digitization by research assistants with

on-the-ground experience in Latin American cattle

pastures. We envision that our extensive set of

digitized polygons could serve as training data for an

algorithm to classify tree cover type from high

resolution imagery. To that end, we have deposited

all digitized polygons in the Dryad Digital Repository

where they are freely reusable (https://doi.org/10.

5061/dryad.q5r472k).

We classified each polygon as dispersed tree(s),

fallow, forest, live fence, riparian forest or teak

plantation (Fig. 1). We chose these classes because

they were the most dominant forms of tree cover on the

landscape and are known to provide important

ecological and economic services. Together, dispersed

trees, live fences and teak plantations constituted non-

forest tree cover. These non-forest tree cover classes

are more directly linked to landholder decision-

making, while forest and riparian forest classes

represent more natural types of tree cover. Because

fallow cover does not necessarily represent full-grown

trees and is likely to be cleared, we did not include

fallow under measures of total tree cover, or as a

response variable in our models. Instead, we used

percent fallow as a predictor of change in other cover

classes. The remainder of undigitized area in our

sample was predominately pasture, and is hereafter

referred to as such. Dispersed trees included isolated

trees in open fields and pastures, more densely

occurring trees in silvopastures, and trees that were

cultivated in near-home gardens. Dispersed trees with

a canopy\ 6 m in diameter were not digitized. A

similar threshold was used to help distinguish between

fallow and (riparian) forest, with the presence of many

tree crowns[ 6 m diameter and at least 80% canopy

closure required for classification as (riparian) forest.

Riparian forest was differentiated from forest by

proximity to a waterway and a width\ 50 m. Live

fences consisted of rows of 5 or more trees, with at

least 3 canopies exceeding a 6 m diameter. Teak

plantations were identified by a combination of a

streaked appearance (resulting from row plantings),

small and uniform crown sizes and distinct borders.

Most tree cover polygons represented groups of trees

(i.e., tree cover patches), although dispersed tree and

live fence polygons often consisted of individual trees.

As such, we did not account for overlap between

individual tree crowns, and could not calculate tree

density. Deciduous trees were frequently visible on the

landscape in both time periods, and were included in

our analyses. We verified the accuracy of our tree

cover classifications by visiting randomly-assigned

points in July 2015 (n = 43) and assigning a class (e.g.,

live fence, riparian forest) to these points in the field.

Three people then independently classified these

ground-truthed points using the previously described

image classification methodology with a mean accu-

racy of 86%. After the initial digitization, the lead

author reviewed and revised the initial set of polygons,

with input from the other authors on questionable

polygons.

To determine where gains and losses of different

tree cover classes occurred, we analyzed tree cover

transitions from one class (in 1998) to another (in

2014). We used the union function in QGIS (QGIS

Development Team 2016) to combine tree cover class

of polygons created from 2014 imagery to polygons

created from 1998 imagery. We used the resulting

attribute table to calculate what percent of each tree

cover class remained the same, or transitioned into

other classes, by 2014. Mean patch area was deter-

mined by calculating the area of each polygon in QGIS

(QGIS Development Team 2016) and deriving a mean

for each tree cover class. Number of patches is

synonymous with number of polygons. Including the

number of patches enabled us to quantify both the total

area within a sample unit that had undergone a change

in tree cover as well as change in the number of

discrete patch units.

Predictor variables

To determine whether drivers of tree cover change

vary between tree cover classes we selected a set of

eight predictor variables that previous studies had
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identified as important for regional forest cover

change (Online Appendix 1). Slope was calculated

in R using the package ‘raster’ (Hijmans et al. 2015)

and 30 m x 30 m resolution data from the Shuttle

Radar Topography Mission (SRTM). Mean annual

precipitation from 2000 to 2014 was obtained from

Climate Hazards Group Infrared Precipitation with

Stations (Funk et al. 2014). Distance to highway was

the Euclidean distance to the nearest highway. Percent

off-site residences in 2000 and change in population

density from 2000 to 2010 were acquired from the

2000 Panama National Population Census and inter-

polated to each square (Online Appendix 2). Sur-

rounding forest refers to the percent of forest cover

within a 500 m radius of each plot, based off of a 2008

national forest cover classification (ANAM 2009).

Parcel size was obtained from the ANATI cadastral

dataset. Percent fallow was calculated as the percent

cover of fallow within each plot in 1998.

Statistical analysis

We employed a hurdle model approach to analyze the

predictors of tree cover change in our study (Mullahy

1986; Neelon et al. 2013). Hurdle models partition a

response variable into two types of data, first, a binary

variable (in our case, whether tree cover increased or

not), and second, a continuous non-zero variable (in

our case, how much tree cover increased). We chose

this analytical method because it accounts for the fact

that two separate decision-making processes—possi-

bly driven by dissimilar factors—are occurring. First,

landholders are either allowing tree cover to regener-

ate or not, and second, they are deciding how much

area to allow to revegetate. Whether or not tree cover

gain occurred was analyzed with generalized linear

models (GLM) using a binomial distribution and a

logit-link function, while the magnitude of tree cover

gain, if it did occur, was analyzed with GLMs using a

gamma distribution and a log-link function (Gelman

and Hill 2006). The hurdle model required grouping

tree cover loss and no change in tree cover into the

same category (i.e., no gain in tree cover). We believe

this is acceptable because in our study system trees are

constantly recruiting naturally, meaning that a lack of

change in tree cover in a plot can only result if newly

recruited saplings are cleared from the field; thus, no

change in tree cover represents a variety of tree cover

loss (Metzel 2010). To assess spatial autocorrelation in

model residuals, we used the pgirmess package in R

(Giraudoux 2017) to generate correlograms for

Moran’s I statistic. We found minimal evidence for

spatial autocorrelation in model residuals (Online

Appendix 3). We excluded teak plantations from our

models because they were so rare that drivers of

change in this class could not be analyzed. To interpret

coefficients relative to one another, we standardized

all predictor variables by centering around the mean

and dividing by two standard deviations (Gelman

2008). To assess model fit, we calculated R2 values as

R2 sum of squares (Hardin and Hilbe 2007).

Results

Tree cover change

Total tree cover increased from 15.1 ± 20.0%

(mean ± SD) in 1998 to 19.3 ± 22.3% in 2014. All

tree cover classes increased in cover, with the largest

gains from forest and smallest gains from dispersed

trees (Fig. 2). Mean percent change was positive for

all tree cover classes, but was highly variable, with

SDs ranging from 2.1 to 18.7% (Fig. 2). Riparian

forest and forest were the most prevalent tree cover

classes throughout the study period, from 1998 to 2014

(7.2 ± 11.5%, and 6.3 ± 20.1%, respectively), while

dispersed trees, live fences and teak plantations

covered the least area (3.0 ± 3.7%, 0.5 ± 1.7% and

0.3 ± 3.5%, respectively). Fallow covered more area

than any tree cover class throughout the study period

(11.5 ± 22.7% cover). Mean patch area increased for

riparian forest (? 15%), dispersed trees (? 27%) and

teak plantation (? 314%), decreased for fallow

(- 11%) and live fence (- 10%), and did not change

for forest. The total number of patches increased for

forest (? 40%), riparian forest (?3%), live fence

(? 46%) and teak plantation (? 60%), and decreased

for fallow (- 2%) and dispersed trees (- 17%; Online

Appendix 4). By far the most dominant net transitions

in tree cover were from fallow to forest, and from

pasture to riparian forest. These two changes

accounted for 2.7% of the entire study area (Fig. 3).

Net transitions from riparian forest to forest, pasture to

fallow, and fallow to riparian forest were the next most

common, accounting for another 1.2% of the study

area. The geographic distribution of tree cover change

varied widely from class to class (Fig. 4). Change in
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forest cover mostly occurred within hilly regions

along the Rio Oria. While riparian forest cover change

was also most prevalent in this region, compared to

forest cover, riparian cover was more evenly

distributed across the study area. Live fences mostly

occurred in the area surrounding Las Tablas, and

dispersed tree cover change was the most evenly and

widely distributed type of tree cover change.

Social-ecological predictors of tree cover change

The results of the binomial and gamma models varied

substantially both within and between tree cover

classes (Fig. 5). The probability of gains in forest

cover occurring was positively influenced by percent

fallow, slope, and surrounding forest cover (p\ 0.001

for each), and negatively influenced by distance to

highway (p = 0.03; Online Appendix 5). The magni-

tude of gains in forest cover was positively influenced

by percent fallow and surrounding forest cover

(p\ 0.001 and p = 0.03, respectively). Surrounding

forest cover and slope had a negative, though margin-

ally significant, influence on probability of gains in

riparian forest (p = 0.06 for both; Online Appendix 5),

while the magnitude of riparian forest gain was

positively influenced by percent fallow (p\ 0.001),

and negatively influenced by percent off-site resi-

dences and parcel size (p = 0.004 and 0.008, respec-

tively). The probability of increase in live fence cover

was positively associated with population density, but

the relationship was not statistically significant

(p = 0.08). The gamma model for live fences did not

converge due to limited instances of increases in live

fence cover. The probability of gains in dispersed tree

cover occurring was positively influenced by parcel

size and distance to highway (p = 0.002 and 0.02,

respectively; Online Appendix 5) and negatively

influenced by surrounding forest cover (p = 0.02).

The magnitude of gain in dispersed tree cover was

positively influenced by percent fallow (p = 0.001).

The probability of gain in total tree cover was

negatively influenced by percent fallow (p\ 0.001).

The magnitude of gain in total tree cover was

positively influenced by percent fallow (p\ 0.001)

and slope (p = 0.02; Online Appendix 5). R2 was

highly variable between tree cover classes and models,

ranging from nearly zero variance explained (total tree

cover gamma model) to 36% (forest cover binomial

model; Fig. 5).

(b)

(a)

Fig. 2 a Change in percent cover and b mean cover (± SD) in

1998 and 2014 for each non-pasture cover class and total tree

cover

Fig. 3 Heat map of transitions from each tree cover class in

1998 to 2014
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Discussion

Forest and landscape restoration (FLR) will require

promoting a variety of tree cover types in agricultural

landscapes, including trees outside forests that provide

critical ecosystem services. However, studies that

quantify reforestation at landscape to regional scales

have almost all focused on change within a single

forest cover class and have not investigated change in

non-forest tree cover. We demonstrate that this land

cover simplification overlooks major differences in

rates and drivers of change between tree cover types.

We found an increase in total tree cover from 1998 to

2014, similar to previous studies in southwestern

Panama that have revealed net forest gain over the past

decade (Wright and Samaniego 2008; Metzel 2010;

Fig. 4 Maps of gain and loss by cover class (Kahle and Wickham 2013). a Forest, b riparian forest, c fallow, d live fences, e dispersed
trees, and f total tree cover (does not include fallow)
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Aide et al. 2013; Bauman 2015; Sloan 2015; Caughlin

et al. 2016b). Unlike these previous studies, we

disentangled the contributions of forest and non-forest

tree cover classes to this ongoing forest transition.

While largest overall gains in forest cover occurred for

forest fragments, the biggest proportionate gains in

forest cover came from thin riparian corridors (i.e.,

riparian forest), ecologically-critical landscape fea-

tures that may be excluded from land cover change

studies at coarser spatial resolutions. In contrast, live

fences remained stable over time, while gains in

dispersed tree cover in some areas were counterbal-

anced by losses in other areas. The social-ecological

predictors of tree cover change varied widely between

tree cover classes, including opposite effects on forest

versus non-forest tree cover for some predictors.

While additional study will be required to understand

the causal pathways behind the patterns we observed,

(a)

(b)

Fig. 5 Coefficient

estimates for the influence of

each predictor variable

across model types and tree

cover classes. Mean

estimates are plotted with

50% (thick) and 95% (thin)

confidence intervals for

a binomial models and

b gamma models. Estimates

of gamma model

coefficients are displayed on

the log-link scale, while

binomial model coefficients

are displayed on the logit-

link scale. Positive values

indicate a positive influence

on cover change, while

negative values indicate a

negative influence. Because

predictor variables were

standardized, the magnitude

of regression coefficients

within the gamma and

binomial models is directly

comparable
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our results suggest that there will be no ‘‘one size fits

all’’ explanation for change in different classes of tree

cover.

Tree cover change

Forest and riparian forest together constituted 78% of

all tree cover throughout our study, and delivered 79%

of net gains in tree cover during our study period.

Increases in forest cover outpaced increases in riparian

forest by a factor of 2:1, yet riparian forest remained

slightly more prevalent than forest across our study in

2014. While thin riparian forests may provide fewer

benefits in terms of biodiversity conservation than

larger blocks of forest (Greenler and Ebersole 2015),

in agricultural landscapes the richness and abundance

of forest species is sometimes nearly indistinguishable

between riparian forests and larger tracts of secondary

forest (Harvey et al. 2006; Fajardo et al. 2009;

Mendoza et al. 2014). In Los Santos province, where

water scarcity limits agricultural productivity, restor-

ing riparian forest cover may protect water resources

and prevent soil erosion (Metzel and Montagnini

2014). With half of all forest cover and a third of all

gains in forest cover deriving from riparian forest, we

suggest that riparian corridors should be a focus of

both land cover change research and ongoing refor-

estation efforts in southwestern Panama.

Non-forest tree cover classes composed a signifi-

cant portion of total regional tree cover, and con-

tributed 21% of net gains in tree cover from 1998 to

2014. Despite the inherently isolated nature and small

individual spatial extent of dispersed trees, this tree

cover class comprised 16% of all tree cover in 2014.

While 9.9 ha of dispersed tree cover was lost from

1998 to 2014, 11.8 hectares were gained, resulting in a

net (though dynamic) stability that appears to counter

field-based studies that predict a lack of regeneration

potential for dispersed agricultural trees (Lathrop et al.

1991; Plieninger et al. 2004; Fischer et al. 2009).

However, the time span of our study may not have

been long enough to detect declines in tree cover

driven by limited regeneration. Moreover, we did not

distinguish between different tree species, meaning

that losses of tree diversity could be occurring without

detection (Esquivel et al. 2008; Harvey et al. 2011).

Nonetheless, the apparent stability of this keystone

class of tree cover is promising for efforts aimed at

FLR and biodiversity conservation (Manning et al.

2006; Gibbons et al. 2008; Fischer et al. 2010; Harvey

et al. 2011). Relative to total area of other tree cover

classes, live fences played an inconsequential role in

tree cover dynamics in our study; however, live fence

cover nearly doubled from 1998 to 2014. This large

relative increase points to the potential for live fences

to contribute to regional tree cover and landscape

connectivity, if efforts to promote their establishment

are intensified (Harvey et al. 2005; Metzel 2010).

Social-ecological predictors of tree cover change

The effect of social-ecological predictors of tree cover

change depended both on tree cover class and on how

tree cover change was quantified. Many studies of land

cover change have quantified reforestation as a

discrete transition between non-forest and forest pixels

(Meyfroidt and Lambin 2008; Aide et al. 2013;

Hansen et al. 2013; Sloan 2015). The closest analogue

to these previous analyses in our study was a binomial

model that predicted whether the forest cover class

increased within a sampling unit. We found that three

of the strongest predictors of forest cover gain were

steeper slopes, proximity to the highway, and land-

scape-scale forest cover. The explanatory power of

these variables closely matches previous studies on

binary forest cover change in the region, which have

shown increased reforestation on steep slopes (Yack-

ulic et al. 2011; Bauman 2015), with proximity to

forest fragments (Crk et al. 2009; Newman et al.

2014), and near major roads (Rudel et al. 2002). Rural

economic development, including infrastructure

development, has been proposed as a causal pathway

to explain why these predictors are correlated with

reforestation: as non-agricultural jobs become avail-

able, there is less labor to clear trees off pastures

(Sloan 2015). However, our results also complicate

this narrative: for different metrics of tree cover, we

found divergent, and even opposite, effects of the

same socio-ecological variables.

The effects of surrounding forest cover offer a

prime example of how social-ecological predictors

vary between tree cover classes. We predicted that

surrounding forest cover would have a positive impact

on tree cover gain across classes, due to the increased

seed rain provided by adjacent forests (Holl 1999;

Hooper et al. 2005; Martinez-Garza et al. 2009). For

our forest cover class, gain in forest cover was strongly

and positively influenced by surrounding forest cover.
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In contrast, riparian forest and dispersed tree cover

gain was negatively related to surrounding forest

cover. The negative relationship between surrounding

forest cover and increases in riparian and dispersed

tree cover may indicate the importance of forest

scarcity for dictating trends in some classes of

deliberately maintained tree cover. The lack of

available tree products (e.g., firewood, lumber, fence

posts, fruits, etc.) near parcels far from forests may

compel landholders to allow natural recruitment of

trees in pastures, while landholders located near

forests may be less motivated to allow new trees to

grow (Eilu et al. 2007; Garen et al. 2009, 2011;

Ordonez et al. 2014). The unexpected negative

relationship between surrounding forest cover and

some types of tree cover is a reminder that the

ecological processes that normally dictate forest

regeneration can be overridden by landholder deci-

sion-making in agricultural landscapes.

One variable with a consistently strong effect on

magnitude of tree cover gain across tree cover classes

was the area of fallow land at a site in 1998. Fallow

land indicates ‘‘rough pasture,’’ including tall grasses,

weeds, and shrubs. In our landscape, fallow land can

indicate rotational grazing, pasture abandonment, or

inadequate labor to clear regenerating woody vegeta-

tion (Griscom et al. 2009). Fallow land is another

casualty of the ‘‘forest’’ vs. ‘‘non-forest’’ dichotomy in

many remote sensing studies of forest cover change,

and is often classed as ‘‘non-forest’’ (Sloan 2015). Our

results indicate that, at least for tree cover dynamics,

fallow land is not equivalent to active pasture. Instead,

fallow land may either represent the first step in a

successional trajectory towards increased forest cover

(Caughlin et al. 2016a) or a land management regime

that promotes non-forest tree cover (Garen et al.

2011). For example, we found that fallow land was

often converted to dispersed tree cover, suggesting

that farmers may utilize fallow land to enable natural-

recruitment of selected tree species that become

isolated pasture trees (Lerner et al. 2015). An excep-

tion to the relationship between tree cover gain and

fallow land was live fence cover, which did not show a

strong relationship with percent fallow land. A

possible explanation is that live fences require active

maintenance to maintain the fence as a linear bound-

ary and prevent trees from shading grass (Harvey et al.

2005). Field-based studies have demonstrated the

importance of pasture management in determining

reforestation rates, including spatial patterns of tree

recruitment (Seifan and Kadmon 2006) and tree

community composition (Uhl et al. 1988; Esquivel

et al. 2008). As a step towards more ecologically-

meaningful remote sensing of tropical reforestation,

we recommend including a fallow class in land cover

classifications.

Overall, our results point to the importance of

landholder decision-making for tree cover gain. Dif-

ferences in rates of change and social-ecological

predictors of change between tree cover classes

indicate that farmers are choosing to manage some

types of tree cover differently than others. In addition,

the differences between our gamma and binomial

models suggest that whether tree cover gain occurs,

and the amount of tree cover gain, are two separate

processes, influenced by different social-ecological

predictors. This result suggests that landholders make

two separate decisions: (1) whether to allow any tree

recruitment in pastures and (2) how much tree cover

gain to allow. Parcel size is one predictor variable that

is closely related to individual landholder character-

istics (Manson et al. 2009) and that had a negative

effect on magnitude of gain for riparian trees. One

potential explanation for this result is that farmers with

more land may tend to favor tree cover types with

more immediate benefits for agricultural production.

Future research that links individual decision-making

with land cover change will play a critical role in

understanding these fine-scale tree cover dynamics.

Scope and limitations

Our research demonstrates how very high resolution

imagery can be applied to understand fine-scale

patterns of tree cover change in an agricultural

landscape. While our primary focus in this paper

was to determine patterns of change between tree

cover types, we anticipate that new developments in

remote sensing and machine learning will increase our

ability to quantify fine-scale patterns of woody

vegetation change. In our landscape, the fusion of

hyperspectral and LiDAR data has enabled species-

level classification of dispersed pasture trees (Graves

et al. 2016). While applying species classification

algorithms to trees with overlapping canopies remains

a challenge, analyzing tree species composition in

agricultural land at regional scales is a clear next step.

In addition, segmentation algorithms have
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demonstrated the ability to measure woody vegetation

change with a high level of resolution that can be

related to biomass and individual tree canopies with

implications for restoration and other conservation

issues (Laliberte et al. 2004; Platt and Schoennagel

2009; Adhikari et al. 2017). Object-oriented classifi-

cation has demonstrated potential to map hedgerows

in agricultural landscapes (Vannier and Hubert-Moy

2008; Aksoy et al. 2010). Applying these algorithms to

distinguish between functional tree cover types could

enable far greater spatial coverage than manual

digitization.

Implications for management and conservation

Forest and landscape restoration in pastoral landscapes

will depend on understanding tree cover dynamics,

including trees outside forests that provide important

ecosystem services (Harvey et al. 2008; Chazdon et al.

2015). Our study highlights the diversity of tree cover

in a Panamanian landscape undergoing a forest

transition and suggests multiple explanatory pathways

for tree cover gain. Although the social-ecological

variables that correlate with probability of forest cover

gain are typical of a labor scarcity pathway, as loss of

farm labor leads to pasture abandonment in marginal

land (Rudel et al. 2005; Wright and Samaniego 2008),

gain in non-forest tree cover may be more closely

linked to deliberate maintenance of these trees by

farmers, reflecting ‘‘forest scarcity’’ or ‘‘smallholder

stewardship’’ (Rudel et al. 2005; Meyfroidt and

Lambin 2008; Lambin andMeyfroidt 2010; Plieninger

et al. 2012; Lerner et al. 2015; Sloan 2015). Our results

demonstrate the value of including non-forest tree

cover types in land cover change analyses of agricul-

tural landscapes (Plieninger et al. 2012). Furthermore,

our results provide insights into the effectiveness of

targeting different classes of tree cover depending on

the social-ecological context and scale of influence.

FLR projects will be most successful if they tailor

restoration objectives to the given social-ecological

conditions of particular landscapes by taking advan-

tage of the disparate factors that drive increases in

different classes of tree cover.
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