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Abstract Forest landscape modeling encompasses

many core principles of landscape ecology: spatial

resolution and extent, spatially explicit local and

regional context, disturbance dynamics, integration of

human activity, and explicit links to management and

policy. Models of forest change inform land managers

about strategies to adapt to the effects of an altered or

changing environment across large, forested land-

scapes. Despite past successes, major challenges

remain for landscape ecologists representing the

dynamics of complex systems with a computer model,

particularly given climate change. Here, I review

major modeling challenges unique to climate change

and suggest paths forward as climate change increas-

ingly becomes a focus of landscape modeling efforts.
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Introduction

Forest landscape modeling has been a pillar of

landscape ecology (Baker 1989; Scheller and Mlade-

noff 2007; Gustafson 2013). Forest landscape

modeling engages many core principles of landscape

ecology: spatial resolution and extent, spatially

explicit local and regional context, disturbance

dynamics, integration of human activity, and explicit

links to management and policy. Forest landscape

modeling has seen dramatic improvements over time.

Among the improvement, model spatial and temporal

resolution has increased considerably as have the

number and complexity of the ecological processes

incorporated. For example, 15 years ago only one or

two processes—typically either fire, wind, or harvest-

ing—were included in a study. Today, we can access

large libraries of processes from which to choose.

Perhaps rightly so, then, many landscape and forest

ecologists view forest landscape modeling as a success

story. These models inform land managers strategies

to adapt to effects of an altered or changing environ-

ment across large, forested landscapes.

Despite our successes, major challenges remain for

landscape ecologists representing complex systems

within a computer model, particularly given climate

change. Some challenges are not unique to climate

change, but are inherent to any attempt to capture the

dynamics of highly complex systems. For example,

many (or most?) ecological systems are constantly in

flux (‘non-stationary’) due to human pressures on

landscapes (including climate change) and, as a result,

environmental changes outpace ecological resilience.

Indeed, these changes are happening faster than our

capacity to measure, model, and assess them. Other

universal challenges include non-linear dynamics,
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higher-order interactions among processes, and vali-

dating the myriad components.

Some challenges are unique to climate change;

these are detailed below. Though I draw from my

experience as a forest ecologist, most issues are

applicable to other ecosystems. Uncertainty is a

common theme throughout. For example, climate

uncertainty and management for restoration given

climate change challenges forecasting of the Ever-

glades (Obeysekera et al. 2015). The introduction and

spread of novel pests and pathogens synchronous with

climate change may be the largest source of uncer-

tainty in agricultural systems (Rosenzweig et al.

2001). I present these challenges in a sequence that

roughly follows the sequence of activities in a typical

study that seeks to project forest landscape changes.

Defining forecasting goals

Our biggest challenge may be defining our goals. Is

landscape forecasting a reasonable goal, considering

the large climatic uncertainties and the high rate of

change? Can we learn about the future fast enough to

positively influence policy choices?

Goals for forecasting forest response to climate

change typically include broad assessments of poten-

tial futures (‘How will community composition

change if the climate changes by 5 �C?’) and reflect

the information needs of forest managers (‘How

should forest managers alter their harvesting practices

if the climate changes?’) (Millar et al. 2007;

Puettmann et al. 2013). Goals can also include

testable hypotheses, though this is less common. Good

hypotheses address possible shifts in community

composition (e.g., dominance by r-selected tree

species), the relative importance of different drivers

(e.g., comparing the effects of climate vs. disturbance

vs. human actions), or the relative importance of

different demographic processes (e.g., mortality vs.

establishment, colonization vs. competition) under

climate change (Xu et al. 2012).

Goals determine the compromises among accuracy,

realism, and generality that can be achieved by any

particular model (Levins 1966). Within forest model-

ing, realism is often equated with fine-scale mecha-

nistic detail. Examples include ecophysiological

representation of photosynthesis (Aber and Federer

1992), and flame length as a function of sub-canopy

micro-climate (Rothermal 1972). Such ‘realism’ may

be superficially desirable, but often incurs a high

parameterization cost (‘realism requires more reality’,

as my PhD advisor David Mladenoff always said).

Extensive parameterization limits spatial extent and

may necessitate the exclusion of critical processes that

operate at larger spatial scales, thereby self-limiting

‘realism’. Thus, determining an appropriate degree of

process complexity and the degree of realism or

mechanistic detail in a forest landscape model is non-

trivial, and rationale for the tradeoff should be

discussed.

Improved forecasting accuracy is often an implicit

goal. But researchers must also strive for forecasts that

improve our understanding of the drivers of change.

Regression or machine learning algorithms (‘statisti-

cal models’) may produce highly accurate near-term

(\ 10 years into the future) predictions, but do not

illuminate the underlying processes. For example, we

could model how forests have changed in the past

using machine learning with relatively high accuracy

without advancing our understanding of why they

changed.

Eluciding universal patterns or rules—or ‘general-

ity’—is another common goal. Landscape managers

typically seeks high local accuracy, while landscape

ecologists seek universal patterns. But generality may

be unnecessary. Ultimately, the research questions

should drive choices about generality. Do we seek

generality for generality’s sake? Unless specific goals

or hypotheses that require generality (a cross-land-

scape comparison, for example), local accuracy with

limited generality might be acceptable. On the other

hand, if an implicit goal is to save resources (i.e.,

funding), using a general model is also acceptable, but

the tradeoff should be acknowledged.

Model formulation

Model formulation is the process of developing a

conceptual model, independent of the construction or

implementation of the model. Model formulation

includes important decisions about which ecological

or social processes to include, and the mathematical or

logical rules that determine model behavior.

As we enter an era of ‘‘no-analog’’ forest ecosys-

tems (Williams et al. 2007), species dynamics will be

substantially altered and will therefore reduce the
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accuracy of models formulated from current or recent

historical relationships. For example, the relationships

between climate and forests is generally lagged, or

non-equilibrium, because trees have long life-spans;

today’s forests reflect the climate when they were

established (Overpeck et al. 1990). Statistical models

derived from equilibrium assumptions will become

less robust under climate change. Whenever forecast-

ing longer-term ([ 20 years) change, statistical mod-

els will lose accuracy, as they do not incorporate

changes to the data-generating processes (Evans

2012).

By comparison, a process-oriented approach may

better capture the emergent dynamics expected with

climate change. A process-oriented approach resolves

an ecosystem into its constituent components and their

interactions. For example, instead of modeling suc-

cession as species and structural change correlated

with time, a process-oriented model could simulate

regeneration, competition, facilitation, and dispersal;

these individual processes would interact and succes-

sion would emerge from the contribution of each

process. Such an approach could incorporate climate

change effects (particularly via regeneration) and

subsequent species dynamics, improving our under-

standing of succession and adaptive management

(Millar et al. 2007; Nitschke and Innes 2008;

Puettmann et al. 2013). The evolution of our concep-

tual models highlights how model formulation con-

tributes to uncertainty (Higgins et al. 2003).

Yet despite our best intentions, no forest landscape

model is built entirely from processes—we do not

have the knowledge or computing power to simulate

any ecosystem based only on ‘‘first-principles’’

(Gustafson 2013). All models incorporate statistical

relationships (e.g., between photosynthetic rate and

leaf nitrogen) but do so at a scale that allows novel and

emergent behaviors within our forecasts. The chal-

lenge is to select the best overall compromise between

current day accuracy (as demonstrated via validation,

see below) and the flexibility to accommodate climate

effects.

Further challenging our model formulations are

process interactions (e.g., how forest fire and insect

outbreaks interact spatially and temporally) and how

climate change will transform them (Buma and

Wessman 2011; Keane et al. 2015). Process interac-

tions are particularly sensitive to the disparity of scales

at which different processes operate. If we capture

only one or two scales of process interactions—fine

scale interactions (e.g., neighboring tree interactions),

meso-scale processes (disturbance regimes), or very

broad-scale climate effects (shifting biomes)—we

may miss critical process interactions. For example,

focusing only on broad-scale biome shifts (migration)

or fine-scale neighborhood interactions neglects

changes in disturbance severity that may ultimately

determine species composition. Likewise, when

focusing on meso-scale and larger processes, it is

important to capture fine-scale heterogeneity (aka

‘‘climate refugia’’ or ‘‘stepping stones’’ Hannah et al.

2014) to estimate the ability of rare species to colonize

locally.

Finally, we need to focus more model development

resources on human adaptation to climate change

(Millar et al. 2007). Humans are the dominate

disturbance across nearly all landscapes (Masek

et al. 2011; Crowther et al. 2015) and humans are

unlikely to be passive observers of change. Much

effort to date has focused on ‘ecological forecasting’

(Clark et al. 2001), leaving out human response to

changing climates and landscapes. As an example, I

often simulate forest management actions (e.g.,

Scheller et al. 2018), but either they only obliquely

respond to climate change (e.g., are informed by

shifting species distributions), or the response to

climate change is assumed (defined within scenarios);

the response does not represent emergent or novel

changes in human behavior. This approach does not

capture dynamic human response to a changing

climate. Human response to climate-induced change

may happen individually (e.g., a landowner planting

climate-adapted tree species) or may be mediated by

organizations. Depending on the local context, human

adaptation can be represented by agent-based models

that reflect the heterogeneity of individual responses

(Spies et al. 2017). More broadly, human adaptation

should be considered when formulating any process.

For example, fire modeling should represent intensi-

fied suppression efforts—a logical management

response to increased risk—as a potential adaptation

to climate change (Scheller et al. in prep.).

Model construction

Model construction is the process of implementing

conceptual models—turning ideas into executables.
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Every conceptual model has innumerable possible

implementations, dependent upon programming lan-

guage, design (e.g., object-oriented programming),

conventions, and individual style. Twenty years ago,

computer code often was a jealously guarded resource.

Today open-source standards and tools encourage

broader sharing and interoperability. Nevertheless, we

must continually guard against unnecessary and

counter-productive model ‘balkanization.’ For exam-

ple, all forest models require spatial data as inputs, and

shared libraries (e.g., the Geospatial Data Abstraction

Library) now help manage spatial data. Such libraries

should be extended to include spatial interactions

(how individual cells or pixel share information with

their neighbors or neighborhood). If models are built

on common libraries or platforms, components could

more readily be exchanged and ecologists could focus

more on the science and less on the implementation

(i.e., coding and architecture). Although model plat-

forms have been developed, e.g., SELES (Fall and Fall

2001), they are often encapsulated within a higher-

level programming language that limits process rep-

resentation. In contrast, program libraries written in a

lower-level computer language (e.g., C or C??) can

be operating system agnostic and easily wrapped for

use with many other languages. Shared libraries also

allow more frequently cross-scale model synthesis and

comparison, which help researchers identify areas of

agreement and highlight model strengths and

weaknesses.

We also need increased communication across

model scales and groups. As model complexity has

grown over the decades, the enterprise has become

increasingly specialized with distinct communities

forming around scales or assumptions or platforms and

technologies. Not only does this ultimately lead to

duplication of effort, it compounds our inability to

communicate with managers and train students. We

need to seek out more opportunities to collaborate

across scales (e.g., working from global to regional to

landscape scales) and to train our students to think at

multiple scales.

Parameterization

Parameterization is the process of estimating param-

eters for all the processes and statistical relationships

within a model, including current conditions.

Parameterization is one of the greatest challenges for

modeling generally and for climate change forecasting

in particular.

First, we lack consistent data about the future:

Many emissions scenarios and 10? global circulation

models all project climate change, and countless

others project interrelated processes, such as land use

change, N deposition, and management. Climate

change will also produce novel events for which

projections do not exist, such as insect outbreaks,

invasive species introductions, and human actions.

Uncertainty constrains all these model inputs. Even

commonly understood inputs—shade tolerance of a

tree species, for example—contains uncertainty due to

genetic variation and phenotypic plasticity.

Parameterization can be improved via collaboration

with experimental ecologists and long-term research

sites (Kretchun et al. 2016). Estimating initial condi-

tions—for example, the demographics and spatial

distribution of tree species or the distribution of soils

across a landscape—has improved considerably (Zald

et al. 2014; Duveneck et al. 2015), and this higher

initial accuracy improves long-term projections.

We need to reduce parameter uncertainty across all

scales. Until recently, landscape ecologists reduced

parameter uncertainty by emphasizing the ‘focal

scale’: the scale for which a hypothesis or problem

was formulated. But climate change challenges the

concept that a single focal scale will be sufficient. As

an example, early successional processes are complex

and high sensitivity to initial conditions and therefore

contain large uncertainty (Scheller and Swanson

2015). Consequently, we cannot ignore critical fine-

scale processes: seed rain density, competition for

light, available soil water, nutrients, seedling her-

bivory. Inclusion of finer-scale processes won’t

require that we accurately count the number of

stomates per leaf (the proverbial hobgoblin of forest

modeling) but rather that our models are sensitive to

emerging data and questions. Achieving accuracy

across a wide range of scales (sensitive to local

influences, applicable to broad landscapes) will

require sophisticated computational approaches to

estimate local conditions across broad areas (e.g.,

Seidl et al. 2012).

An increased capacity to assimilate data is therefore

required. Data assimilation is an ever-expanding

challenge and opportunity (Luo et al. 2011). In

numerous domains, more and more data are becoming
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widely and freely available and with sufficient meta-

data and standardized formats. In particular, spatial

data availability has grown tremendously with more

convenient access (e.g., Google Earth Engine). Sub-

stantial investments are nonetheless necessary. Often,

an initial investment of funding is provided for model

formulation and construction. Adequate funding to

maintain and upgrade existing models to assimilate

new data is a challenge that increases with continued

increasing model complexity and data needs. Given

the current state of funding, we need a cultural shift

towards open-source and exchangeable tools for data

assimilation, parallel to the changing culture of model

construction.

Model validation

The flip side of parameterization is validation: How

well do model projections compare to independent,

empirical data? If we are focused on longer-term

emergent behaviors (the most interesting), we must

wait (or build a time machine) to discover whether our

model behaves in a reasonable fashion. Model fore-

casts or projections of the effects of climate change

cannot be fully validated (Brown and Kulasiri 1996;

Gardner and Urban 2003; Araujo et al. 2005). Back-

casting (e.g., Ray and Pijanowski 2010) is often

suggested as a solution, but presents its own problems

(e.g., lack of sufficient climate data or data about the

initial conditions).

Our inability to validate forecasts could be regarded

as a total failure of the modeling enterprise. Why

should anyone trust un-validated results? But valida-

tion is only one dimension of building confidence in

forecasts. Perhaps it is the ‘‘gold standard’’ of

evidence, much as double-blind, randomized trials

are to clinical medicine. However, as we know from

medicine, the gold standard is not always an option (in

their case, due to ethical concerns). Instead of hand-

wringing over validation, I advocate redefining the

basis for discerning the quality model results. Rather

than strict validation, we need to emphasize the role of

confidence building when evaluating models. We all

know that all models are wrong (and some are useful)

(Box 1976). But how do we provide a more useful

narrative to help non-modelers discern the quality of

model results?

I suggest a multi-pronged approach to building

model confidence: (1) Validation of model compo-

nents where possible: Were the model components

compared against empirical data? Space-for-time

substitution is often a necessary step towards compo-

nent validation. (2) Has the model undergone rigorous

sensitivity testing? Sensitivity testing provides critical

information about which parameters have the largest

influence on model results. Why invest in improving

unimportant parameters? (3) Model transparency: Is

model code open for public review? Is the code well

documented, both internally and via accessible doc-

umentation? (4) Is the model robust and verified?

Modern software engineering practices are critical for

ensuring reliability (Scheller et al. 2010).

I intentionally exclude the often applied ‘reason-

able behavior’ (also known as the ‘face validity’ or

‘passes the sniff test’) whereby model performance is

assessed based on whether the model generally

behaves ‘as expected’ based on criteria informed by

the education or experience of the modeler or the

forest manager. Under a changing climate, however,

the unexpected or surprising results may be more

accurate and the validity of personal experience is

expected to decline. Together these criteria can help

users and policy makers place a model along the

continuous spectrum from fully validated (not possible

given climate change) to completely speculative.

Parameterization and ‘confidence building’ repre-

sent the bulk of the work ahead of us. Creating new

models is relatively easy by comparison. Climate

change make our work ever more difficult—and

exciting!

Model application and communication

Specific challenges are inherent to applying, inter-

preting, and communicating results when forecasting

forest change under climate change. The most difficult

component of model application, in my experience, is

managing expectations. Managers often engage in the

modeling process, sometimes under duress or obliga-

tion, without a clear understanding of the goals and

tradeoffs. They often overestimate the predictive

capacity of models and underestimate the large

uncertainty introduced by climate change.

A false divide separates ‘‘believers’’ and ‘‘oppo-

nents’’ regarding projections based on simulation

123

Landscape Ecol (2018) 33:1481–1488 1485



models (Aber 1997). Modeling is not the province of a

few isolated computer enthusiasts. Rather, modeling

(in the sense of abstraction and simplification) is

inherent to the scientific process. Nevertheless, more

education is needed before people become indoctri-

nated into a particular viewpoint towards models

(either frivolous distractions or miraculous soothsay-

ers). Fortunately, in my experience, models are rapidly

becoming accepted as critical tools in the management

and policy-making toolbox. Any lingering mistrust is

our fault for poorly communicating model purpose

(see above).

A central challenge is clearly communicating the

uncertainty of climate change projections. We already

ask managers to absorb enormous amounts of complex

information. Dense graphics and statistics of the

results squanders audience goodwill. Graphs copied

from our publications are often presented but these

depictions of uncertainty are often not accessible to the

public and policymakers. Spatial uncertainty is under-

represented. Local land managers subsequently over-

interpret the results for areas they know well.

We can avoid model misuse (‘do no harm’) by

clearly communicating the purpose for each model

and application. Researchers should guide the

intended users as to how the results should be used

and do so early and beyond the peer-reviewed

literature, which managers rarely find time to read.

We must clearly convey the purpose and limitations of

each model and each model application: Does the

model emphasize near-term landscape change for

decision support? Should model results be used in

conjunction with scenarios? Or is the model most

useful for clarifying how processes will change and

interact with a changing climate?

Models produce many terabytes of data annually

without a clear way for managers and policymakers

will access and use them on an ongoing basis.

Addressing this problem requires improved commu-

nication, better access to output data (e.g., cloud

access), and ongoing and sincere engagement (taking

the time know stakeholders and their needs).

My experience suggests that the following

approaches improve communication: (1) Animated

data, pairing time series with map data; time series

alone can be too abstract and animated maps too

pixelated but the combination of time series and a map

with a coordinated color scheme appeals to a broad

audience; (2) Mapping uncertainty by combining a

‘sample’ map from a single replicate with a map

showing relative uncertainty among scenarios reveals

hidden information, e.g., which locations are most

resilient to climate change, and emphasizes the

stochastic underpinnings of simulation models; (3)

Time series with colored percentile envelopes—for

example, a light blue envelope encompassing the 95/5

percentiles; (4) Virtual reality captures the public’s

imaginations of potential futures. (4) Gamification—

turning models into simple, playable games—can

communicate conceptual models. Regardless of

approach, continual investment in communication is

required.

The road forward

Landscape ecology and landscape managers need

better models of forest change under climate change.

How do we produce the next generation of forest

simulation models? What are the potential road-

blocks? And how do we ensure that the journey was

worth the effort?

To stretch the road metaphor to the breaking point, I

assume no single road forward. No one wants an all-

encompassing forest landscape model that purports to

answer every question, to test every hypothesis, and to

operate at every scale. Science doesn’t work that way.

Science is competitive and diverse and dynamic.

Today’s little-known research project becomes tomor-

row’s standard approach, which becomes the future’s

outdated relic. Failure is an option and may be the best

option for maintaining the requisite diversity of

thinking and actors.

Forest simulations models are necessary tools in

policy and decision support, particularly in relation to

the effects of climate change. Though the uncertainties

remain numerous and large, current human and

management actions will determine how many sys-

tems respond to climate change. Forest landscape

models can play a critical role in evaluating adaptive

strategies. Those engaged in forest modeling must

therefore push harder to remove the barriers that often

separate landscape forecasts from policy.

In conclusion, I am optimistic that we can meet the

objectives discussed above. Many strides have been

taken and progress continues on all fronts. Creative

solutions are required and ever-evolving. Landscape
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ecology has provided the platform for developing such

creative solutions and should continue to do so.

References

Aber JD (1997) Why don’t we believe the models. Bull Ecol Soc

Am 73(3):232–233

Aber JD, Federer CA (1992) A generalized, lumped-parameter

model of photosynthesis, evapotranspiration and net pri-

mary production in temperate and boreal forest ecosys-

tems. Oecologia 92:463–474

Araujo MB, Pearson RG, Thuillers W, Erhard M (2005) Vali-

dation of species-climate impact models under climate

change. Glob Change Biol 11:1504–1513

Baker WL (1989) A review of models of landscape change.

Landscape Ecol 2:111–333

Box GE (1976) Science and statistics. J Am Stat Assoc

71(356):791–799

Brown TN, Kulasiri D (1996) Validating models of complex,

stochastic, biological systems. Ecol Model

86(2–3):129–134

Buma B, Wessman CA (2011) Disturbance interactions can

impact resilience mechanisms of forests. Ecosphere

2(5):1–13

Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley

JA, Lodge DM, Pascual M, Pielke R, Pizer W, Pringle C

(2001) Ecological forecasts: an emerging imperative. Sci-

ence 293(5530):657–660

Crowther TW, Glick HB, Covey KR, Bettigole C, Maynard DS,

Thomas SM, Smith JR, Hintler G, Duguid MC, Amatulli G,

Tuanmu MN (2015) Mapping tree density at a global scale.

Nature 525(7568):201

Duveneck MJ, Thompson JR, Wilson BT (2015) An imputed

forest composition map for New England screened by

species range boundaries. For Ecol Manag 347:107–115

Evans MR (2012) Modelling ecological systems in a changing

world. Philos Trans R Soc B 367:181–190

Fall A, Fall J (2001) A domain-specific language for models of

landscape dynamics. Ecol Model 141(1–3):1–18

Gardner RH, Urban DL (2003) In: Canham CD, Cole JJ,

Lauenroth WK (Eds.), Model validation and testing: Past

lessons, present concerns, future prospects. Princeton

University Press, Princeton, pp 184–203

Gustafson EJ (2013) When relationships estimated in the past

cannot be used to predict the future: using mechanistic

models to predict landscape ecological dynamics in a

changing world. Landscape Ecol 28:1429–1437

Hannah L, Flint L, Syphard AD, Moritz MA, Buckley LB,

McCullough IM (2014) Fine-grain modeling of species’

response to climate change: holdouts, stepping-stones, and

microrefugia. Trends Ecol Evol 29:390–397

Higgins SI, Clark JS, Nathan R, Hovestadt T, Schurr F, Fragoso

JMV, Aguiar MR, Ribbens E, Lavorel S (2003) Forecast-

ing plant migration rates: managing uncertainty for risk

assessment. J Ecol 91:341–347

Keane RE, McKenzie D, Falk DA, Smithwick EA, Miller C,

Kellogg LKB (2015) Representing climate, disturbance,

and vegetation interactions in landscape models. Ecol

Model 309:33–47

Kretchun AM, Loudermilk EL, Scheller RM, Hurteau MD,

Belmecheri S (2016) Climate and bark beetle effects on

forest productivity—linking dendroecology with forest

landscape modeling. Can J For Res 46(8):1026–1034

Levins R (1966) The strategy of model building in population

biology. Am Sci 54(4):421–431

Luo Y, Ogle K, Tucker C, Fei S, Gao C, LaDeau S, Clark JS,

Schimel DS (2011) Ecological forecasting and data

assimilation in a data-rich era. Ecol Appl 21(5):1429–1442

Masek JG, Cohen WB, Leckie D, Wulder MA, Vargas R, de

Jong B, Healey S, Law B, Birdsey R, Houghton RA, Mil-

drexler D (2011) Recent rates of forest harvest and con-

version in North America. J Geophys Res 116(G4):1–22

Millar CI, Stephenson NL, Stephens SL (2007) Climte change

and forests of the future: managing in the face of uncer-

tainty. Ecol Appl 17(8):2145–2151

Nitschke CR, Innes JL (2008) A tree and climate assessment tool

for modelling ecosystem response to climate change. Ecol

Model 210:263–277

Obeysekera J, Barnes J, Nungesser M (2015) Climate sensitivity

runs and regional hydrologic modeling for predicting the

response of the greater Florida Everglades ecosystem to

climate change. Environ Manag 55:749–762

Overpeck JT, Rind D, Goldberg R (1990) Climate-induced

changes in forest disturbance and vegetation. Nature

343:51–53

Puettmann K, Messier C, Coates KD (2013) In: Puettmann K,

Messier C (eds), Managing forests as complex adaptive

systems. Routledge, London, pp 3–16

Ray DK, Pijanowski BC (2010) A backcast land use change

model to generate past land use maps: application and

validation at the Muskegon River watershed of Michigan,

USA. J Land Use Sci 5(1):1–29

Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E

(2001) Climate change and extreme weather events;

implications for food production, plant diseases, and pests.

Glob Change Hum Health 2:90–104

Rothermal RC (1972) A mathematical model for predicting fire

spread in wildland fuels. USDA Forest Service Research

Paper INT-115. Intermountain Forest and Range Experi-

ment Station. Ogden, Utah, USA

Scheller RM, Mladenoff DJ (2007) An ecological classification

of forest landscape simulation models: tools and strategies

for understanding broad-scale forested ecosystems. Land-

scape Ecol 22:491–505

Scheller RM, Swanson ME (2015) Simulating forest recovery

following disturbances: vegetation dynamics and biogeo-

chemistry. In: Perera AH, Sturtevant BR, Buse LJ (eds)

Simulation modeling of forest landscape disturbances.

Springer International Publishing Switzerland, Cham

Scheller RM, Kretchun AM, Hawbaker TJ, Henne P (In

preparation) Social-Climate Related Pyrogenic Processes

and their Landscape Effects (SCRPPLE): a landscape

model of variable social-ecological fire regimes

Scheller RM, Kretchun AM, Loudermilk EL, Hurteau MD,

Weisberg PJ, Skinner C (2018) Interactions among fuel

management, species composition, bark beetles, and cli-

mate change and the potential effects on forests of the lake

tahoe basin. Ecosystems 21:643–656

123

Landscape Ecol (2018) 33:1481–1488 1487



Scheller RM, Sturtevant BR, Gustafson EJ, Mladenoff DJ, Ward

BC (2010) Increasing the reliability of ecological models

using modern software engineering techniques. Front Ecol

Environ 8(5):253–260

Seidl R, Rammer W, Scheller RM, Spies TA (2012) An indi-

vidual-based process model to simulate landscape-scale

forest ecosystem dynamics. Ecol Model 231:87–100

Spies TA, White E, Ager A, Kline JD, Bolte JP, Platt EK, Olsen

KA, Pabst RJ, Barros AMG, Bailey JD, Charnley S, Mor-

zillo AT, Koch J, Steen-Adams MM, Singleton PH, Sulz-

man J, Schwartz C, Csuti B (2017) Using an agent-based

model to examine forest management outcomes in a fire-

prone landscape in Oregon, USA. Ecol Soc 22(1):25

Williams JW, Jackson ST, Kutzbach JE (2007) Projected dis-

tributions of novel and disappearing climates by 2100 AD.

Proc Natl Acad Sci 104(14):5738–5742

Xu C, Gertner GZ, Scheller RM (2012) Pathways for forest

landscape response to global climatic change: competition

or colonization? Clim Change 110:53–83

Zald HS, Ohmann JL, Roberts HM, Gregory MJ, Henderson EB,

McGaughey RJ, Braaten J (2014) Influence of lidar,

Landsat imagery, disturbance history, plot location accu-

racy, and plot size on accuracy of imputation maps of forest

composition and structure. Remote Sens Environ

143:26–38

123

1488 Landscape Ecol (2018) 33:1481–1488


	The challenges of forest modeling given climate change
	Abstract
	Introduction
	Defining forecasting goals
	Model formulation
	Model construction
	Parameterization
	Model validation
	Model application and communication
	The road forward
	References




