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Abstract

Context Land-use change is a key driver of pollina-

tor declines worldwide. Plantation forests are a major

land use worldwide and are likely to expand substan-

tially in the near term, especially with projected

cellulosic biofuel production. But little is known about

the potential local and landscape-scale impacts of

plantation forestry on bees, the most important group

of pollinators worldwide.

Objectives We studied the effects of local manage-

ment, landscape context, and their interaction on bee

abundance and species richness in the southeastern

US, in pine plantations and other nearby land uses.

Methods We sampled bee communities using aerial

netting and pan trapping in 85 sites over 3 years.

Results We found that both landscape composition

and configuration are important factors for bee

diversity and abundance at the landscape scale, though

interestingly many landscape factors showed contrast-

ing directional responses for diversity versus abun-

dance. Removing the four most common species, all in

the genus Lasioglossum (and which com-

prised * 45% of all specimens) largely harmonized

the results between diversity and abundance. In

addition, we found several interactions between local

management and landscape factors, all consistent with

the idea that compositional heterogeneity and config-

urational complexity are more important for bee

communities in poorer-quality local habitat.

Conclusions Our results underscore the importance

of considering (1) both landscape configuration and

composition in analyses, and (2) interactions between

local management and landscape factors. The inter-

actions in particular highlight the need to maintain

landscape compositional heterogeneity and configu-

rational complexity, particularly in heavily managed

landscapes.
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Introduction

Bees (Hymenoptera: Apidae) are the most important

single taxon of pollinators worldwide (e.g. IPBES

2016; Rader et al. 2016) and play a key functional role

in agricultural crop production and the reproduction of

wild plants, underscoring the need to better understand

how they are affected by a range of anthropogenic

environmental changes. Land-use change is among the

most important environmental changes impacting

communities of wild bees (Potts et al. 2010; IPBES

2016). Plantation forestry is a land-use type that

currently occupies a large land area that is very likely

to grow substantially in the near future (FAO 2012).

But we know little about how bee communities might

respond to expansion of plantation forestry systems,

particularly in terms of landscape-scale patterns.

Understanding biodiversity effects of forest plan-

tation expansion is particularly important given: (1)

growing demands for wood, wood products, and pulp

and paper products (FAO 2012); and (2) the potential

for trees to be used as biofuel and bioenergy

feedstocks (i.e. plants that can be converted into

bioenergy in whole or in part). Recent technological

developments—particularly focused on cellulosic

bioethanol production—are a critically important

driver of growth in biofuel feedstock land use. As

the name implies, cellulosic biofuels are derived from

cellulose and other carbon sources from plants that are

more recalcitrant in terms of conversion to ethanol

than the starches and sugars (primarily from edible

crops like corn) that are other current sources for

ethanol conversion (e.g. Carroll and Somerville 2009).

While methods currently exist for conversion of

cellulose to ethanol, these technologies are not

currently economically scalable, but will be in the

near future if technological advances in conversion

efficiency continue at the current pace (Langholtz

et al. 2016). In addition to technology developments,

there are a range of policies from local to multi-

national that support or even mandate biofuel feed-

stock cultivation worldwide (Sorda et al. 2010;

Timilsina and Shrestha 2010; Huang et al. 2011).

Among the largest mandates are those in the US,

where the Energy Independence and Security Act of

2007 (EISA) mandates that the US produce 21 billion

gallons of biofuel by 2022.

The southeastern US is a key region for plantation

forestry generally, and specifically for future

expansion of forestry-based biofuel feedstock culti-

vation. In particular, pine plantations in the southeast-

ern US are currently cultivated for conventional

timber products, and cover 13 million hectares,

with * 600,000 hectares planted each year (Kline

and Coleman 2010). Existing well-developed forestry

operations and the rapid growth rate of native pine

species in southeastern climates make this region ideal

for biofuel production (Kline and Coleman 2010).

Increasing pine cultivation to produce biofuel feed-

stocks will necessarily change large-scale land-use

patterns, including very likely expansions of the

current extent of pine plantations (Fargione et al.

2009).

We continue to have a poor understanding of how

plantation forestry expansion will affect biodiversity

generally (e.g. Fletcher et al. 2011), and bee commu-

nities specifically, at both local and landscape scales.

At local scales, we know little about bee communities

in tree plantations, or how suitable such plantations are

for providing bee life-history requirements, particu-

larly relative to other land uses like annual cropping

systems (Bennett and Isaacs 2014; Campbell et al.

2016; Saunders 2016). On the one hand, such land use

could have positive effects on bee communities

relative to some alternate land uses. Perennial crops

are often associated with less disturbance than annual

crops, including soil disturbance, which could allow

for greater potential nesting habitat for bees, many of

which are ground-nesting (e.g. Cane 1991). Perennial

crops also typically have lower chemical inputs,

including pesticides, which can disrupt bee commu-

nities over large scales (e.g. Rundlöf et al. 2015) and

herbicides, which can hypothetically reduce flowering

plant resources (Bretagnolle and Gaba 2015). On the

other hand, such land use change could also have

negative effects. Densely-planted timber forests tend

to support only sparse herbaceous flowering plant

understories and fewer pollinators compared to more

open habitat types (e.g. Hanula et al. 2016), and bee

diversity and abundance can be much greater in

urbanized habitats compared to relatively intact

forested systems (Winfree et al. 2007). At landscape

scales, while some studies have examined effects of

land cover on bee communities (e.g. Steffan-Dewenter

et al. 2002; Brosi et al. 2007, 2008, 2009; Steffan-

Dewenter andWestphal 2007), few clear patterns have

emerged. In addition, very few of those studies have

separated out the effects of landscape composition
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versus configuration (Fahrig 2003; Hadley and Betts

2012), and even fewer have examined potential

interactions between local and landscape factors

(Holzschuh et al. 2007; but see Bourke et al. 2014).

To address these gaps, we studied the effects of

both local and landscape factors associated with the

cultivation of pine plantations on bee communities in

the southeastern coastal plain of the US. We sampled

bee communities across three important pine produc-

ing states (Alabama, Florida, and Georgia) in four

land use classes: plantations, clearcuts, reference

forest (longleaf pine) and an alternative land use (corn

cultivation). We sampled in 85 sites, generating one of

the largest systematically-collected datasets of bee

communities. We assessed landscape context in terms

of both composition and configuration, at a range of

spatial scales, and specifically assessed interactions

between local management and landscape factors. At

the local scale, we hypothesized that we would find

higher bee diversity and abundance in reference forest

relative to production land uses (forestry and agricul-

ture), and in forestry land uses relative to annual

agriculture. At the landscape scale, we hypothesized

that we would find effects of both landscape config-

uration and composition on bee communities, includ-

ing finding greater bee diversity and abundance in

landscapes with more compositional heterogeneity

and configurational complexity (Fahrig 2003; Hadley

and Betts 2012; Reynolds et al. 2018). In addition, we

expected to find either a unimodal or monotonic

positive relationship between tree cover and bee

diversity and abundance. A unimodal relationship

could result from tree-covered habitats contributing to

landscape-level heterogeneity. Locally, tree covered

habitats may support more bee diversity and abun-

dance than many alternative land uses in our study

region, particularly row-crop agriculture, which lar-

gely involves very high agrochemical inputs (e.g.

conventional corn production). In terms of interactions

between local and landscape factors, we hypothesized

that landscape-level complementarity—for example,

acquisition of different resources by bees in different

land-uses surrounding ones in which they nest or

spend the bulk of their time—would drive two

patterns. First, we hypothesized that tree cover would

have a stronger positive relationship on bee commu-

nities in local land uses that were not tree-covered, and

second, that habitats that were generally lower-quality

for bees (in particular, cornfields) would benefit more

from greater compositional heterogeneity and config-

urational complexity.

Methods

Study sites

Sites

We sampled bees in 85 sites in the southeastern coastal

plain of eastern Alabama, northern Florida, and

southern Georgia (Fig. 1), an area with a substantial

extent of pine plantations. Our sampling effort was

part of a larger study which included sampling for

birds (Gottlieb et al. 2017) as well as reptiles,

amphibians, and bats. We sampled between April

and July in three years, 2013–2015. In 2013, we

sampled Newton County, GA. In 2014, we sampled

Alabama (Butler, Conecuh, Escambia, and Monroe

counties), Florida (Jefferson, Liberty, and Wakulla

counties), and Georgia (Decatur and Thomas coun-

ties). In 2015, we sampled bees in Alabama (Butler

and Covington counties), Florida (Alachua, Columbia,

Gilchrist, Levy, Marion, and Suwannee counties), and

Georgia (Mitchell county). All sites were spaced at

least 2.5 km apart to ensure sample independence.

Local management

We sampled bees in sites with four general classes of

local management (Table 1), henceforth referred to as

‘land use types’. Two of these land use types were

focused on forestry (plantation forests and clearcuts),

and two provided alternative reference conditions, an

annual row-crop (cornfields) and the historical land-

cover in the region, longleaf pine (Pinus palustris)

savannahs. These remnant ecosystems are managed to

maintain some degree of the natural fire regime needed

for maintenance of these systems (Christensen 2000).

This study is part of a larger research project on pine

biofuel production in the US (Gottlieb et al. 2017), and

includes contrasts within plantation forest sites

designed to compare forest management practices

between biofuel feedstock and traditional timber

production. A previous study emerging from this

research project found no substantial differences in

bee abundance, richness, and community composition

among different management practices in standing
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plantations (Gruenewald 2014), so we have aggre-

gated these sites. As such, this study has many more

sites representing standing plantation forests than in

the other land use types.

Transect design

We set up two 200 m 9 2 m transects, one ‘‘interior’’

and one ‘‘edge’’, in each site. The edge transect was

Fig. 1 Map of the study

area, with geographic

boundaries representing

counties in the states of

Alabama, Florida,

and Georgia USA

Table 1 Description of local management practices (land use types)

Management style Description Number of sites

Plantation forest Cultivated loblolly or slash pine trees 47

Clearcut All trees removed recently 21

Natural forest (longleaf) Longleaf pine trees with periodic managed burning 10

Cornfield Corn monoculture 7
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placed 50 m from the edge of the tree stand, bordering

non-tree land use (row-crop, grass, or urban). In

cornfield sites, we placed the edge transect 50 m from

the edge of the field, which bordered land not used for

corn cultivation (forest, grass, urban, or non-corn row-

crop). We placed the interior transect so that it was

surrounded with a minimum radius of 150 m of the

management type being studied. Interior transects

were placed using ArcGIS and satellite data from

National Land Cover Database 2011.

Bee sampling

Overview

We collected bees using both passive (pan traps) and

active (aerial netting) sampling methods. We sampled

bees at each site four times within the same year, from

both the edge and interior transects, once every

3–4 weeks. Sites were sampled on a rotation such

that samples from each site were temporally spread out

to minimize any effects of flowering phenology across

the growing season. We used both passive and active

sampling in tandem for each rotation cycle. Sites were

not sampled across multiple years.

Passive sampling

We used pan traps to passively sample bees. Pan traps

comprised 104 mL plastic Solo cups (Model P325)

painted with blue, white, or yellow UV reflective paint

to attract bees (Kearns and Inouye 1993; Westphal

et al. 2008). We filled the painted cups with * 75 mL

of soapy water, which has reduced surface tension so

that upon contact bees are quickly immersed and

drown (Kearns and Inouye 1993). We set pan traps

approximately 40 cm above the ground using Vigoro

plant props (Model #611872). Fifteen pan traps were

evenly distributed along the middle 100 m of each

transect. We alternated pan trap colors, for a total of

five blue, five yellow, and five white traps (Westphal

et al. 2008). We collected bees from pan traps * 24 h

after they had been set. We washed, pinned, and

labeled bees the same day they were collected.

Active sampling

We actively sampled bees using aerial netting. A field

team member walked along the 200 m transect line

searching for bees for 30 min. We paused timers while

handling bees. Sampling was conducted between

10 a.m. and 11 a.m. We pinned and labeled bees the

same day they were collected.

Bee identification

We identified bees to the species level or lowest

possible taxonomic category based on morphological

characteristics. We used interactive keys from Dis-

coverLife (www.discoverlife.com) to identify bees.

Particularly difficult specimens were determined with

assistance from Sam Droege (USGS) and Ismael

Hinojosa (UNAM).

Landscape metrics

Our landscape metrics were based on LANDSAT

remote sensing data (30-m spatial resolution) from

2011 with automated classification from the National

Land Cover Database (‘‘NLCD’’; Homer et al. 2015).

The NLCD classifies land cover into sixteen landscape

classes, which we aggregated into nine: water, tree-

covered, row crop, grassland, urban, barren, shrub,

pasture, and wetland. These classes are coarse and do

not differentiate between land use distinctions that are

very likely important for bee communities, for exam-

ple different row crop types with wind versus insect-

pollinated flowers. Still, this scale of classification

matches our interest in focusing on general trends and

patterns in land use rather than dissecting fine-scale

differences.

We used this classification to calculate seven

landscape metrics surrounding each site (Table 2),

reflecting landscape composition [(1) % tree cover, (2)

landscape richness, and (3) landscape Shannon diver-

sity] as well as landscape configuration [(4) aggrega-

tion index, (5) mean patch shape, (6) mean core patch

area, and (7) mean effective mesh size). We calculated

metrics using SDMTools (VanDerWal et al. 2014) at

four buffer radii around each site: 500, 1000, 2000, and

5000 m. All metrics except % tree cover were

calculated at the landscape level, rather than the class

level, i.e. each metric includes all land cover classes,

rather than just a single class. Mean core patch area

was calculated with an edge depth of one 30-m pixel

(i.e., pixels at the very edge of a landscape class were

not included in the core area calculation). We chose

this edge depth because we felt it was most reflective
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of how the bulk of bee species would sense the

environment relative to their flight distances. In that

context, 60 m (across a landscape class transition on

both sides) is a relatively substantial distance for bee

flight between the core areas of two landscape classes.

We re-scaled mean core patch area, mean effective

mesh size, and aggregation index from 0 to 1 (based on

the maximum and minimum values we observed) to

allow better model fitting.

The landscape composition variables in this study

describe the variety of grid cells of different types

potentially available to bees within a landscape. We

selected % tree cover to understand in part how pine

plantation expansion may affect bees, though the

NLCD classification does not distinguish between tree

plantations and natural forests. Land cover richness

quantifies the number of land classes in a landscape

and is the simplest measure of landscape composition.

Shannon’s Diversity Index here is focused on the

landscape, rather than on species; it is a metric of

landscape heterogeneity that takes both land cover

type richness and evenness into account.

In addition to landscape composition variables, we

use landscape configuration variables to describe

attributes of constituent patches, such as shape, core

area, subdivision, and dispersion. We selected one

landscape metric for each of these factors. We selected

mean shape index to describe patch shape because it is

normalized to prevent a size dependency problem

(e.g., circles of differing area have different edge-to-

area ratios; this metric corrects for that) and it is not

overly sensitive to sites with only a few patches

(McGarigal and Marks 1995). We used mean core

patch area because core area can be a better predictor

of habitat quality than total area (Temple 1986). We

chose effective mesh size to describe the subdivision

of the landscape because it takes into account all

patches according to their size, and it is more sensitive

to fragmentation than other subdivision metrics

(Jaeger 2000). We described dispersion of the differ-

ent land classes in the landscape with the aggregation

index. This metric tells us how dispersed the land

classes are, and it is scaled to account for the

maximum possible number of like adjacencies given

the abundance of land classes (He et al. 2000).

Data analysis

Overview

We analyzed how bee abundance and species richness

changed with local management (whether a study site

was in a natural (longleaf) forest remnant, pine

plantation, clearcut or cornfield) as well as various

landscape context metrics (Tables 1, 2), specifically

including both landscape configuration and composi-

tion. We also assessed interactions between local and

landscape metrics. We used a model-selection frame-

work (Burnham and Anderson 2002) to select parsi-

monious models from our set of explanatory variables.

We conducted all statistical analyses in R (R Core

Team 2016).

Table 2 Landscape metrics describing the composition and configuration of landscapes in terms of the nine different landscape

classes

Landscape metric Description

Composition

% Tree cover Percent of tree cover in the landscape

Land cover richness Number of land classes in the landscape

Shannon’s Diversity Index Measure of richness and evenness of land classes

Configuration

Mean Shape Index Normalized perimeter to area ratio, describes shape

Mean core patch area Area of patch comprised of core, describes edge depth

Mean effective mesh size Probability that two points in a region will be connected, describes subdivision

Aggregation Index Percentage of like adjacencies given the proportion of each class in the landscape
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Linear models

We attempted to run linear mixed-effects models

incorporating the repeated measures of bee commu-

nities at each site, but we were unable to achieve

convergence in a substantial portion of models. Thus,

we used linear models to analyze the effects of local

management, landscape metrics, and all local 9

landscape interactions (but not landscape9 landscape

interactions). Because local management was repre-

sented as a single categorical factor, this meant that we

included seven two-way interactions in our set of

candidate models.

Richness and abundance

For bee abundance, we used the mean per-sample

abundance in each site, which we natural-log-trans-

formed to better meet model assumptions. Because of

the dominance of four species of Lasioglossum in our

dataset, we also assessed abundance of all bees not

including those species to assess potential differences

in drivers of abundance. For species richness, because

our sampling was not perfectly balanced, and because

the probability of species detection increases with

sampling effort, we used the iNEXT package (Chao

and Jost 2015) to construct rarefaction curves of

species richness, bootstrapping 50 times to estimate

site species accumulation at the third sample.

Multicollinearity and spatial autocorrelation

We assessed multicollinearity among various land-

scape metrics with variance inflation factors (e.g. Zuur

et al. 2010), using the ‘‘fmsb’’ package for R

(Nakazawa 2017) and a stepwise approach to elimi-

nate metrics above a threshold VIF of 5, to confirm

that the set of best models did not include collinear

explanatory variables. VIF cutoff values are typically

five or 10 (Craney and Surles 2002), and we used the

more stringent value of five in our analyses. We

assessed spatial autocorrelation in abundance and

diversity among plots within each sampling year using

Moran’s I, calculated in the ‘‘ape’’ package for R

(Paradis et al. 2004).

Model selection

We compared candidate models using automated AIC

(Akaike’s information criterion) model selection with

the ‘‘MuMIn’’ package for R (Barto 2016). AIC model

selection balances model fit with model complexity

(e.g. Goodenough et al. 2012). We included the full set

of (non-collinear) candidate models at each landscape

buffer radius in the selection process, to select not only

the best set of explanatory variables, but also the best

performing buffer radius.

Model assumptions

After model selection, we assessed if the best models

met key statistical assumptions, including multivariate

normality of errors, homoscedasticity, and linear

relationships using diagnostic plots (‘‘plot.lm’’ in base

R).

Results

Overview

In total, we sampled 5758 bee specimens representing

128 species: 1480 specimens (82 species) in Alabama,

1756 specimens (76 species) in Florida, and 2522

specimens (78 species) in Georgia. Overall, the four

most abundant species were Lasioglossum floridanum,

Lasioglossum reticulatum, Lasioglossum nymphale,

and Lasioglossum puteulanum, which together repre-

sented almost 42% of all sampled bee specimens

(Table 3). All Lasioglossum species combined (not

just the four most abundant) represented nearly 61% of

specimens. After the four most abundant species, the

next most common Lasioglossum (L. pectorale) was

represented by fewer than half the number of individ-

uals (156) relative to L. puteulanum. The most

common non-Lasioglossum species was Mellisodes

communis with 353 individuals (6.1% of all sampled

specimens).

Model assumptions

Our best set of models met all the key assumptions for

linear models, including linearity, homoscedasticity,

normality of errors, lack of spatial autocorrelation

(Moran’s I). Best models with (raw) mean abundance
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did not meet several model assumptions, but best

models with logged mean abundance performed well.

Our set of explanatory variables at buffer radii\ 5

km lacked collinearity (defined as VIFs\ 5), but a

single variable, mean core patch area, increased VIFs

above this threshold with a 5-km buffer radius.

Buffer radius

The best models (within two delta-AICc values of the

best model) for overall bee abundance used a 1-km

buffer, while the best models for richness and for

abundance with dominant Lasioglossum removed

used a 2-km buffer. For species richness, one model

at the 5-km buffer radius was within two delta-AICc

points of the best model (at 2-km), but included mean

core patch area; that variable, however, was highly

collinear with other explanatory variables at that

radius, as determined by VIFs. When mean core patch

area was removed, the resulting model was no longer

in the set of best models. Thus, we retained the 2-km

buffer radius only for bee species richness.

Bee abundance

The two best models for overall bee abundance

(Table 4) both included three sets of explanatory

variables: (1) local management (Fig. 2); (2) several

landscape metrics, both compositional (land cover

richness and land cover Shannon diversity) and

configurational (mean core patch area, mean shape

index, and aggregation index) (see Online Resource 1

for more detail); and (3) an interaction between local

management and mean core patch area (Fig. 3). The

second-ranked model differed only in including an

additional explanatory variable, % tree cover. In terms

of main effects, nearly all of the landscape metrics

surprisingly showed negative relationships with bee

abundance, with the sole exception of land-cover

richness, which was positively related (Table 4,

Online Resource 1).

By contrast, when assessing abundance with the

four dominant Lasioglossum species removed, there

was a very different single best model (Table 4). First,

that model was at a different buffer radius (2-km) than

the model for overall bee abundance (1-km). Second,

the best model did not include any metrics of

landscape configuration (as compared to overall bee

abundance, which included three such metrics; Online

Resource 2). Third, while the three metrics of land-

scape configuration that were included in the best

model were shared with either both the two best

models for overall bee abundance (land cover rich-

ness, land cover Shannon diversity) or one of the

models (% tree cover), they differed in all having

positive effects on bee abundance, as opposed to

Table 3 Most abundant

bee species across all sites

and by state

Most abundant bee species Number of bees Percent of total

Overall 5758

Lasioglossum floridanum 958 16.6

Lasioglossum reticulatum 520 9.0

Lasioglossum nymphale 485 8.4

Lasioglossum puteulanum 447 7.8

Alabama 1480

Lasioglossum floridanum 325 22.0

Lasioglossum pilosum 94 6.4

Melissodes trinodis 75 5.1

Florida 1756

Lasioglossum nymphale 471 26.8

Lasioglossum floridanum 251 14.3

Melissodes communis 122 6.9

Georgia 2522

Lasioglossum reticulatum 414 16.4

Lasioglossum floridanum 382 15.1

Lasioglossum puteulanum 351 13.9
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negative effects of % tree cover and land cover

Shannon diversity in the models for overall bee

abundance (Online Resource 2). Fourth, while both

responses included local 9 landscape interactions,

without dominant Lasioglossum these were for two

compositional metrics (% tree cover and land cover

Shannon diversity, Fig. 4) as opposed to a single

configurational metric (mean core patch area) in the

models for overall bee abundance.

Bee richness

The set of best models included four models for bee

species richness (Table 4, Online Resource 3), again

all based on a 2 km buffer. All four shared a core set of

explanatory variables (and the only variables in the

model with the single lowest AIC) including local

management (Fig. 2); landscape composition (% tree

cover, land cover richness); landscape configuration

(mean shape index); and an interaction between local

management and% tree cover (Fig. 4). In addition, the

three other models each included a single different

additional variable: land cover Shannon diversity,

aggregation index, and an interaction between local

management and mean shape index (Table 4, Fig. 5).

In contrast to abundance, in terms of main effects these

landscape metrics were nearly all positively related to

bee species richness, with only Shannon diversity

showing a negative relationship.

Discussion

We examined the effects of local-level forest man-

agement practices, landscape context, and their inter-

actions to better understand the potential implications

of pine plantation land use on bee communities. Three

primary findings emerge from our results. First, we

found that both landscape composition and configu-

ration are important for both bee abundance and
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richness, but that the direction (positive vs. negative)

of landscape effects was often contrasting between bee

abundance and species richness. Second, these con-

trasts may be largely explained by the responses of a

few highly abundant and closely related taxa in our

dataset. Third, there were interactions between the

local-level management and the landscape context,

which appeared to be driven by differing impacts of

landscape heterogeneity based on the quality of local

habitats. We discuss each of these findings in more

detail below.

Heterogeneity in landscape composition and com-

plexity in landscape configuration can each theoreti-

cally have positive and negative effects on

biodiversity (Fahrig et al. 2011). In terms of positive

effects, more heterogeneous composition can provide

a greater diversity of resources for breeding, feeding,

and nesting (Benton et al. 2003) and more complex

configurations can allow for easier access to a range of

resources (Dunning et al. 1992; Flick et al. 2012). By

contrast, however, for species that require only a

single habitat type or a small number of habitat types

to meet their life history requirements, any
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interruptions in these high-quality habitats—while

increasing compositional heterogeneity and configu-

rational complexity—could negatively impact on that

biotic group. This is in line with much of the work on

the negative effects of habitat fragmentation on

biodiversity (Ewers and Didham 2006).

We hypothesized that landscape compositional

heterogeneity and configurational complexity would

be positively associated with bee richness and abun-

dance. Our study took place in a highly human-

modified region, the coastal plain of the southeastern

US, which has only * 3% of the original land cover

(longleaf pine savannah) remaining (Frost 2006). In

addition, bees are relatively resilient to land-use

change (e.g. Winfree et al. 2007; Brosi et al. 2008),

with for example relatively high diversity and abun-

dance found in cities (Hall et al. 2017). This resilience

is likely due at least in part to the fact that nearly all

bees can forage over relatively large areas; even a

central-place foraging bee with only a 200 m flight

range (Greenleaf et al. 2007) has a home range

of[ 12.5 Ha. While previous research on agroecosys-

tems has generally found only weak effects of

landscape configuration on wild bee pollinators in

agroecosystems (Kennedy et al. 2013), some studies

do document such relationships (e.g. Moreira et al.

2015). We expected to find stronger relationships in

part because our sample size is among the largest of

any study focusing on bees (85 sites), allowing us

greater statistical power than some other studies. By

contrast, if the only bee taxa left in our highly-

modified study region were those that are highly

resilient to disturbance, we expected that such rela-

tionships would be weaker. Our results could also

differ from previous work given our primary sampling

focus on tree-covered habitats, in which we found

relatively low bee abundance and diversity compared

to some studies of more-open habitats (e.g., Brosi et al.

2008, where sampling occurred in pastures).

Contrasting drivers for bee abundance and species

richness

Metrics of both landscape composition and configu-

ration are included in our best models of both overall

bee abundance and richness. All three of the examined

landscape composition metrics (% tree cover, land

cover richness, land cover Shannon diversity) as well

as two configuration metrics (aggregation index and

mean shape index) were included in the set of best

models for both overall bee abundance and bee species

richness. In addition, for overall abundance one of the

best models also included another configuration

metric, mean core patch area. The majority of

literature on bee communities and land use does not

distinguish between the effects of landscape compo-

sition and configuration (Lennartson 2002; Hadley and

Betts 2012; but see Moreira et al. 2015). Although

landscape composition and configuration are often

confounded (Fahrig 2003), it is important to separate

composition and configuration to understand how to

best manage landscape elements—including forest

plantations—to conserve biodiversity (Hadley and

Betts 2012). An excellent review of studies of

landscape effects on bees (Viana et al. 2012) makes

it clear that while a multitude of studies have

considered landscape composition (particularly the

proportion of native or semi-native habitat in a

landscape), there have not been enough studies to

meaningfully synthesize effects of landscape config-

uration on bee communities.

While overall bee abundance and richness shared

several landscape predictors in their sets of best

models, there were two sets of puzzling results. First,

there was a consistent contrast in the directional

responses between land-cover richness and land-cover

Shannon diversity, which in turn are positively related

to one another. Second, the response directions with

most other landscape variables were largely contrast-

ing between abundance and richness.

Land-cover richness and land-cover Shannon diver-

sity were the only factors with consistent directional

responses for both richness and overall abundance;

land cover richness was positively related to both,

while land cover Shannon diversity was negatively

related to both. This is a surprising result because not

only are both metrics of heterogeneity in landscape

composition, but also because Shannon diversity is a

function of two components: richness and evenness.

As such these contrasting directional results, with land

cover richness positive and land cover Shannon

diversity negative, must at some level be driven by a

negative relationship with evenness. This could make

sense if one or more habitat types provide substantial

resources, in combination with other habitat types that

provide resources needed only rarely or in small

quantities, especially if there were several such

distinct habitat types. In such a situation, richness of
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habitats would typically be beneficial in terms of

increasing the probability of presence of those habitats

providing such ‘‘micro-resources’’, while evenness

could be detrimental by reducing the quantity of one or

more key habitats that provide the bulk of resources.

There were three landscape factors which showed

contrasting directional responses when comparing bee

species richness and abundance. These included a

compositional metric (% tree cover) and two config-

urational metrics (aggregation index and mean shape

index). For each of these metrics, the relationships

with overall abundance were negative, and positive

with richness. These contrasting responses are coun-

terintuitive because typically abundance and species

richness are positively related; if nothing else, by

sampling more individuals (greater abundance) there

is a greater chance of recording more species.

While the contrasting results for abundance and

diversity are puzzling at first glance, parallel results

have been reported before, and relate directly to the

dynamics we discussed above for land cover (as

opposed to bee) diversity and abundance. For exam-

ple, Meyer et al. (2009), studying hoverflies in an

agricultural landscape in Germany, found that in in

homogeneous landscapes, hoverfly abundance was

high but diversity was low; and similarly, in hetero-

geneous landscapes, they found higher diversity and

lower abundance. Their results were consistent with

high dominance and abundance of a few hoverfly

species that do well in homogeneous croplands,

whereas the less-abundant species may have

responded to particular habitat elements in unique

ways (reflecting differentiated life-history require-

ments), thus generating higher diversity but lower

overall abundance in heterogeneous landscapes. This

finding is highly consistent with our results, given that

we also found one highly-abundant group of bees (a

few species of Lasioglossum) associated with homo-

geneous landscapes, as we detail in the next section.

Effects of common Lasioglossum species

on abundance measures

The contrasting directional relationships between

landscape variables and richness and abundance can

be explained in part through the contribution of

common Lasioglossum (Dialictus) to our abundance

measures. Again, four Lasioglossum (Dialictus) spe-

cies comprised[ 40% of the specimens in our dataset,

and when those taxa were removed, the abundance

results changed substantially (Table 4), aligning much

more closely to the richness models.

The natural history of these four common La-

sioglossum (Dialictus) species may partially explain

why abundance in these species responds distinctly to

local and landscape factors. This is particularly true

given that these Lasioglossum species were particu-

larly abundant in clearcut habitats, comprising almost

70% of the specimens found in clearcuts. Lasioglos-

sum is the single most speciose genus of bees on Earth,

with more than 1250 described species (Michener

2000). They are primarily ground-nesting, though

some species nest in rotting wood (Michener 2000);

while the nesting habits of these particular species are

not documented, they were common even in clearcuts

with woody debris removed (about 50% of our

clearcut sites; see Gottlieb et al. 2017), consistent

with the idea that they are soil-nesting. The mechan-

ical disturbance of tree harvesting in clearcuts also

typically involves substantial soil and non-tree vege-

tation disturbance, which can open up more nesting

sites. In addition to nesting habitat, another life-history

dimension which may be important is sociality. While

we do not have information on sociality in these

particular taxa, approximately 40% of Lasioglossum

species are either eusocial or are a member of a

predominately eusocial subgenus, of which Dialictus

is one; this includes several taxa that are facultatively

social (Michener 2000). Social taxa can have very

high densities of individuals around nest sites, thus

potentially disproportionately contributing to abun-

dance data. If nesting sites are a limiting resource, and

particularly if these species are able to quickly

colonize newly-open nesting sites in clearcuts (which

sociality could contribute to), that could help to

explain their high abundance in relatively homoge-

neous landscapes (those with low % tree cover, land

cover Shannon diversity, patch interspersion (aggre-

gation index), and edge-area relationship (shape

index)).

Local: landscape interactions

We found interactions between local-level manage-

ment and landscape context for both bee abundance

and species richness, indicating that landscape context

has differing effects depending on local management.

These interactions are consistent with the hypothesis
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that in higher-quality local habitats, greater hetero-

geneity in landscape composition and greater com-

plexity in configuration will be negative for bee

communities. This is predicated on the ideas that (1)

the local habitat is likely to be a substantial component

of the surrounding landscape area; and (2) that for

‘‘higher-quality’’ local habitat, other habitat types, on

average, provide a lower resource density for bees

(and vice versa for ‘‘lower-quality’’ habitats).

In terms of overall bee abundance, both best models

included an interaction between local management and

mean core patch area (Fig. 3). The pattern of the

interaction is striking, in that there is a positive

relationship between core area and bee abundance for

the natural reference condition (longleaf pine savan-

nahs), while in the three managed ecosystem types

(clearcuts, plantation forests, and cornfields) this rela-

tionship is negative, and particularly strongly negative

in cornfield systems. This result is consistent with the

idea that in lower-quality local habitats, greater land-

scape complexity leads to better biodiversity outcomes.

For both bee species richness and for abundance

without the dominant Lasioglossum, the best models

included an interaction between local management

and tree cover (Figs. 4a, 5a), and the interaction

patterns were qualitatively identical between the two.

Specifically, there is a negative trend for the effect of

increasing tree cover in managed forests, whereas that

effect is positive in other land uses, with a particularly

steep slope in corn fields. These relationships are

consistent with the idea that in managed forest, adding

‘‘more of the same’’ (tree-covered habitat) is negative

for bee communities—likely leading to reduced

landscape complexity overall—but that in habitats

without tree cover (clearcuts and cornfields), adding

tree-covered habitats would increase landscape com-

plexity and thus biodiversity benefits. The exception in

this relationship is our natural reference condition

(longleaf pine savannah) habitats, where more tree

cover increased species richness and abundance

(again, excluding dominant Lasioglossum). In this

instance, we conjecture that having more of this

potentially high-quality habitat available at the land-

scape level is beneficial for bee biodiversity.

For abundance without the dominant Lasioglossum,

the best model also included an interaction between

local management and land cover Shannon diversity

(Fig. 4b). Here, clearcut habitats are essentially flat

with respect to land cover Shannon diversity, managed

forests and longleaf pine savannahs have a negative

trend, while in cornfields there is a strong positive

trend. Again, if cornfields are relatively poor habitats

(in terms of providing a range of resources for bees)

having more diversity at the landscape level may be

most beneficial in those habitats. We suspect that in

this case, cornfields are likely the most locally

homogeneous land use type, and thus bees in such

habitats may benefit most from any increases in

complexity at the landscape scale.

Finally, for bee species richness, one model in the

set of four best models also included an interaction

with mean shape index (Fig. 5b), i.e. edge-area ratio.

Here, clearcut and managed forest habitats showed a

weakly increasing trend, whereas both cornfield and

longleaf pine habitats showed strongly decreasing

trends. We are puzzled that bees in cornfields respond

in a strong negative way to increasing edge quantity in

the landscape, given the previous results we have

discussed. One potential explanation for the pattern in

cornfield habitats is that if increasing edge allows for

easier access to other habitat types, bees may be more

likely to disperse to higher-quality habitats nearby.

Study limitations

As in all field studies focused on landscape scales,

there are a number of design and analysis trade-offs

which present limitations to our work. Among the

most important of these are the level of landscape

classification, temporal variation, and potential biases

in our bee sampling. A key limitation in this category

is that we were unable to differentiate between pine

plantations and natural forests in our classification of

the landscape. A finer classification of the landscape

may have allowed us to better understand the impacts

of pine plantations on the landscape and the implica-

tions that may have for bee diversity. Similarly, we

were unable to distinguish between the various types

of row crops in our system, which likely have

contrasting effects on bee communities. Additionally,

our study was unable to account for temporal varia-

tion. Another issue was time lags between landscape

characterization and sampling. The landscape charac-

terization was based on satellite data from 2011, while

our bee sampling took place 2–4 years later. Hope-

fully, as research continues to move to understand

ecological processes on a larger landscape scale and

technology continues to advance, more current and
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finely characterized landscape data will become

available. Finally, biases in the sampling of bees

may have affected our results. For example, bees in the

family Halictidae (which includes the genus La-

sioglossum) are known to be sampled more reliably

with pan traps than other taxa (Cane et al. 2001). We

partially corrected for this bias by running our

analyses with and without the four dominant La-

sioglossum species. In addition, across the study we

used two different sampling methods, with aerial

netting in addition to pan traps, and together these

methods have been shown to work well to sample bee

communities (Westphal et al. 2008).

Future work

Our results underscore several areas in which future

work is needed. There continues to be limited research

on the effects of landscape context on bee diversity.

Future research should address the limitations of our

study, and explore the impacts of pine plantations on

the landscape and the effects of temporal variation on

bee communities. Future studies should explore the

effects of landscape context on bee community com-

position (i.e., not just diversity and abundance), as

community composition can significantly impact

ecosystem processes (Tilman et al. 1997). To under-

stand how we can increase biofuel cultivation while

preserving bee biodiversity, we must consider beta-

diversity (Karp et al. 2012). Studies have begun to

document decreases in beta-diversity due to land-use

intensification (Karp et al. 2012). Future work also

should explore how the interactions between local-

level management and landscape context impact the

community composition and beta-diversity. Diversity

is essential to ecosystem resilience (Peterson et al.

1998), and we must understand the impacts of

agricultural intensification so that we can best manage

forest plantations and the landscape context in which

they are placed.

Conclusion

Agricultural intensification is driving major landscape

changes (Kareiva et al. 2007) and given the impor-

tance of maintaining biodiversity, we must understand

how these changes will impact pollinators on both a

local and landscape level. It is likely that plantation

forestry will expand substantially in the near term in

the southeastern United States, to meet ever-increas-

ing demand for wood and wood products, as well as

energy demands that may be addressed in the future

with cellulosic biofuels cultivation. This landscape

transformation will likely significantly impact bee

communities. Management policies and guidelines

must consider the landscape context in addition to the

local-level management, as well as the interactive

effects of these different spatial scales. The manage-

ment of spatial heterogeneity of these biofuel cultiva-

tion landscapes is critical to the conservation of bee

diversity. Our results indicate that, while adding tree

cover in the landscape can be beneficial for bee

communities in non-forest land uses, that by contrast

as tree cover increases, adding more plantation forests

may be detrimental. Bees and other wild pollinators

are continuing to decline (Potts et al. 2010; Burkle

et al. 2013), and we must halt these declines to ensure

stable pollination services in food systems (Garibaldi

et al. 2013) and pollination functioning in natural and

semi-natural ecosystems (Ollerton et al. 2011).
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