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Abstract

Context Quantifying landscape-scale vegetation dis-

turbances by surface coal mining (SCM) is crucial for

assessing and mitigating its negative impacts on the

environment. Methods for detecting such disturbances

in woody ecosystems exist, but these methods do not

work well for deserts and grasslands in arid and

semiarid regions because of their sensitive responses

to precipitation variations.

Objectives The objective of this study was to

develop a new index to reliably detect the locations

and spatial extents of SCM-induced vegetation dis-

turbances in dryland regions in the face of fluctuating

precipitation.

Methods We have developed a vegetation distur-

bance index (VDI) that combines MODIS EVI data

with precipitation data to detect vegetation distur-

bances by SCM on the Mongolian Plateau during

2000–2015. The VDI is computed by comparing

vegetation production per unit precipitation for a given

year with a multi-year mean, and by considering

distances from coal-mining areas.

Results Our results show that the VDI was able to

adequately distinguish vegetation disturbances by

SCM from climate-driven vegetation changes in five

selected sites across the Mongolian Plateau.

Conclusions The VDI provides an effective tool for

quantifying the locations, spatial extents, and severity

of vegetation disturbances by SCM in arid and

semiarid regions.

Keywords Vegetation disturbance � Surface coal
mining � MODIS EVI � Precipitation � Mongolian

Plateau

Introduction

Surface coal mining (SCM), also known as opencast

coal mining, refers to activities that extract coal from

the ground by first removing vegetation and topsoil

when coal seams are near the surface (World Coal

Institute 2005). About 40% of the global coal produc-

tion comes from SCM, which contributes up to 80% of

coal production in some countries (e.g., India and

Australia) (Bian et al. 2010). Most coal producing

countries with large-scale SCM are located in arid and

semiarid regions, resulting in myriad ecological

disturbances (Fernandez-Manso et al. 2012). SCM

can profoundly transform landscape patterns and

ecological processes, destroying large areas of land

covers (Qian et al. 2014), exhausting or polluting
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surface and ground water (Tao et al. 2015), and

reducing the biodiversity (Zeng et al. 2018). As the

first step to assess and mitigate these negative

ecological impacts, the locations and spatial extents

of vegetation disturbances by SCM need to be

determined at the landscape scale.

‘‘Disturbance is a physical force or event that

disrupts the physical or biological structure of an

ecological system’’, and the geographic location and

affected area of this structural disruption can be

delimited from the adjacent undisturbed areas (Pickett

et al. 1999). Spectral vegetation indices (e.g.,

Enhanced Vegetation Index, EVI) and midday radio-

metric land surface temperature (LST) have been used

together to detect the locations and magnitudes of

major disturbance events (e.g., wildfire, hurricane, or

deforestation). Based on MODIS EVI and LST,

MODIS Global Disturbance Index (MGDI) was

developed to detect continental-scale disturbances

(Mildrexler et al. 2007, 2009). The MGDI has been

shown to be a computationally efficient and effective

algorithm for monitoring large-scale ecosystem dis-

turbances (Coops et al. 2009; Waring et al. 2011).

However, it is mainly designed for detecting distur-

bances in woody ecosystems, and is not suitable for

annual herbaceous plants (e.g., grasslands and crop-

lands) in arid and semiarid regions. This is because

herbaceous plants are generally shallow rooted and

respond rapidly to precipitation fluctuations—making

the MGDI difficult to distinguish disturbance events

from precipitation anomalies (Mildrexler et al.

2007, 2009). Therefore, a new disturbance index with

the low sensitivity to precipitation fluctuations is

needed to quantify vegetation disturbances by SCM in

arid and semiarid regions.

‘‘Normalizing’’ vegetation growth by precipitation

is a promising way to reduce the sensitivity to

precipitation, because precipitation is recognized as

the most important determinant of vegetation cover

and biomass production in arid and semiarid regions

among different climatic factors (Li et al. 2012; John

et al. 2015; Zhao et al. 2015). Thus, the objective of

this study was to develop a new vegetation disturbance

index (VDI), which combines MODIS EVI with

precipitation, to quantify spatial patterns of the

landscape-scale vegetation disturbances by SCM in

arid and semiarid regions.

Vegetation disturbance index (VDI)

Based on the disturbance detection algorithm devel-

oped by Mildrexler et al. (2007), we developed a

vegetation disturbance index (VDI) using the follow-

ing formula:

VDI =
EVImax=Precipcumulative

EVImax=Precipcumulative

ð1Þ

where VDI is the vegetation disturbance index at the

pixel level, EVImax and Precipcumulative are the max-

imum value of EVI and the cumulative precipitation

during the growing season (May to September) for one

year (e.g., the year of 2015), and EVImax and

Precipcumulative are the multi-year means of EVImax
and Precipcumulative for a period before the year (e.g.,

the period of 2000–2014).

The VDI is based on the general observations that

rainfall is the determinant factor influencing vegeta-

tion growth without disturbance events in arid and

semiarid ecosystems (John et al. 2015; Zhao et al.

2015), and vegetation production per unit precipitation

(i.e., rain use efficiency) should keep within a range of

natural variability because of fluctuations between wet

and dry years (Mildrexler et al. 2007; Wessels et al.

2007; Bai et al. 2008). Here we used the ratio of EVI to

precipitation, which ‘‘normalizes’’ vegetation growth

by precipitation, to distinguish vegetation distur-

bances by SCM from vegetation changes due to

precipitation anomalies in arid and semiarid regions.

Without disturbances, the current-year vegetation

production per unit precipitation (i.e., the value of

EVImax/Precipcumulative) should approximate the multi-

year mean (i.e., the value of EVImax=PrecipcumulativeÞ,
and thus the values of VDI are expected to be equal to

1 or within a range of natural variability including

values larger than 1 (i.e., better than average vegeta-

tion conditions in wet years) or smaller than 1 (i.e.,

worse than average vegetation conditions in dry years)

(Fig. 1). By contrast, when disturbance events occur,

the current-year rain use efficiency will change

greatly, making the value of VDI outside the natural

variability range (Fig. 1). The impacts of disturbances

on vegetation can be positive or negative. For

example, irrigation can improve vegetation produc-

tivity, resulting in a larger current-year ratio relative to

the multi-year mean and a divergence from the range

of natural variability (Fig. 1), while SCM can not only
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directly reduce vegetation cover by eradicating previ-

ous vegetation and soil, but also indirectly degrade the

surrounding vegetation productivity through polluting

soil, water, and air, causing a sharp decline in the

current-year EVImax and thus a much smaller current-

year ratio relative to the multi-year mean.

Quantifying vegetation disturbances by surface

coal mining with VDI

Study area and data acquisition

To test the effectiveness of VDI in detecting vegeta-

tion disturbances by SCM in arid and semiarid regions,

we chose five SCM sites in the Mongolian Plateau,

including four sites in Inner Mongolia and one site in

Mongolia (Fig. 2a). The five sites were selected

because they represented several different dryland

vegetation types (including meadow steppes, typical

steppes, desert steppes, cultivated lands, and deserts),

and experienced extensive mining activities during

2000–2015 (Fig. 2b–k). The five vegetation types

were chosen for three reasons: (1) they are the

dominant vegetation types in the Mongolian Plateau,

accounting for more than 70% of the total area of the

plateau (Fig. 2a); (2) they are dominated by herba-

ceous plants with rapid responses of vegetation

production to precipitation fluctuations (Mildrexler

et al. 2007); (3) Most SCM sites of the plateau are

located in grasslands, cultivated lands, and deserts

(Zeng et al. 2018).

To implement the VDI for detecting vegetation

disturbances caused by SCM in the selected sites, we

first obtained Enhanced Vegetation Index (EVI) data,

i.e., MODIS/Terra 16-day EVI data (MOD13Q1) with

a spatial resolution of 250 m 9 250 m, for the Mon-

golian Plateau between 2000 and 2015 from the

Land Process Distributed Active Archive Center

website (https://lpdaac.usgs.gov/dataset_discovery/

modis/modis_products_table/). Then, we acquired

daily precipitation data for Inner Mongolia during

2000-2015 from the China Meteorological Data Ser-

vice Center website (http://data.cma.cn/), and monthly

precipitation data (TRMM_3B43), with a spatial res-

olution of 0.25 9 0.25 degrees, for Mongolia between

2000 and 2015 from the Goddard Space Flight

Center Distributed Active Archive Center website

(https://mirador.gsfc.nasa.gov/collections/TRMM_

3B43__007.shtml).

Google Earth images of high (e.g., QuickBird and

SPOT) or medium (e.g., Landsat) spatial resolution

across the plateau were used to obtain the actual

spatial information on the five selected SCM sites.

MODIS Gridded 1 km Annual Net Primary Produc-

tivity (NPP) data (MOD17A3) for the years of 2000

and 2015 (http://files.ntsg.umt.edu/data/NTSG_

Products/MOD17/MOD17A3/) were used to evaluate

the performance of VDI in identifying vegetation

disturbances by SCM.
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Fig. 1 The conceptual

model of the vegetation

disturbance index (VDI)

illustrating vegetation

changes under normal

conditions and different

types of disturbances over

time (adapted from

Mildrexler et al. (2007)).

Normal conditions refer to

conditions within the range

of natural variability in

precipitation
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Implementing VDI

Before calculating the VDI, we preprocessed the

MODIS 16-day 250-m EVI data and precipitation

data. The annual maximum EVI data (2000–2015) for

the Mongolian Plateau were generated by Band Math

in ENVI 5.0. Then we removed pixels with maximum

EVI values less than 0.025 because these pixels were

mainly associated with water bodies and snow/ice

(Mildrexler et al. 2007). Daily precipitation data for

Inner Mongolia at a spatial resolution of

250 m 9 250 m were obtained by Ordinary Kriging
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Fig. 2 Locational map of the five selected surface coal mining

sites in the Mongolian Plateau (a) and their corresponding

Google Earth images in 2015 (b, d, f, h, j) and 2000 (c, e, g, i, k).
The surface coal mining sites from 1 to 5 were, respectively,

located in meadow steppes (b, c), typical steppes (d, e), desert
steppes (f, g), cultivated lands (h, i), and deserts (j, k). The
vegetation map (a) was from Zhao et al. (2015)
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interpolation, and monthly precipitation data

(TRMM_3B43) for Mongolia were resampled to the

pixel size of 250 m by a nearest neighbor resampling

algorithm. Next, we acquired the annual cumulative

precipitation data during the growing season for the

Mongolian Plateau. After that, the EVImax data and the

Precipcumulative data from 2000 to 2015 were projected

onto an Albers conical equal area projection, and the

VDI was calculated by dividing the ratio of EVImax to

Precipcumulative for the year of 2015 by the ratio of

EVImax to Precipcumulative for the period of 2000-2014.

The results showed that the values of VDI for all pixels

(except water bodies and snow/ice) in the Mongolian

Plateau ranged from 0 to 5, with the mean value of

0.97 and the standard deviation of ± 0.34.

Identifying vegetation disturbances by surface coal

mining

SCM can result in vegetation degradation. Thus, to

identify vegetation disturbances by SCM, we should

first determine the range of natural variability and

detect the disturbances with the VDI values below the

range. Two methods were generally used to define the

range of natural variability. The first one was to use the

values of a disturbance index that were within one

standard deviation of the mean value for the entire

study area as the range of natural variability (Mil-

drexler et al. 2007; Coops et al. 2009). Any values that

were one or more standard deviations above or below

the mean value coincided with disturbances. The

second one was to set specific thresholds, such as 45%,

65%, and 75% increases or decreases from the multi-

year mean of a disturbance index, as the range of

natural variability (Mildrexler et al. 2009).

Referring to the two methods, we first set four

different ranges with the VDI values of 0.6–1.4,

0.7–1.3, 0.8–1.2, and 0.9–1.1, which were within

about one standard deviation (± 0.34) of the mean

VDI value (0.97), and then compared them for

determining a proper range of natural variability. We

found that the range of 0.8–1.2 performed best in

detecting vegetation disturbances by SCM in the study

areas (Fig. 3p–t). The regions outside this range not

only accurately detected the locations of SCM areas

(including coal-extracting areas, stripped areas, and

dumping areas), but also exhibited their negative

impacts on the surrounding land covers (Fig. 3p–t). By

contrast, the ranges of 0.6–1.4 and 0.7–1.3 underes-

timated vegetation disturbances by SCM in reference

to the actual spatial information obtained from Google

Earth images (Fig. 3a–o). For example, the range of

0.6-1.4 obviously missed some coal-extracting areas

(e.g., some areas in black circles) (Fig. 3f–j); in

comparison, the range of 0.7–1.3 better quantified the

spatial patterns of coal-extracting areas as well as

stripping areas and dumping areas, but omitted their

impacts on the surrounding land covers (e.g., some

areas in black rectangles) (Fig. 3k–o). The range of

0.9–1.1 clearly overestimated vegetation disturbances,

with most of natural variability falsely classified as

disturbances-induced vegetation degradation (e.g.,

Fig. 3v, y). Thus, we selected the VDI values of

0.8–1.2 as the range of natural variability, and detected

the areas of vegetation degraded by all disturbances

during 2000–2015 using the threshold VDI value of

0.8 (i.e., pixels with the VDI values of\ 0.8 were

deemed to be negatively affected by disturbances).

To further quantify the spatial extents of vegetation

disturbances by SCM, we assumed that the impacts of

SCM on vegetation would decrease with distance

away from coal-extracting areas, and the average

vegetation disturbance distance of large mining sites

would be greater than that of small ones. A national

survey across China indicated that the distance of

environmental impacts from a mining site ranged from

a few hundred meters to 10 km (CMEP/CMLR 2014).

In this study, we first divided SCM sites into small

(with the coal-extracting area of\ 100,000 m2) and

large (with the coal-extracting area of C 100,000 m2)

sites, and then compared different buffers to choose

proper distances to cover the impacts of SCM with

different sizes on vegetation. The proper distances

were determined when the buffers at the specified

distances not only covered all coal-extracting areas,

stripped areas, and dumping areas in space, but also

contained most of vegetation degradation regions

around the mining areas without involving other kinds

of human-disturbed land uses, such as built-up areas

(Fig. 4a) or cultivated lands (Fig. 4b). Finally, we

selected 1 km for the small sites and 5 km for the large

sites as the distances of vegetation disturbances due to

SCM (shown in black dashed lines) (Fig. 4). Thus, it is

a conservative and robust first approximation of the

extents of SCM damage to vegetation in the Mongo-

lian Plateau.
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Based on procedures mentioned above, we obtained

spatial distributions of vegetation disturbances caused

by SCM during 2000–2015 for the five selected sites

(shown in red polygons) (Fig. 5).

Accuracy assessment

Google Earth images and NPP data were used to assess

the accuracy of our results. First, the locations and

magnitudes of vegetation disturbances by SCM cor-

responded well with the characteristics shown in the

corresponding Google Earth images (Fig. 5a–j). On

the one hand, vegetation disturbances by SCM

accurately captured the locations of SCM areas (e.g.,

Fig. 5a, f). On the other hand, vegetation disturbances

with different VDI values effectively reflected the

magnitudes of negative impacts of SCM on vegeta-

tion: the lower the values, the more serious the damage

to vegetation. The values in coal-extracting/

stripped/dumping areas were obviously lower than

those in the surrounding regions (Fig. 5f–j).

Second, the spatial extents of vegetation distur-

bances by SCM also corresponded well with the

characteristics of NPP data except for the second site

(Fig. 5l–o). From 2000 to 2015, the decreases in NPP

in the SCM-disturbed regions were obviously larger

Fig. 3 Spatial distributions of coal-extracting areas obtained

through the visual interpretation of Google Earth images in 2015

for the selected five surface coal mining sites (a–e) and their

corresponding VDI patterns, with the VDI values between

0.6–1.4 (f–j), 0.7–1.3 (k–o), 0.8–1.2 (p–t), and 0.9–1.1 (u–y)
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than those in the surrounding regions (Fig. 5k, m, n),

which further proved the reliability of our results.

Discussion

Our results show that the VDI is an effective and

simple index for detecting vegetation disturbances by

SCM in arid and semiarid regions because the ratio of

EVI to precipitation offsets the effects of precipitation

fluctuations on vegetation (Fig. 5). For example,

although precipitation surplus anomalies in the second

SCM site during 2000–2015 masked the negative

impacts of SCM on vegetation to some extent (Fig. 5l,

q), the VDI was still able to identify the SCM-induced

vegetation disturbances (Fig. 5g).

The VDI can not only capture the locations and

spatial extents of vegetation disturbances by SCM, but

also characterize the magnitudes of the SCM’s neg-

ative impacts on vegetation from the core area of a

SCM site outward (Fig. 5f–j). In general, a SCM area

consists of three zones: coal-extracting zone, stripped

zone, and dumping zone (Zeng et al. 2018). Vegeta-

tion damages within these three zones are most serious

because SCM directly destroyed most or all vegeta-

tion. But negative impacts of SCM on vegetation go

beyond the boundaries of SCM areas into the

surrounding regions through exhausting surface and

ground water and polluting soil, water, and air. With

increasing distance from a SCM area, the damage to

vegetation usually declines. These changes in distur-

bance severity were reflected in the values of VDI

(Fig. 5f–j).

The VDI can also help detect vegetation distur-

bances with positive effects on vegetation (e.g.,

irrigation). For example, from 2000 to 2015, although

there were no large precipitation variations in the

fourth SCM site (surrounded by cultivated

lands) (Fig. 5s), the vegetation productivity still

improved substantially probably due to irrigation or

Fig. 4 A schematic

illustration of buffers around

the centers of coal-

extracting areas to two

specific distances of

vegetation disturbances by

surface coal mining with

5 km for large coal-

extracting areas (a) and
1 km for small coal-

extracting areas (b)
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fertilization (Qiao et al. 2018). The VDI can accurately

capture the spatial extents of vegetation disturbances

by agricultural management practices with the VDI

value of larger than 1.2 (Fig. 3s). Thus, the VDI

provides an effective tool to distinguish both negative

and positive vegetation disturbances from climate-

Fig. 5 Spatial distributions of vegetation disturbances by

surface coal mining (shown in red polygons) for the five

selected sites based on the VDI value (f–j) and their accuracy

assessment in reference to differences in annual NPP (Units:

gC�m-2�year-1) (k–o) as well as the cumulative precipitation

during the growing season (Units: mm) (p–t) between 2015 and
2000. The disturbances with positive impacts on vegetation as

well as natural variability were shown in white color (f–j).
Several land cover types (e.g., deserts and water bodies) had no

corresponding NPP data, thus shown in white color (k–o)
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driven vegetation changes in arid and semiarid

regions.

In addition, the VDI is intuitive and simple to

implement. On the one hand, the basic data for

calculating this index can be easily obtained: the time-

series MODIS EVI data and precipitation data can be

directly obtained from websites for free. On the other

hand, the algorithm of the index can be easily applied

on a pixel-by-pixel basis. Thus, the VDI can serve as

an efficient and automatic algorithm to detect vege-

tation disturbances in arid and semiarid regions for

global application.

The VDI is developed on the premise that there is a

significantly positive relationship between vegetation

production and precipitation in arid and semiarid

regions. However, it should be noted that the rela-

tionship shows spatial heterogeneity at different

spatial extents (Li et al. 2012) and there are legacy

effects of previous-year precipitation on vegetation

production (Sala et al. 2012). In the case of the weak

production-precipitation relationship, the VDI may

not accurately detect vegetation disturbances because

its basic premise is violated and the effects of

precipitation fluctuations are difficult to be removed.

A spatially explicit and pixel-based approach (Li et al.

2012) may be necessary to deal with this problem. To

do it, we can first choose pixels with significant

relationship between EVI and precipitation for the

application of VDI. For the remaining pixels, other

indices, e.g., the MGDI (Mildrexler et al. 2009) which

combinesMODIS EVI with LST, can be used to detect

disturbances. Considering that the VDI and the MGDI

are suitable for different ecosystems (i.e., the VDI for

herbaceous plants and the MGDI for woody ecosys-

tems), we can use the two indices together for better

detecting disturbances at the global scale.

More detailed investigations using field surveys or

finer spatial resolution images are needed to test our

method (e.g., the selection of the distance of environ-

mental impacts from a SCM site or the range of natural

variability). In the future, researchers can make some

attempts to further refine our method. For example,

statistical tests (e.g., T test or Z-test) at the pixel level

may help better identify the locations of vegetation

disturbances by SCM based on the time-series EVI

data before and after SCM; and the shape of a SCM

area can be considered for better determining the

spatial extent of SCM damage to vegetation. In

addition, future studies should further assess the

impacts of the identified vegetation disturbances on

terrestrial ecosystems using different methods (e.g.,

Integrated Valuation of Ecosystem Services and

Trade-offs model) for sustainable management of

natural resources.

Conclusions

We have developed a new vegetation disturbance

index, which combines MODIS EVI data with

precipitation data, for quantifying the landscape-scale

vegetation disturbances by SCM. Our results indicate

that this new index is a simple but effective index for

quantifying the locations, spatial extents, and severity

of vegetation degradation due to SCM in arid and

semiarid regions.
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