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Abstract

Context Conservation planning is increasingly using

‘‘coarse filters’’ based on the idea of conserving

‘‘nature’s stage’’. One such approach is based on

ecosystems and the concept of ecological integrity,

although myriad ways exist to measure ecological

integrity.

Objectives To describe our ecosystem-based index

of ecological integrity (IEI) and its derivative index of

ecological impact (ecoImpact), and illustrate their

applications for conservation assessment and planning

in the northeastern United States.

Methods We characterized the biophysical setting of

the landscape at the 30 m cell resolution using a

parsimonious suite of settings variables. Based on

these settings variables and mapped ecosystems, we

computed a suite of anthropogenic stressor metrics

reflecting intactness (i.e., freedom from anthropogenic

stressors) and resiliency metrics (i.e., connectivity to

similar neighboring ecological settings), quantile-

rescaled them by ecosystem and geographic extent,

and combined them in a weighted linear model to

create IEI. We used the change in IEI over time under a

land use scenario to compute ecoImpact.
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Results We illustrated the calculation of IEI and

ecoImpact to compare the ecological integrity conse-

quences of a 70-year projection of urban growth to an

alternative scenario involving securing a network of

conservation core areas (reserves) from future

development.

Conclusions IEI and ecoImpact offer an effective

way to assess ecological integrity across the landscape

and examine the potential ecological consequences of

alternative land use and land cover scenarios to inform

conservation decision making.

Keywords Landscape pattern � Landscape metrics �
Ecological assessment � Conservation planning �
Landscape conservation design � Coarse filter

Introduction

Unrelenting human demand for commodities and

services from ecosystems raises questions of limits

and sustainability. Many scientists believe that the

earth is facing another mass extinction as a conse-

quence (Pimm et al. 1995; Ceballos et al. 2015).

Indeed, current global extinction rates for animals and

plants are at least 100 times higher than the back-

ground rate in the fossil record (Ceballos et al. 2015).

A number of factors have been implicated as key

drivers of this global biodiversity crisis, but chief

among them is anthropogenic habitat loss and frag-

mentation (Sala et al. 2000; Pereira et al. 2010;

Haddad et al. 2015; Newbold et al. 2015). In response,

land use planners and conservationists are seeking

better ways to proactively conserve the most signif-

icant natural areas before they are lost or irreversibly

degraded, but it is difficult to prioritize areas that are in

the greatest need of protection, or determine which

ones provide the greatest ecological value for the cost

of protection. Analyzing a landscape’s ecological/

biodiversity value requires integrating vast amounts of

site-specific information over varying spatial scales.

Conservation organizations, which collectively spend

billions of dollars each year to protect and connect

natural areas (Lerner et al. 2007), increasingly need

tools to effectively target conservation.

To meet the growing need for targeting conserva-

tion action, a variety of approaches have been

developed for evaluating the human footprint (e.g.,

Sanderson et al. 2002; Theobald 2013; Venter et al.

2016) and selecting lands and waters for conservation

protection (e.g., Williams et al. 2002; Ortega-Huerta

and Peterson 2004; Belote et al. 2017). Important

questions about the various approaches persist and

include the appropriate type or level of diversity on

which to focus (e.g., individual species, biotic com-

munities, ecological systems, or geophysical settings),

the criteria by which areas should be selected, specific

protocols for optimizing reserve selection, and the

amount of protected area needed to achieve conser-

vation goals. Over time, focus has shifted from

isolated reserves to interconnected reserve networks

selected based on landscape ecology principles (e.g.,

Soulé and Terborgh 1999; Briers 2002; Cerdeira et al.

2005; Beier 2012), and from single species to multi-

species and, more recently, ecosystem- and geophys-

ical-based approaches that seek to conserve ‘‘nature’s

stage’’ (e.g., Hunter et al. 1988; Pickett et al. 1992;

Noss 1996; Anderson and Ferree 2010; Beier et al.

2015; Wurtzebach and Schultz 2016). These

approaches emphasize retaining representative eco-

logical and/or geophysical settings instead of focal

species, and as such provide a ‘‘coarse filter’’ (sensu

Hunter et al. 1988) for biodiversity conservation. The

use of such a coarse filter is touted as being proactive

for species conservation because if ecological settings

(which provide the habitat that species depend on)

remain intact, most species will also be conserved

(e.g., Scott et al. 1993). Moreover, it is assumed that if

ecological settings remain intact, critical ecological

and evolutionary processes, such as nutrient and

sediment transport, interspecific interactions, disper-

sal, gene flow and disturbance regimes, will also be

maintained and provide the necessary environmental

stage for climate adaptation to occur (Beier 2012;

Beier et al. 2015). This prospect is appealing because

biological diversity (with shifting composition) could

be conserved under changing environmental condi-

tions with the same expenditure of funds and com-

mitment of land to conservation and without specific

and detailed knowledge of every species of interest.

While the general concept of focusing on nature’s

stage is both appealing and intuitive, there are many

different approaches for doing so. One approach has

been to focus solely on the geophysical environment

without attention to the biota, and identify and

prioritize representative, diverse and connected geo-

physical settings based on one or more metrics (e.g.,
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Anderson et al. 2014; Beier et al. 2015). Here the goal

is to conserve the abiotic stage and allow the biota to

change and ‘‘play out’’ on this stage over time,

especially in response to climate change (Beier and

Brost 2010; Beier 2012). For example, Anderson et al.

(2014) measured site resiliency using a combination of

two metrics: (1) landscape diversity, which refers to

the number of microhabitats and climatic gradients

available within a given area based on the variety of

landforms, elevation range, soil diversity, and wetland

extent and density, and (2) local connectedness, which

refers to the accessibility of neighboring natural areas.

This measure of site resiliency is agnostic to the

distribution of biota and explicit climate change

projections, but is somewhat sensitive to the impacts

of human development via the fragmentation of

natural areas. This approach has been shown to

perform well as a surrogate for species diversity

(Anderson et al. 2014).

An alternative approach, but not without its critics

(e.g., Brown and Williams 2016), has been to focus on

ecosystems, with attention to both the biotic as well as

geophysical environment, and use the concept of

ecological integrity to identify and prioritize places of

conservation value (e.g., Tierney et al. 2009; Theobald

2013; Wurtzebach and Schultz 2016; Belote et al.

2017). Here the goal is to conserve the ‘‘ecological

stage’’ by focusing on places with high ecological

integrity that can sustain the biota and critical

ecological processes. Ecological integrity is broadly

defined as ‘‘the ability of an ecological system to

support and maintain a community of organisms that

has species composition, diversity, and functional

organization comparable to those of natural habitats

within a region; an ecological system has integrity

when its dominant ecological characteristics (e.g.,

elements of composition, structure, function, and

ecological processes) occur within their natural ranges

of variation and can withstand and recover from most

perturbations imposed by natural environmental

dynamics or human disruptions.’’ (Parrish et al.

2003, p. 852).

As part of a broader framework for biodiversity

conservation in the northeastern United States that we

developed initially under the auspices of the Conser-

vation Assessment and Prioritization System (CAPS)

project (www.umasscaps.org) and expanded for the

Designing Sustainable Landscapes (DSL) project in

collaboration with the North Atlantic Landscape

Conservation Cooperative (NALCC, McGarigal et al.

2017), we developed an ecosystem-based, landscape

ecological approach for quantitatively evaluating the

relative ecological integrity, and thus the biodiversity

conservation value of every raster cell over varying

extents (e.g., watershed, ecoregion, state) across the

Northeast. Our approach is based on a modified con-

cept of ecological integrity, which we define as the

ability of an area to support native biodiversity and the

ecosystem processes necessary to sustain that biodi-

versity over the long term. Importantly, our definition

emphasizes the maintenance of ecological functions

rather than the maintenance of a particular reference

biotic composition and structure, and thus accommo-

dates the modification or adaptation of systems (in

terms of biotic composition and structure) over time to

changing environments (e.g., as driven by climate

change) as in the geophysical approach. Moreover, our

approach rests on an unproven and perhaps unprovable

assumption that an index of ecological integrity can be

measured that reflects the ecological functions nec-

essary to confer ecological integrity to a site. Our

approach assumes that by conserving relatively intact

and resilient ecological settings as measured by an

appropriate index, we can conserve most species and

ecological processes. Moreover, by identifying the

lands and waters most worthy of protection based on

the highest relative ecological integrity, conservation

organizations can target their limited dollars strategi-

cally. In this paper, we describe our ecosystem-based

assessment of ecological integrity, which is encapsu-

lated into an index of ecological integrity (IEI), and

illustrate its application for conservation in the

northeastern US.

Model development

Our approach is raster-based and can be applied at any

spatial resolution over any landscape extent large

enough to capture a sufficiently wide gradient of

ecological settings and anthropogenic land use

impacts. Here, we describe the method generically

and demonstrate its application to a 30 m resolution

raster over the extent of the 13 northeastern states

(VA, WV, DE, MD, PA, NJ, NY, CT, RI, MA, NH,

VT, ME) plus Washington DC (hereafter the North-

east). All modeling was done with custom APL

programs (APL ? Win 12, APLNow, LLC). Source
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code can be obtained from B. Compton. Figure 1

depicts a schematic outline of the analytical process

described in this section.

Ecological settings and ecosystems

Central to our approach is the characterization of the

biophysical setting of every cell. For this purpose, we

derive a comprehensive but parsimonious suite of

continuous ‘‘ecological settings’’ variables that char-

acterize important abiotic and anthropogenic aspects

of the environment (Table 1). Each settings variable is

selected based on a distinct and well-documented

influence on ecological systems. The only biotic

attribute that we include is potential dominant life

form (e.g., grassland, shrubland, forest). Otherwise,

the ecological settings are agnostic to vegetation

composition and structure, as in the geophysical stage

approach. The exact list of variables and their data

source can vary among applications depending on data

availability and objectives. The setting variables are

used in the calculation of the individual ecological

integrity metrics and (optionally) in the calculation of

the composite IEI described below.

We also assign each cell to a discrete ecosystem

type, which can be based on any classification

scheme that can be mapped (e.g., Online Appendix

B). Ecosystems are used as an organizational frame-

work for scaling the ecological integrity metrics

described below. It is not necessary to assume discrete

ecological systems, since an ecological gradient

approach for scaling the metrics is also feasible (see

below), but for ease of interpretation and consistency

with other derived products, we have used discrete

ecosystems in all of the conservation applications to

date.

Ecological neighborhoods

Ecological neighborhoods (sensu Addicott et al. 1987)

play an important role in the computation of the

ecological integrity metrics described below, as in

Fig. 1 Schematic outline of the workflow associated with deriving the index of ecological integrity (IEI) and the index of ecological

impact (ecoImpact) as described in the text
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other approaches (e.g., Theobold 2013; Anderson et al.

2014), but our particular implementation of neighbor-

hoods are distinctive of our approach. We use non-

linear kernels to specify how to weight the ecological

neighborhood of a focal cell; i.e., to determine how

much influence a neighboring cell has on the integrity

of the focal cell. We use three different kinds of kernel

estimators: (1) standard kernel estimator for the non-

watershed-based metrics, (2) resistant kernel estimator

for the connectedness metrics, and (3) watershed

kernel estimator for the watershed-based metrics.

Standard kernel

The standard kernel produces a three-dimensional

surface representing an estimate of the underlying

probability distribution (or ecological neighborhood)

centered on a focal cell (Silverman 1986). The

standard kernel estimator begins by placing a standard

kernel (e.g., Gaussian kernel) over a focal cell. In the

standard Gaussian kernel, the ‘‘bandwidth’’ which

controls the spread of the kernel is equal to one

standard deviation and accounts for 39% of the kernel

volume. The value of the kernel at each cell represents

the weight of the cell, which decreases monotonically

and nonlinearly from the focal cell according to the

kernel function as the distance from the focal cell

increases. Typically the kernel is scaled such that the

weights sum to one across all cells. Lastly, the kernel

weights are multiplied by the value of the ecological

attribute under consideration (e.g., traffic intensity,

nutrient loading, or percent impervious) and summed

to produce a kernel-weighted average.

We can think of the standard kernel as an estimate

of the ecological neighborhood of the focal cell, where

the size and shape of the kernel represent how the

strength of the ecological relationship varies (nonlin-

early) with distance from the focal cell (Fig. 2a). The

standard kernel estimator provides an estimate of the

intensity of an ecological attribute within that ecolog-

ical neighborhood; i.e., the kernel-weighted mean of

the attribute. We use the standard kernel estimator, at

various bandwidths (reflecting the width of the

kernel), to estimate the intensity of point features

(e.g., point sources of pollution), linear features (e.g.,

roads), and patches (e.g., developed land cover),

including all non-watershed-based ecological integrity

metrics with the exception of connectedness.

Table 1 Weights (determined by expert teams) assigned to

ecological settings variables (see Online Appendix A for links

to detailed descriptions of each variable) in the ecological

integrity assessment

Resistance Distance

Energy

Incident solar radiation 0.1 1

Growing season degree-days 0.3 1

Minimum winter temperature 0.1 1

Heat index 35 0.1 1

Stream temperature 0.1 1

Chemical and physical substrate

Water salinity 4 3

Substrate mobility 2 2

CaCO3 content 0.1 1

Soil available water supply 0.05 0.5

Soil depth 0.05 0.5

Soil pH 0.05 0.5

Physical disturbance

Wind exposure 0.1 1

Slope 1 1

Moisture and hydrology

Wetness 4 8

Flow gradient 1 2

Flow volume 5 5

Tidal regime 2 2

Vegetation

Dominant life form 3 8

Development

Developeda 1 20

Hard developmenta 2 1000

Traffica 40 0

Imperviousa 5 0

Terrestrial barriersa 15 0

Aquatic barriersb 100 0

Resistance represents the weights assigned to the settings

variables to determine resistance between the focal cell and

each neighboring cell in the resistant kernels and watershed

kernels used in the Connectedness and Aquatic connectedness

metrics, respectively. Distance represents the weights to

determine ecological distance between the focal cell and

each neighboring cell for Similarity, Connectedness, and

Aquatic Connectedness metrics. The settings variables are

arbitrarily grouped into broad classes for organizational

purposes
aSetting variable not used in Aquatic Connectedness
bSetting variable used only for Resistance in Aquatic

Connectedness
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Resistant kernel

Like a standard kernel the resistant kernel is used to

assign weights to a neighborhood around a focal cell

with the critical difference being that the higher

weight is now assigned to cells that are easier to get to

(smaller cost-distances) instead of simply closer in

Euclidian distance. Introduced by Compton et al.

(2007), the resistant kernel is a hybrid between two

existing approaches: the standard kernel estimator as

described above and least-cost paths based on resistant

surfaces. Resistant surfaces (also referred to as cost

surfaces) are being increasingly used in landscape

ecology to model ecological flows in heterogeneous

landscapes (Zeller et al. 2012). In a patch mosaic, for

example, a resistance value (or cost) is assigned to

each patch type, typically representing a divisor of the

expected rate of ecological flow (e.g., dispersing or

migrating animals) through a patch type. In a least-

cost path approach, the cost distance (or functional

distance) between two points along any particular

pathway is equal to the cumulative cost of moving

through the associated cells. This least-cost path

approach can be extended to a multidirectional

approach that measures the functional distance (or

least-cost distance) from a focal cell to every other cell

in the landscape as a means of defining the accessible

ecological neighborhood. These distances can then be

converted to weights based on a Gaussian or other

function such that higher weight is assigned to closer

(in least-cost distance) cells.

In the resistant kernel algorithm, resistance values

can be assigned any number of ways, but in this

application we assign landscape resistance uniquely to

each neighboring cell based on its ‘‘ecological

distance’’ to the neighboring cell, where ecological

distance is derived from the suite of ecological settings

variables. Because resistance of neighboring cells is

based on ecological distance to the focal cell,

landscape resistance varies dynamically across the

Fig. 2 Kernel estimators to

estimate the ecological

neighborhood of a focal cell

(indicated by the red cross

for each kernel) in an area

west of Albany, New York:

a standard Gaussian kernel

around a focal cell in which

the weight of the kernel at

any cell is indicated by the

color gradient and reflects

the bandwidth (spread) of

the kernel; b resistant

Gaussian kernel around a

focal cell in which the

weight of the kernel at any

cell is indicated by the color

gradient and reflects

bandwidth (spread) of the

kernel as well as the

resistance of the intervening

landscape; and c watershed

kernel in which the

estimated relative time-of-

flow from any cell within the

watershed of the focal cell to

the focal cell is indicated by

the color gradient. Image is

portrayed with hillshading
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landscape; i.e., there is a unique landscape resistance

surface for each focal cell. For each focal cell, first we

calculate the weighted Euclidean distance between the

focal cell and each neighboring cell in settings space

(across all dimensions), where each settings variable is

first range rescaled 0–1 and then multiplied by its

assigned weight to reflect its importance in determin-

ing landscape resistance (Table 1), as follows:

dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

p

i¼1

wi xfi � xni
� �� �2

s

where dn = Euclidean distance between the nth neigh-

boring cell and the focal cell; i = 1 to p settings

variables (dimensions);wi = weight for the ith settings

variable; xif = value of the ith settings variable (scaled

0–1) at the focal cell; and xni = value of the ith settings

variable at the nth neighboring cell. Next, we divide

the result above by the maximum possible weighted

Euclidean distance based on the non-anthropogenic

(a.k.a. ‘‘natural’’) settings variables. Thus, if the focal

cell and neighboring cell are both undeveloped and

have identical values across all natural settings

variables, the weighted Euclidean distance will always

equal zero. On the other hand, if the two cells have

maximally different values (i.e., a difference of one for

each of the natural settings variables), the weighted

Euclidean distance will always equal one. However, if

the neighboring cell is developed, the weighted

Euclidean distance can exceed one. Lastly, we convert

weighted Euclidean distance to resistance by multi-

plying it by a constant and adding one to ensure that

resistance is never less than one. The constant (which

interacts with bandwidth) determines the theoretical

maximum resistance between two undeveloped cells

(i.e., when their weighted Euclidean distance is one),

which we set to be 50 for the connectedness metric and

300 for the aquatic connectedness metrics described

below. We selected the constants based on preliminary

analyses in which we subjectively evaluated the

behavior of the metric in discriminating among

undeveloped and developed settings. By setting

anthropogenic weights to be relatively high, the

resistance (e.g., of a high-traffic expressway or a large

dam) can become high enough to cause a neighboring

developed cell to act as a complete barrier to spread in

the resistant kernel. Consequently, rivers and other

natural features can act as partial barriers to spread

from focal cells with a high ecological distances (e.g.,

dry oak forests), but the maximum resistance between

natural features is never more than two, while

anthropogenic features such as highways can have

higher resistances up to the maximum value deter-

mined by the constant.

A detailed description of the resistant kernel

algorithm is given in Online Appendix C. Briefly,

using the resistant surface described above, the

resistant kernel computes the least cost distance to

each neighboring cell (i.e., cumulative cost of spread-

ing from the focal cell to the neighboring cell along the

least cost path) and transforms these distances into

probabilities based on the specified kernel, such that

the probabilities (or weights) sum to one across all

cells. The end result is a resistant kernel that depicts

the functional ecological neighborhood of the focal

cell (Fig. 2b). In essence, the standard kernel is an

estimate of the fundamental ecological neighborhood

and is appropriate when resistance to movement is

minimal (e.g., highly vagile species), while the

resistant kernel is an estimate of the realized ecolog-

ical neighborhood when resistance to movement is

nontrivial. The resistant kernel can also be thought of

as representing a process of spread (e.g., dispersal) to

or from the focal cell that combines the cost of moving

through a heterogeneous and resistant neighborhood

with the typically nonlinear cost of moving any

distance away from the focal cell. In our ecological

integrity assessment, we use the resistant kernel

estimator in the terrestrial and aquatic connectedness

metrics.

Watershed kernel

The standard kernel estimator may not be meaningful

for aquatic communities where the ecological neigh-

borhood is more likely to be the watershed area above

the focal cell than a symmetrical area around the focal

cell. Thus, for the watershed-based metrics, we use a

watershed kernel estimator based on a time-of-flow

model (Randhir et al. 2001) as described in detail in

Online Appendix D. Briefly, the time-of-flow model

estimates the time (t) it takes for a drop of water (or

water-born materials such as pollutants) to reach the

focal cell; it ranges from zero at the focal cell to some

upper bound based on the size and characteristics of

the watershed. We rescale t to range 0–1 by dividing

t by the maximum observed value of t for the

watershed of the focal cell and then taking the
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complement. In the resulting kernel, the weight ranges

from 1 (maximum influence) at the focal cell to 0 (no

influence) at the cell with the least influence (i.e., at the

furthest edge of the watershed). In essence, kernel

weights decrease monotonically as the distance

upstream and upslope from the focal cell increases,

but the weights decrease much faster across land than

water so that the kernel typically extends much farther

upstream than upslope. The resulting kernel can be

viewed as a constrained watershed in which cells in the

stream and closer to the focal cell have higher weight

and cells in the upland and farther from the stream,

especially on flat slopes with forest cover, have

increasingly less weight (Fig. 2c).

Clearly, this simple time-of-flow model does not

capture all the nuances of real landscapes that

influence the actual time it takes for water to travel

from any point in the watershed to the focal cell (e.g.,

soil characteristics that influence infiltration of pre-

cipitation and vegetation characteristics that influence

water loss through evapotranspiration), but it nonethe-

less provides a much more meaningful way to weight

the importance of neighboring cells than either the

standard kernel estimator that does not account for

flow or a uniform watershed kernel in which all cells in

the watershed count equally.

Ecological integrity metrics

Our ecological integrity assessment involves comput-

ing a suite of metrics that characterize the ecological

neighborhood of each focal cell based on one of the

kernel estimators described above. Currently, our suite

of metrics measure two important components of

ecological integrity: intactness and resiliency.

Intactness refers to the freedom from human

impairment (or anthropogenic stressors) and is mea-

sured using a broad suite of individual stressor metrics

(Table 2) such that the greater the level of anthro-

pogenic stress, the lower the estimated intactness. The

stressor metrics are computed for all undeveloped

cells, although some metrics apply only to certain

ecosystems (e.g., watershed-based metrics apply only

to aquatic and wetland systems). Each stressor metric

measures the magnitude of the anthropogenic stressor

within the ecological neighborhood of each cell and is

uniquely scaled to the appropriate units for the metric.

For example, the road traffic metric measures the

intensity of road traffic (based on the estimated

probability of an animal being hit by a vehicle while

crossing a road given the estimated mean traffic rate)

in the neighborhood surrounding the focal cell based

on a standard logistic kernel (Fig. 3a). The value of

each metric increases with increasing intensity of the

stressor within the ecological neighborhood of the

focal cell. Thus, the raw value of a stressor metric is

inversely related to intactness and thus ecological

integrity. The value of the metric at any location is

generally independent of the particular ecological

setting or ecosystem of the focal cell, as it depends

primarily on the magnitude of the stressor emanating

outward from the anthropogenic features of interest

(e.g., roads). Thus, the stressor metrics are all inter-

pretable in their raw-scale form; i.e., they do not need

to be rescaled by ecological setting or ecosystem (as

described below) to be meaningfully interpreted.

Each metric measures a different anthropogenic

stressor and is intended to reflect a unique and well-

documented relationship between a human activity

and an ecological function. However, these stressor

metrics are not statistically independent, since the

same human activity can have multiple ecological

effects. Consequently, these stressor metrics are

viewed as a correlated set of metrics that collectively

assess the impact of human activities on the intactness

of the ecological setting or ecosystem.

Resiliency refers to the capacity to recover from

disturbance and stress; more specifically, the amount

of disturbance and stress a system can absorb and still

remain within the same state or domain of attraction,

i.e., resist permanent change in the function of the

system (Holling 1973, 1996). In other words, as

reviewed by Gunderson (2000), resiliency generally

deals with the capacity to maintain characteristic

ecological functions in the face of disturbance and

stress. In contrast to intactness, resiliency is both a

function of the local ecological setting, since some

settings are naturally more resilient to stressors (e.g., a

wetland isolated by resistant landscape features is less

resilient to species loss than a well-connected wetland,

because the latter has better opportunities for recolo-

nization of constituent species), and the level of stress,

since the greater the stress the less likely the system

will be able to fully recover or maintain ecological

functions. Moreover, the concept of resiliency applies

to both the short-term or immediate capacity to

recover from disturbance and the long-term capacity

to sustain ecological functions in the presence of
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Table 2 Intactness (a.k.a. stressor) and resiliency metrics

included in the ecological integrity assessment for the north-

eastern United States (see Online Appendix E for links to

detailed descriptions of each metric). Note, the final suite of

metrics can vary among applications depending on available

data. For example, several additional coastal metrics have been

developed for the state of Massachusetts, including salt marsh

ditching, coastal structures, beach pedestrians, beach ORVs,

and boating intensity. The metrics are arbitrarily grouped into

broad classes for organizational purposes

Metric group Metric name Description

Development

and roads

Habitat loss Intensity of habitat loss caused by all forms of development in the neighborhood

surrounding the focal cell based on a standard Logistic kernel.

Watershed habitat

loss

Intensity of habitat loss caused by all forms of development in the watershed above the

focal cell based on a watershed kernel.

Road traffic Intensity of road traffic (based on measured road traffic rates transformed into an

estimated probability of an animal being hit by a vehicle while crossing the road given

the mean traffic rate) in the neighborhood surrounding the focal cell based on a standard

Logistic kernel.

Mowing and plowing Intensity of agriculture (as a surrogate for mowing/plowing rates) in the neighborhood

surrounding the focal cell based on a standard Logistic kernel.

Microclimate

alterations

Magnitude of adverse induced (human-created) edge effects on the microclimate integrity

of patch interiors.

Pollution Watershed road salt Intensity of road salt application in the watershed above an aquatic focal cell based on

road class (as a surrogate for road salt application rates) and a watershed kernel.

Watershed road

sediment

Intensity of sediment production in the watershed above an aquatic focal cell based on

road class (as a surrogate for road sediment production rates) and a watershed kernel.

Watershed nutrient

enrichment

Intensity of nutrient loading from non-point sources in the watershed above an aquatic

focal cell based on land use class (primarily agriculture and residential land uses

associated with fertilizer use, as a surrogate for nutrient loading rate) and a watershed

kernel.

Biotic

alterations

Domestic predators Intensity of development associated with sources of domestic predators (e.g., cats) in the

neighborhood surrounding the focal cell weighted by development class (as a surrogate

for domestic predator abundance) and a standard Logistic kernel.

Edge predators Intensity of development associated with sources of edge mesopredators (e.g., raccoons,

skunks, corvids, cowbirds; i.e., human commensals) in the neighborhood surrounding

the focal cell weighted by development class (as a surrogate for edge predator

abundance) and a standard Logistic kernel.

Non-native invasive

plants

Intensity of development associated with sources of non-native invasive plants in the

neighborhood surrounding the focal cell weighted by development class (as a surrogate

for non-native invasive plant abundance) and a standard Logistic kernel.

Non-native invasive

earthworms

Intensity of development associated with sources of non-native invasive earthworms in

the neighborhood surrounding the focal cell weighted by development class (as a

surrogate for non-native invasive earthworm abundance) and a standard Logistic kernel.

Climate Climate stress Magnitude of climate change stress at the focal cell based on the climate niche of the

corresponding ecological system and the predicted change in climate between 2010 and

2080 (i.e., how much is the climate of the focal cell moving away from the climate

niche envelope of the corresponding ecological system).

Hydrologic

alterations

Watershed

imperviousness

Intensity of impervious surface (as a surrogate for hydrological alteration) in the

watershed above an aquatic focal cell based on imperviousness and a watershed kernel.

Dam intensity Intensity of dams (as a surrogate for hydrological alteration) in the watershed above an

aquatic focal cell based on dam size and a watershed kernel.

Sea level rise

inundation

Probability of the focal cell being unable to adapt to predicted inundation by sea level

rise, developed by USGS Woods Hole (Lentz et al. 2015).

Tidal restrictions Magnitude of hydrologic alteration to the focal cell due to tidal restrictions based on an

estimate of the salt marsh loss ratio above each potential tidal restriction (road-stream

and railroad-stream crossings).
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stress. The landscape attributes that confer short-term

resiliency may not be the same as those that confer

long-term resiliency, as discussed later. Given these

considerations, resiliency is a complex, multi-faceted

concept that cannot easily be measured with any single

metric. For the applications presented in this paper we

implemented a few different resiliency metrics

(Table 2).

Like the stressor metrics, the resiliency metrics are

computed for all undeveloped cells. In contrast to the

stressor metrics, the value of each resiliency metric

increases with increasing resiliency, so larger values

connote greater integrity. Also in contrast to the

stressor metrics, the value of the resiliency metric at

any location is dependent on the particular ecological

setting of the focal cell and its neighborhood. For

example, the connectedness metric measures the

functional connectivity of a focal cell to its ecological

neighborhood (based on a resistant Gaussian kernel);

more specifically, the capacity for organisms to move

to and from the focal cell from neighboring cells with a

similar ecological setting as the focal cell (Fig. 3b).

Table 2 continued

Metric group Metric name Description

Resiliency Similarity Similarity between the ecological setting of the focal cell and its ecological neighborhood

based on the weighted multivariate similarity computed across a variety of ecological

settings variables (Table 1) and a standard Logistic kernel.

Connectedness

(connect)

Connectivity of the focal cell to its ecological neighborhood based on a resistant kernel

(see text and Online Appendix C for details).

Aquatic

connectedness

Same as Connectedness except that it is constrained by the extent of aquatic ecosystems,

such that the connectivity being assessed pertains to flows and disruption of flows (e.g.,

culverts and dams) within the aquatic network.

Fig. 3 a traffic (stressor) metric and b connectedness (re-

siliency) metric (scaled for the northeastern United States) for

the North Quabbin region of western Massachusetts. See

Table 2 for a brief description and Online Appendix E for a

detail description of these two metrics. Note, the color legend is

reversed in these two metrics so that the blue end of the gradient

represents sites with greater ecological integrity (i.e., less traffic

and greater connectedness in this case). Images are portrayed

with hillshading
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Consequently, connectedness is especially relevant for

less vagile organisms where the resistance of the

intervening landscape limits movement to and from

the focal cell. Connectedness confers resiliency to a

site since being connected to similar ecological

settings should promote recovery of the constituent

organisms following a local disturbance.

In contrast to the stressor metrics, the resiliency

metrics are not particularly useful in their raw-scale

form because they do not have interpretable units.

Instead, they are best interpreted when rescaled by

ecological setting or ecosystem (see below) so that

what constitutes high resiliency for a small patch-

forming ecological system such as a wetland need not

be the same as for a matrix-forming system such as

upland forest. Like the stressor metrics, each resi-

liency metric measures resiliency from a different

perspective and is intended to reflect a unique and

well-documented relationship between landscape con-

text and ecological function, and resiliency metrics are

correlated, yielding a set of metrics that collectively

assess the capacity of a site to recover from or adapt to

disturbance and stress.

Index of ecological integrity

The individual stressor and resiliency metrics can be

used by themselves, but it is more practical to combine

them into a composite index (IEI) for conservation

applications.

Quantile-rescaling

Each of the raw stressor and resiliency metrics are

scaled differently. Some are bounded 0–1 while others

have no upper bound. Moreover, each of the metrics

will have a unique empirical distribution for any

particular landscape. In order to meaningfully com-

bine these metrics into a composite index, therefore, it

is necessary to rescale the raw metrics to put them on

equal ground. Quantile-rescaling involves transform-

ing the raw metrics into quantiles, such that the poorest

cell gets a 0.01 and the best cell gets a 1. Quantile-

rescaling facilitates the compositing of metrics by

putting them all on the same scale with the same

uniform distribution regardless of differences in raw

units or distribution. Moreover, quantiles have an

intuitive interpretation, because the quantile of a cell

expresses the proportion of cells with a raw value less

than or equal to the value of the focal cell. Thus, a 0.9

quantile is a cell that has a metric value that is greater

than 90% of all the cells, and all the cells with[ 0.9

quantile values comprise the best 10% within the

analysis area. In light of these advantages, it is

importance to recognize that quantile scaling means

the ecological difference between say 0.5 and 0.6 is

not necessarily the same as the ecological difference

between say 0.8 and 0.9.

There are two fundamentally different ways to

conduct quantile rescaling. In the first approach, which

we refer to as ‘‘ecosystem-based rescaling,’’ quantile-

rescaling is done by discrete ecosystems. Ecosystem-

based rescaling means that forests are compared to

forests, emergent marshes are compared to emergent

marshes, and so on. It doesn’t make sense to compare

the integrity of an average forest cell to that of an

average wetland cell, because wetlands have been

substantially more impacted by human activities such

as development than forests, and they are inherently

less-connected to other wetlands. Rescaling by

ecosystem means that all the cells within an ecosystem

are ranked against each other in order to determine the

cells with the greatest relative integrity for each

ecosystem. In the applications of IEI to date (see

below) we have used this form of rescaling. In the

second approach, which we refer to as ‘‘gradient-based

rescaling,’’ quantile-rescaling is done by comparing

focal cells to similar cells based on multivariate

distance in ecological setting space, which does not

rely on discrete ecosystems. Comparative perfor-

mance of these two alternative rescaling approaches

remains an important subject for future research.

Ecological integrity models

The next step is to combine the quantile-rescaled

metrics into the composite index. However, given the

range of metrics (Table 2), it is reasonable to assume

that some metrics are more relevant to some ecolog-

ical settings or ecosystems than others. For example,

the watershed-based stressor metrics and aquatic

connectedness were designed specifically for aquatic

and/or wetland communities. Moreover, it is reason-

able to assume that the weights applied to the metrics

should vary among ecological settings or ecosystems,

since what stressors matter most, for example, to an

emergent marsh may not be the same as for an upland

boreal forest. Consequently, we employ ecosystem-
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specific ecological integrity models to weight the

component metrics in the composite index (e.g.,

Online Appendix F). An ecological integrity model

is simply a weighted (by expert teams, Online

Appendix F) linear combination of metrics designated

for each ecosystem, although for parsimony sake we

generally designate a unique model for each ecolog-

ical formation, which is a group of similar ecosystems

(Online Appendix B).

Rescaling the final index

Lastly, we quantile-rescale the final composite index

by ecosystem again to ensure the proper quantile

interpretation. The final result is a raster that ranges

0–1. It is important to recognize that quantile-rescal-

ing means that the results are dependent on the extent

of the analysis area, because the quantiles rank cells

relative to other cells within the analysis area (Fig. 4).

The best of the Kennebec River watershed, for

example, is not the same as the best of the state of

Maine or the entire Northeast. Of course, dependence

on landscape extent is true of any algorithm that

compares a site to all other sites. Consequently,

quantile-rescaling is done separately for each analysis

unit of interest. Ultimately, the choice of extent for the

analysis units is determined by the application objec-

tives, but with consideration of the mapped hetero-

geneity. For example, our experience has shown us

that when using the DSL ecosystem map, scaling by

ecosystems at extents less than roughly a HUC6-level

watershed can produce spurious results owing to the

categorical mapping of ecosystems and the limited

extent of some ecosystems. HUCs are a USGS system

for hierarchically classifying nested watersheds, such

that a HUC6-level watershed is comprised of two or

more HUC8-level sub-watersheds.

Interpreting IEI

It is critical to recognize the relative nature of IEI; a

value of 1 does not mean that a site has the maximum

absolute ecological integrity (i.e., completely unal-

tered by human activity and perfectly resilient), only

that it is the best of that ecological setting or ecosystem

within the geographic extent of that particular analysis

unit. In an absolute sense, the best within any

particular geographic extent may still be degraded.

Consequently, IEI is only useful as a comparative

assessment tool. In addition, the final IEI has a nicely

Fig. 4 Index of ecological integrity (IEI) scaled by a the entire

northeastern United States and b by HUC6-level watersheds for

an area northwest of State College, Pennsylvania. See the text

for a description of IEI and Table 2 and Online Appendix E for

descriptions of the constituent metrics. Larger values represent

greater ecological integrity. Images are portrayed with

hillshading
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intuitive interpretation because the quantile of a cell

expresses the proportion of cells with a raw value less

than or equal to the value of the focal cell, thus a cell

with an IEI of 0.9 is among the best 10% in its

ecosystem within its geographic extent.

Index of ecological impact

IEI characterizes the integrity of sites relative to other

sites in a similar ecological setting or ecosystem. Thus,

it is a static measure of ecological integrity based on a

snapshot of the landscape. It can be equally useful to

assess the change in ecological integrity over time

under a specific landscape change scenario (see Model

Application). For this purpose, we developed the index

of ecological impact (ecoImpact) to measure the

change in IEI between the current and future timesteps

relative to the current IEI; i.e., effectively delta IEI

times current IEI. A site that experiences a major loss

of IEI has a high predicted ecological impact; i.e., a

loss of say 0.5 IEI units reflects a greater relative

impact than a loss of 0.2 units. Moreover, the loss of

0.2 units from a site that has a current IEI of 0.9 is more

consequential than the same absolute loss from a site

that has a current IEI of 0.5. Thus, ecoImpact reflects

not only the magnitude of IEI loss, but also where it

matters most—sites with high initial integrity.

Delta-rescaling

The derivation of ecoImpact consists of rescaling the

individual raw metrics, but using a different rescaling

procedure than we used with IEI, which suffers from

what we call the ‘‘Bill Gates’’ effect when used for

scenario comparison. This occurs when the value of

the raw metric is decreased at a high-valued site

without changing the quantile. This is analogous to

taking 10 billion dollars away from Bill Gates, yet he

remains among the richest 0.1% of people in the

world. Likewise, a small absolute change in a raw

metric can, under certain circumstances, result in a

large change in its quantile, even though the ecological

difference is trivial. Therefore, the use of quantile-

rescaling is not appropriate if we want to be sensitive

to the absolute change in the integrity metrics. To

address these issues, we developed delta-rescaling as

an alternative to quantile-rescaling that is more

meaningful when comparing landscapes.

Delta-rescaling is rather complicated in detail and

thus is presented in full in Online Appendix G. Briefly,

delta-rescaling involves computing the difference in

the raw metric from its initial or baseline value rather

than comparing it to the condition of ecologically

similar cells or cells of the same ecosystem. These

delta values are rescaled and combined in a weighted

linear combination (as in IEI) and multiplied by the

initial or baseline IEI to derive the final index (Fig. 5).

The end result is that a cell with maximum initial IEI

(1) that is completely degraded (1 ? 0) gets a value of

- 1, indicating the maximum possible ecological

impact. Conversely, a cell that experiences no change

in IEI gets a value of 0, indicating no ecological

impact.

It is important to recognize the differences between

ecoImpact and IEI. The former measures the change in

IEI relative to the initial or baseline condition.

Roughly speaking, ecoImpact compares each cell to

itself—the change in integrity over time—whereas IEI

compares each cell to other cells of the same

ecological setting or ecosystem within the specified

geographic extent. Also, ecoImpact is weighted by the

current IEI of the cell, so that impact is greatest where

it matters most—cells with high initial IEI that lose

most or all of their value. Even though the units of

ecoImpact do not have an intuitive interpretation, the

absolute value of the index is meaningful for compar-

ative purposes, and thus it can be summed across all

cells in the landscape (or within a user-defined mask)

to provide a useful numerical summary of the total

ecological impact of alternative landscape change

scenarios.

Model application

To demonstrate the application of ecoImpact, we

quantified the loss of ecological integrity between

2010 and 2080 within the northeastern United States

under two landscape change scenarios: (a) urban

growth without additional land protection, and

(b) same amount of urban growth but with strategic

land protection based on a regional landscape conser-

vation design (see www.naturesnetwork.org). For the

first scenario only the existing secured lands repre-

senting * 18% of the landscape (and lands otherwise

unsuitable for development) were restricted from

future development. For the second scenario, 25% of
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the highest ecologically-valued lands and waters as

well as any lands already secured (representing a total

of * 34% of the landscape) or otherwise unsuit-

able for development, were protected from future

development. For both scenarios, we simulated urban

growth using the SPRAWL model that we developed

in connection with the DSL project mentioned previ-

ously (McGarigal et al. 2018). The SPRAWL model

allocates forecasted demand for new development

within subregions (representing counties or census

block statistical areas) to local application panes

(5 km on a side in our application) based on their

landscape context using a unique matching algorithm,

such that the more historical development that

occurred in the matched training windows (i.e., in a

similar landscape context) the higher proportion of the

future demand is assigned to the application pane.

Subsequently, the demand in each pane is allocated

among transition types (i.e., development classes) and

then stochastically allocated to individual cells and

patches based on suitability surfaces derived from

logistic regression models unique to that landscape

context. We conducted three replicate 70-year simu-

lations of urban growth under each scenario and

computed the average total impact (sum of ecoImpact

across all cells) for each scenario. The total ecological

impact was 8.5% less under the landscape conserva-

tion design scenario (Fig. 5). Consequently, even

though the conservation design scenario restricted

development from an additional 16% of the highest-

valued locations, the reduced impact was only half that

amount because there was still an abundance of

moderate- to highly-valued lands that remained

unprotected that suffered impacts from development.

Discussion

Coarse-filter ecological assessments are increasingly

used by conservation organizations to evaluate eco-

logical impacts and guide conservation planning,

although there appears to be no consensus yet on a

preferred approach (e.g., Andreasen et al. 2001;

Parrish et al. 2003; Tierney et al. 2009; Beier et al.

Fig. 5 Index of ecological impact (ecoImpact) representing the

loss of ecological integrity between 2010 and 2080 under two

landscape change scenarios: a urban growth without additional

land protection, and b same amount of urban growth but with

strategic land protection (delineated polygons) based on a

regional landscape conservation design (see www.

naturesnetwork.org), for an area west of Manchester, New

Hampshire. ecoImpact ranges from 0 (no impact) to - 1

(maximum impact). The total impact (sum of ecoImpact across

all cells, averaged across three stochastic simulation runs under

each scenario) was 8.5% less under the landscape conservation

design scenario. Note, the details of these two landscape change

scenarios are not relevant to the demonstration of ecoImpact and

thus have been omitted here. Images are portrayed with

hillshading
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2015). We developed an approach that has been used

in several real-world applications (see below) that is

distinctive in several ways.

First, our approach is based predominantly on

geophysical settings (i.e., the geophysical stage)

similar to approaches proposed by others (e.g.,

Anderson and Ferree 2010; Anderson et al. 2014;

Beier et al. 2015), but modified to make limited use of

the dominant biotic community as well. Specifically,

we include the dominant potential life form of the

vegetation in the broad suite of ecological settings

variables that are used to define the biophysical setting

of each cell, which affects ecological similarity and

resistance as incorporated into a few of the ecological

integrity metrics. In addition, we use mapped ecosys-

tems to assign models (i.e., weights) for combining the

individual integrity metrics into the composite IEI and

ecoImpact indices, which has at least three advan-

tages. First, it allows the results of the analysis to be

easily combined with other products that adopt the

same ecosystem classification. Second, it explicitly

recognizes that ecological systems, which represent

the co-dependency of the dominant biota and abiotic

environment, are often a conservation target of

interest, even while allowing the individual plant and

animal species to vary among sites and over time.

Lastly, it allows us to customize vulnerability to

anthropogenic stressors among ecosystems, which can

be incorporated directly into the metric weights that

form the integrity models. Note, if distinct ecosystems

are not deemed meaningful or reliably mapped, we

have an alternative gradient-based approach that can

be used.

Second, our approach embraces the concept of

ecological integrity, but defined in a manner that

makes it less subject to the criticisms often leveled

against the use of ecological integrity (Brown and

Williams 2016). In particular, our approach does not

require the establishment of a reference condition or

natural range of variation for each of the metrics as is

customary for definitions of ecological integrity

(Parrish et al. 2003), which we purport is exceedingly

difficult or even impossible to do in most applications.

Instead, we compare each cell to other cells in a similar

ecological setting or ecosystem, or each cell to itself at

a different point in time, to derive an index of relative

integrity. Thus, our approach seeks to find the ‘‘best’’

places that are available today or that are likely to be

impacted the least (or most depending on the

application). In addition, while most approaches based

on ecological integrity are heavily vegetation-centric

in the constituent metrics (e.g., Wurtzebach and

Schultz 2016), our approach relies very little on

mapped vegetation patches and instead focuses on the

anthropogenic stressors themselves (acting somewhat

independently of the mapped vegetation) in the

individual metrics. For example, in contrast to most

approaches our approach is agnostic to the current

vegetation structural stage on a site, which we view as

a dynamic property of the ecosystem (at least within

the bounds of the dominant life form of the vegetation)

and thus not germane to the integrity of the site.

Third, our approach allows us to easily scale the

results based on any geographic extent to facilitate

assessments and conservation planning at multiple

scales. For example, IEI can be quantile-scaled within

watersheds to inform local watershed-based conser-

vation planning, or within states to inform state

agencies with conservation responsibilities, or at even

broader scales to inform regional conservation orga-

nizations such as federal agencies and regional land

trusts (Fig. 6).

Fourth, our approach uses a variety of sophisticated

kernel estimators to provide an effective assessment of

the ecological neighborhood affecting the ecological

integrity of a cell (Fig. 2). The use of ecological

neighborhoods is not unique to our approach; for

example, Theobold (2013) used standard kernel den-

sity estimators to develop an index of ecological

integrity at the 90 m resolution for the entire United

States. All of our kernel estimators reflect nonlinear

decreasing ecological influence as distance increases,

which is one of the first principles of landscape

ecology (Turner and Gardner 2015). For example, our

watershed-based metrics which evaluate the integrity

of aquatic systems use a watershed kernel that honors

how terrain and land cover affect the movement of

water and water-born pollutants to a site, which is

clearly more appropriate than treating all locations in

the watershed the same. Similarly, our connectedness

metric uses a resistant kernel (Compton et al. 2007) to

represent how organisms and ecological processes

move across the landscape in response to environ-

mental resistance (Zeller et al. 2012). We are unaware

of other approaches that adopt these specific kinds of

kernel estimators to evaluate ecological integrity,

although our traversability metric (which is a version

of connectedness), is used as a component of The
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Nature Conservancy’s (TNC) terrestrial resilience

(Anderson and Ferree 2010).

Limitations

No approach is without limitations and ours is no

exception. Among the many known limitations, a few

are worth noting here. First, like all approaches, our

suite of metrics is incomplete. There are anthro-

pogenic stressors that we recognize as important but

have not yet included due to the lack of reliable and

regionally consistent high-resolution data (e.g., toxic

pollutants, hydrological disruptions), and other met-

rics that adopt an especially crude estimate of the

stressor for the same reasons (e.g., non-native invasive

plants based solely on land cover within the ecological

neighborhood rather than explicit models of occur-

rence for each of the important organisms). Of course,

these metrics can be added and/or improved as data

and knowledge become available.

Second, while our approach relies on objective

measures of intactness and resiliency, it still has an

important subjective component that can be consid-

ered either a strength or weakness (Beazley et al.

2010). Specifically, there are a number of model

parameters that must be specified in order to compute

the various ecological integrity metrics, including

kernel bandwidths, weights for the ecological settings

variables used in the resiliency metrics, and weights

for the metrics used in the ecosystem-specific ecolog-

ical integrity models to create IEI and ecoImpact. At

present these model parameters are assigned by

experts in the context of a specific application, as

there is no easy or meaningful way to empirically

derive these parameters. While this allows the assess-

ment to be customized to each application, it comes at

the cost of having to defend the chosen set of model

parameters.

Third, our current measurement of resiliency is

based on two metrics, similarity and connectedness

(and its aquatic counterpart), which reflects a limited

perspective on resiliency. In particular, what may

confer short-term resiliency as measured by our two

metrics may be antagonistic to what may confer long-

Fig. 6 Index of ecological integrity (IEI) scaled by the entire

northeastern United States (a; larger values represent greater

ecological integrity) and the corresponding Index of ecological

impact (ecoImpact) representing the loss of ecological integrity

between 2010 and 2080 under a baseline urban growth scenario

without additional land protection (b, larger negative values

represent greater ecological impact)
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term resiliency in the face of rapid environmental

(e.g., climate) change. For example, short-term

resiliency of a site may be a function of the amount

and accessibility of similar environments in the

neighborhood of the focal cell, since having larger

and more connected local populations should facilitate

population recovery of the constituent organisms (and

thus ecosystem functions) following disturbance—

which is the premise of our two resiliency metrics.

However, long-term resiliency of a site may also be a

function of the amount and accessibility of diverse

environments in the neighborhood of the focal cell,

since having a diverse assemblage of environments

nearby increases the opportunities for different organ-

isms to fill the ecological niche space as the environ-

ment (e.g., climate) changes over time—which is the

premise of the metrics used in the geophysical stage

approach proposed by others (e.g., Anderson and

Ferree 2010; Beier and Brost 2010; Beier 2012; Beier

et al. 2015). Consequently, while still unclear, it is

possible that the factors driving short-term resiliency

may differ from those driving long-term resiliency in

the face of environmental change. Note, to account for

this possibility, in the landscape conservation design

applications referenced below we combined IEI with

TNC’s terrestrial resilience metric (Anderson and

Ferree 2010), which prioritizes sites based on local

geophysical diversity and connectivity, to establish

priorities for conservation core areas.

Lastly, despite their increasing use, measures of

ecological integrity are exceedingly difficult if not

impossible to validate (but see McGarigal et al. 2013,

which provides a partial validation of IEI based on

extensive field data on a number of taxa) given the

long-term nature of the predictions, which has been a

major source of criticism (Brown and Williams 2016).

We sought to reduce the need for formal validation of

IEI by eliminating the need for a reference condition

or natural range of variability and instead using

quantile scaling to rate sites relative to each other.

Indeed, IEI makes no assumptions about the absolute

integrity of site, only that it is relatively more or less

integral than another site. In this regard, each of the

constituent metrics was chosen because of its clear and

well-documented relationship with ecological func-

tions that confer integrity to a site. For example, it is

undisputed that increasing the intensity of roads and

road traffic near a site will adversely affect critical

ecological processes such as organism dispersal,

watershed hydrology, and sedimentation of streams

(Forman et al. 2003). IEI relies heavily on this well-

established relationship between anthropogenic stres-

sors and ecological integrity. Although the exact form

and magnitude of the relationship is unknown; it may

suffice to know that the relationship is monotonic.

Conservation applications

Our coarse-filter ecological integrity assessment has

been applied to a wide variety of real-world conser-

vation problems. Detailed information about each of

these applications can be found at the DSL project

website (McGarigal et al. 2017; www.umass.edu/

landeco/research/dsl/dsl.html) or the UMassCAPS

website (www.umasscaps.org).

• Critical linkages Working in partnership with the

North Atlantic Aquatic Connectivity Collabora-

tive (NAACC), we have used IEI and the aquatic

connectedness metric to evaluate and prioritize

dam removals and road-stream crossing (culvert)

upgrades in the Northeast for their potential to

restore aquatic connectivity.

• Wetlands assessment, monitoring and regulation

Working in partnership with the MA Department

of Environmental Protection (DEP), MA Office of

Coastal Zone Management, and U.S. EPA, we

have used IEI in a variety of contexts to develop

cost-effective tools and techniques for assessment

and monitoring of wetland and aquatic ecosystems

in Massachusetts, including the development and

validation of indices of biotic integrity for selected

wetland and aquatic systems. In addition, IEI is

being used by DEP in permitting activities affect-

ing wetlands pursuant to the MA Wetlands

Protection Act; specifically, projects occurring in

the top 40% of wetlands based on IEI are subject to

additional DEP review.

• BioMap 2 Working in partnership with the MA

Department of Fish & Game’s Natural Heritage &

Endangered Species Program and TNC’s Mas-

sachusetts Program, we used IEI in the develop-

ment of BioMap2 which serves as a guide for

conservation decision making to preserve and

restore biodiversity in Massachusetts; specifically,

we used IEI to assist in the identification of forest

cores, wetland cores, clusters of vernal pools and

undeveloped landscape blocks with the highest

123

Landscape Ecol (2018) 33:1029–1048 1045

http://www.umass.edu/landeco/research/dsl/dsl.html
http://www.umass.edu/landeco/research/dsl/dsl.html
http://www.umasscaps.org


potential for maintaining ecological integrity over

time.

• Losing Ground Working in partnership with Mass

Audubon to prepare the 4th edition of the Losing

Ground publications (DeNormandie and Corcoran

2009), we used IEI and ecoImpact to assess the

change in ecological integrity between 1971 and

2005 in Massachusetts; specifically, to quantify the

indirect impacts of development beyond its direct

footprint.

• South coast rail project We used IEI and ecoIm-

pact to assess the potential loss in ecological

integrity of several alternative routes for the

proposed South Coast Rail system in southeastern

Massachusetts.

• Connect the connecticut and nature’s network

Working with a large partnership of organizations

under the auspices of the North Atlantic Landscape

Conservation Cooperative (NALCC), we used IEI

in combination with several other data products to

identify and prioritize a set of terrestrial and

aquatic ‘‘core areas’’ as part of a landscape

conservation design for the Connecticut River

watershed (Connect the Connecticut, www.

connecttheconnecticut.org) and for the entire

Northeast (Nature’s Network, www.

naturesnetwork.org).

Conclusions

We suggest that the maintenance of ecological

integrity is arguably the ultimate goal of ecological

conservation. However, given the complexity of the

ecological integrity concept (Gunderson 2000), the

measurement of ecological integrity has remained a

daunting challenge for scientists and conservation

practitioners. We presented an index of ecological

integrity (IEI) to evaluate the relative integrity among

sites of the same or similar ecosystem that is derived

from readily available spatial data on land use and land

cover and that can be applied at any spatial resolution

over any spatial extent (contingent upon data avail-

ability), and a corresponding index of ecological

impact (ecoImpact) to assess changes in integrity over

time. These two multi-metric indices emphasize the

potential intactness (i.e., freedom from anthropogenic

stressors) and resiliency (based on the ecological

similarity and connectedness of the ecological neigh-

borhood) of a site and make use of sophisticated

kernels to represent meaningful ecological neighbor-

hoods for each of the constituent metrics. While not

without acknowledged limitations, these metrics have

proven useful in several real-world conservation

applications.
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