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Abstract

Context Allometric scaling laws are foundational to

structuring processes from cellular to ecosystem

levels. The idea that allometric relationships underlie

species characteristic selection scales, the spatial

scales at which species respond to landscape features,

has recently been investigated, however, supporting

empirical evidence is scarce.

Objectives Lack of pattern can be explained by

inaccurate estimation, low power, confounding fac-

tors, or absence of a relationship. In this paper, we

evaluate the relationship between body size and

species characteristic selection scales after overcom-

ing limitations of previous study designs.

Methods We conducted 1328 avian point counts

across the state of Nebraska using the robust sampling

design to account for imperfect detection. We used

Bayesian latent indicator scale selection with N-mix-

ture models to estimate species’ characteristic selec-

tion scales of six habitat features for 86 species. We

propagated the uncertainty associated with assigning

characteristic scales to a model of the relationship

between body size and characteristic spatial scales.

Results Species characteristic scales varied across

habitat predictors, and varied in the uncertainty

associated with selecting single characteristic scales.

After propagating uncertainty our results do not

support a relationship between species’ body size

and the spatial scales at which they respond to

landscape features.

Conclusions As species abundance integrates birth,

death, immigration, and emigration processes, each of

which are influenced by ecological processes mani-

festing at various scales, we question whether a

general allometric relationship should be expected.

Our results suggest that selection may act on responses

to specific environmental features, rather than

responses to spatial scale per se.

Keywords Allometry � Bayesian latent indicator

scale selection � BLISS � Multi-scale � Scale of

response � Species characteristic scale
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Introduction

It is increasingly apparent that the scale at which

individuals perceive and interact with their environ-

ment shapes the response of species to ecological

conditions (Wiens 1976; Johnson 1980; Fahrig 2001).

Indeed, the notion that particular spatial scales may

best describe specific species-habitat relationships is

substantiated across a wide range of taxa (Roland and

Taylor 1997; Saab 1999; Mowat 2006; Nams et al.

2006), and is formally termed the species character-

istic selection scale (SCSS) (Holland et al. 2004). The

SCSS framework postulates that within a species

ecological conditions measured at a particular spatial

scale can best-predict species’ responses, whereas

conditions measured at other spatial scales may poorly

predict species’ responses (Robinson 1950). As such,

mismatches between the scale at which we consider

species to respond to environmental conditions, and

the true scale of the ecological processes affecting the

species can contribute to incorrect inference (Henebry

1995; Keitt et al. 2002). Despite the potential impor-

tance of SCSS in shaping our understanding of

everything from species richness and community

dynamics (Levin 1992; Rahbek and Graves 2001;

Whittaker et al. 2001) to conservation and manage-

ment practices (Razgour et al. 2011), the underlying

processes generating SCSS remain largely unknown

(Miguet et al. 2016). A lack of a formal understanding

of the processes driving SCSS limits our ability to

develop a more predictive or hypothesis-testing

framework for identifying SCSS, and thus increases

the risk of mismatches between what we think we

know and the true scale of the ecological processes

affecting a species (Jackson and Fahrig 2015).

Body size is among a species’ most apparent

characteristics (LaBarbera 1989) with pervasive

effects on population, community, and ecosystem

processes via its functional link to individual require-

ments and performance (Calder 1984). For example,

size-dependent metabolism can constrain population

dynamics through the scaling relationship between

size and individual rates of birth, growth, and death

(Savage et al. 2004; West et al. 1997). The distribution

of body sizes within a population can subsequently

moderate a population’s ability to respond to distur-

bance. Additionally, individual-level resource require-

ments, which scale with body size, can constrain

population size at carrying capacity such that

abundance typically declines with increasing body

size (Damuth 1981; Allen et al. 2002; Savage et al.

2004). Given the correlation between body size and

other scale dependent species-specific traits such as

metabolic rate, dispersal, and home range size (Peters

1986; West et al. 1997; Jenkins et al. 2007), it is not

surprising that allometric scaling is increasingly

invoked as a means to further our understanding of

SCSS (Thornton and Fletcher 2014; Jackson and

Fahrig 2015).

There are two obvious mechanisms that could

underlie an allometry of SCSS. First, an allometry of

SCSS could derive from size-dependent metabolic

rate (West et al. 1997). Larger species have larger

energetic demands that necessitate a larger area over

which to collect resources (Peters 1986). Thus, a

neighborhood scale with the resources necessary to

support the energetic requirements of a population

could explain species abundance. Second, the scale at

which a species interacts with the landscape may be

related to perceptual range, which is related to body

size through sensory organs and mobility (Wiens

1989; Doak et al. 1992; Crist and Wiens 1994; With

and Crist 1996; Zollner 2000). Larger species may

respond to environmental conditions across a larger

spatial scale because either they perceive the environ-

ment at larger scales (Mech and Zollner 2002), or

because they are able to move farther to satisfy daily,

seasonal, or annual requirements (Perry and Garland

2002).

Despite an apparent expectation for an allometry of

SCSS, most studies have returned equivocal or largely

null results (Hostetler and Holling 2000; Holland et al.

2005; Cunningham and Johnson 2006; Desrochers

et al. 2010; Fisher et al. 2011; Thornton and Fletcher

2014). For example, none of the 22 individual avian

studies analyzed in a meta-analysis demonstrated a

statistically significant relationship (Thornton and

Fletcher 2014). Although the repeated failure to find

a relationship may suggest body size is not important

in understanding the scalar relationship between

species and their environment, it may also reflect

issues of study design. For example, many analyses of

SCSS have small sample sizes (12 beetle species:

Holland et al. 2005; 6 mammal species, Fisher et al.

2011; meta-analysis of 22 avian studies: mean = 19

bird species, Thornton and Fletcher 2014), leading to

relatively low power to detect the relationship of

interest. This issue is further compounded when there
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is a lack of variation in body sizes among species

considered. In birds, the taxa with the largest number

of studies performed, the average difference between

the smallest and largest species considered is only 315

grams (meta-analysis of 22 avian studies: Thornton

and Fletcher 2014). Combined with low sample sizes,

the lack of variation in body sizes greatly reduces the

statistical power of a study, likely obscuring relevant

biological patterns. Finally, one of the biggest issues

facing studies of SCSS is a lack of standardized

methodology for choosing appropriate landscape

variables and spatial scales to consider when postu-

lating a SCSS. Species are presumably responsive to

any number of land cover classifications; yet for

logistical reasons, most studies limit their analyses to

only a few cover types which are often averaged

(among avian studies the median number is 3:

Thornton and Fletcher 2014). Species clearly affiliate

with different land cover types at different spatial

scales (e.g., Hinsley et al. 1995; Naugle et al. 2000;

Jorgensen et al. 2014), and the inclusion or exclusion

of particular land cover classifications in an analysis

may even alter the scale at which a species associates

with any other landscape types (Stuber et al. 2017).

Similarly, variation in the number of scales considered

for each land cover type can play a large role in

influencing the choice of a SCSS (Jackson and Fahrig

2015), and thus the potential strength of the relation-

ship between body size and SCSS. When the number

of scales considered is small, the risk of inappropri-

ately assigning a scale to a species is high. Indeed,

variation in the scales considered between different

investigations has led to inconsistencies in the SCSS

selected for the same species, indicating the potential

for error that may further obscure relevant biological

relationships (Thornton and Fletcher 2014).

Given the theoretical support for the presence of a

relationship between body size and SCSS, coupled

with recent meta-analyses suggesting sampling design

may ultimately obscure the relationship (Thornton and

Fletcher 2014), there is a need for a more compre-

hensive approach to explore the allometry of SCSS.

Here we attempt to overcome the limitations of

previous investigations by considering the relationship

between body size and SCSS for 86 species repre-

senting three orders of magnitude in body size (min:

6 g, max: 6023 g). Using an analytical method

(Bayesian latent indicator scale selection; BLISS)

demonstrated to outperform other common SCSS

selection techniques (Stuber et al. 2017), we consider

the potential for six land cover types, acting at nine

candidate spatial scales (500 m–20 km radii) to reflect

the specific SCSS for each of the 86 species. In

considering the relationship between body size and

SCSS across species, we did not average the scales of

response for multiple habitat predictors, rather we

included the intraspecific variation. Using error prop-

agation, we then investigated the ability of body mass

to predict SCSS while accounting for a measure of

species mobility.

Methods

Data collection

We recorded the abundance of Nebraska breeding bird

species (Table 1) from April-July of 2016 across

Nebraska, USA using a point count sampling method

(Blondel et al. 1981; Buckland et al. 2001) with up to 4

replicate samples to account for imperfect detection

(e.g., the ‘robust’ sampling design; Pollock 1982). We

performed surveys during maximum vocalization

times between 15 min before sunrise and 10h00

(Ralph and Sauer 1995). During surveys, we recorded

every individual seen or heard during a 3-min period

within 500 m of the observer. We conducted surveys

at a total of 544 survey point locations. Not all points

were surveyed 4 times due to inclement weather

(including fog, drizzle, prolonged rain, and wind

greater than 20 km/h; n = 1328 total surveys

performed).

We investigated the influence of six land cover

types, row crop, Conservation Reserve Program

grasses (CRP), small grain, non-CRP grassland,

woodland, and wetland land cover, which are expected

to influence bird abundance at multiple spatial scales

(Patterson and Best 1996; Bakker et al. 2002; Van

Buskirk and Willi 2004; Cunningham and Johnson

2006; Kelsey et al. 2006; Winter et al. 2006; Renfrew

and Ribic 2008; Thompson et al. 2014). The propor-

tion of each land cover type within nine spatial scales

surrounding each survey point (500 m, 1000 m,

2000 m, 3000 m, 4000 m, 5000 m, 10 km, 15 km,

and 20 km radii) were derived from a 30 m resolution

spatially-explicit land cover product developed by the

Rainwater Basin Joint Venture for the state of

Nebraska, which was updated in 2015 (Bishop et al.
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2011). We chose the six spatial scales because they

range from the minimum point count sampling unit, to

substantially larger than expected breeding territory

sizes represented in our sample of species (Jackson

and Fahrig 2012).

Statistical analysis

We modeled the relative abundance of 86 bird species

using a standard Bayesian N-mixture model, which

combines a Poisson model for the latent ecological

process governing the distribution of species abun-

dance on the landscape with a conditional Binomial

model for the observation process regulating how

many birds are counted at a given location using our

repeated-measures design (Royle et al. 2007). Our

sampling design enabled us to model the key quantity

of interest, relative abundance, while correcting for

imperfect detection of individuals (Tyre et al. 2003;

Royle et al. 2005), which is often ignored in studies of

spatial scaling relationships.

We assumed a closed population for each site

within each year (Royle 2004), and we included year,

and the linear and quadratic effects of six land cover

types as fixed effects (centered on the grand-mean) in

the linear predictor for the ecological process. Our

linear predictor for detection probability included

date, time of survey and its quadratic effect, cloud

cover, wind speed, and temperature all centered on the

grand mean and scaled to 1SD, and observer identity

(total 8) as a random effect to account for among-

individual differences in surveyor ability (Kendall

et al. 1996; Diefenbach et al. 2003).

Because the composition of land cover variables

may influence abundance relationships at different

spatial scales, we incorporated multiple possible

spatial scales using Bayesian latent indicator scale

selection (BLISS), a model selection approach to

flexibly select the single best-performing spatial scale

for each predictor variable after evaluating all possible

combinations of spatial scales (Stuber et al. 2017).

Briefly, the nine spatial scales represent candidate

scales that entered the standard N-mixture model as

latent variables with each land cover predictor

appearing in the model at any of the potential scales.

Similar to typical MCMC sampling of coefficient

estimates, at each iteration of the reversible-jump

MCMC sampling procedure used in BLISS, a possible

spatial scale for each predictor is sampled. At each

iteration, the model included all land-cover variables

available in the study; however, at each iteration, each

predictor could take a different spatial scale propor-

tional to the predictor’s probability, which allows for

predictor-specific identification of the most important

spatial scales (see Stuber et al. 2017 for full details).

By using an independent latent scale indicator for each

predictor, BLISS allows each predictor to be estimated

at different spatial scales, and the reversible-jump

procedure avoids collinearity between spatial scales of

predictor variables. Furthermore, BLISS outperforms

the most common spatial scale selection procedures

currently used to identify spatial scales with the

highest predictive performance (Stuber et al. 2017).

Table 1 Parameter estimates for the relationship between body size and SCSS accounting for species’ average mobility

b (95% CI) equal propagation b (95% CI) proportional propagation

Intercept 3.52 (3.42, 3.63) 3.44 (3.33, 3.54)

Body mass 0.03 (- 0.003, 0.070) 0.04 (- 0.001, 0.07)

Mobility - 0.005 (- 0.025, 0.015) - 0.001 (- 0.02, 0.02)

CRP - 0.016 (- 0.018, - 0.014) 0.05 (0.047, 0.059)

Grain - 0.04 (- 0.042, - 0.038) 0.022 (0.017, 0.029)

Grass - 0.02 (- 0.023, - 0.019) 0.075 (0.070, 0.081)

Woodland 0.033 (0.031, 0.036) 0.126 (0.12, 0.13)

Wetland 0.054 (0.052, 0.057) 0.136 (0.13, 0.14)

Error propagation was performed by sampling the posterior distributions of BLISS scale estimates equally across species (Equal

Proportion) and in proportion to species’ prevalence in the dataset (Proportional Propagation). Mean estimates (b) and uncertainty

(95% credible interval (CI)) are presented based on 5000 samples of the posterior distribution. The Intercept represents the row crop

land cover type; all other land cover estimates represent differences from the Intercept
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BLISS was demonstrated to be accurate in identifying

true scales of effect, and returning unbiased, precise

coefficient estimates of predictor variables through

simulation studies under a range of commonly

encountered ecological and sampling scenarios (e.g.,

variation in spatial and temporal replication, between-

scale and between-predictor collinearity; Stuber et al.

2017). Extending the simulation study of Stuber et al.

(2017) to consider between-predictor correlations of

rho = 0.7, 0.8, and 0.9 indicated that the ability of

BLISS to accurately predict the appropriate scale

degraded at rho = 0.9 (data not shown). Because the

highest correlations between our predictor variables

were approximately rho = 0.8, where BLISS performs

well, we retained all land cover variables for analysis.

Analyses were performed in JAGS (Just Another

Gibbs Sampler; Plummer 2003) via the R program-

ming environment (R 3.1.1 package rjags; Plummer

et al. 2015) using zero-mean, normally distributed

priors with large variance for fixed effects and discrete

uniform priors for the nine candidate spatial scales.

We used the maximum observed counts at each survey

site as the initial starting values for MCMC sampling

and visually inspected trace plots to confirm conver-

gence. We ran each posterior simulation for 50,000

iterations, to attain convergence, with a burn-in period

of 10,000. Models that failed to converge were run

longer until they were assessed to converge (posterior

distributions based on 50,000 iterations after thin-

ning). We considered the spatial scales with the

highest posterior probabilities to be the SCSS for each

land cover predictor for each species, but also

propagated model uncertainty for further analyses

(described below).

We constructed a separate linear mixed model to

estimate the relationship between the SCSS of land

cover variables (log-transformed) estimated from

BLISS and included species’ average female body

mass and species’ mobility as fixed effects (both log-

transformed; package ‘‘lme4’’: Bates et al. 2014). For

all species, we retrieved adult female body mass from

Dunning (1984). We used the distance between

species’ breeding and wintering distribution centroids

based on species distribution data compiled by Bird-

Life International and Handbook of the Birds of the

World (Bird species distribution maps of the world

2016), calculated with the Haversine formula (Sinnott

1984), as a proxy for species’ mobility as this is

expected to relate to the maximum spatial scale at

which individuals of a species may perceive environ-

mental cues. The Haversine formula determines the

great-circle distance between two points (here, cen-

troids of breeding and wintering distributions) on the

surface of a sphere given their latitude and longitude.

Species average female body size and mobility were

not correlated in our species set.

We used this meta-model to estimate the relation-

ship between species’ size and mobility, and species’

SCSS estimated with BLISS. To account for uncer-

tainty in the selection of a single SCSS (e.g., each

predictor variable has a full posterior distribution of

possible SCSSs), for each species and land cover

variable we subsampled 5000 draws from the posterior

distribution of the scale indicator variable generated

by BLISS (e.g., 30,000 data points per species). When

there is a high degree of uncertainty in selecting a

single SCSS (e.g., low posterior probability in the

best-performing scale), error propagation becomes

important in subsequent meta-models that rely on

model estimates as inputs. When posterior probability

in the best single spatial scale is high, then using a

point estimate (e.g., a single value for SCSS rather

than the posterior distribution of model estimated

SCSS) in subsequent meta-models will return similar

results as an analysis accounting for model uncertainty

(i.e., because there is low uncertainty). Results can

potentially diverge in models accounting for uncer-

tainty versus not accounting for uncertainty when the

selection of a single SCSS is ambiguous. We used a

linear model with species as a random effect to

analyze the relationship between species’ body mass

and mobility (fixed effects), accounting for the land

cover predictor type, and the spatial scale predicting

abundance using the posterior sample to propagate

uncertainty in SCSS. The regression formula for our

meta-model was log(scalei) = b0(Crop) ? b1(CRP) ?

b2(Grass) ? b3(Grain) ? b4(Wetland) ? b5(Wood

land) ? b6log(bodymassi) ? b7log(1 ? mobilityi)

? cspeciesi ? ei where there was one data point i for

each combination of species and land cover predictor,

cspeciesi represented zero-mean normally distributed

random effects, and ei were independent and normally

distributed error terms. We did not incorporate

phylogenetic relatedness into our analysis because

we aimed to test the general hypothesis that SCSS

increases with body size regardless of whether vari-

ation is due to phylogenetic history per se (e.g.,
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following the metabolic theory of ecology within

birds), and no phylogenetic signal was detected in

previous analyses in birds (Thornton and Fletcher

2014).

We simulated 5000 draws from the joint posterior

distributions of the meta-model parameters using non-

informative priors (package ‘‘arm’’; Gelman et al.

2015). We extracted the mean and 95% credible

intervals (CI) around the mean (Gelman and Hill

2007), which represent the parameter estimate and its

uncertainty. Additionally, we ran the same analysis

where the error propagation of SCSS uncertainty (e.g.,

the posterior distribution subsampling procedure) was

performed in proportion to the prevalence of the

species in our dataset (e.g., rare species had propor-

tionally fewer posterior distribution samples) as we

expect prevalence to impact our ability to characterize

a SCSS (see Supplementary Data for data used to fit

equal error propagation and proportional error prop-

agation models).

Results

Prevalence of the 86 bird species in the analyzed

dataset ranged from a minimum of three survey sites

having at least one detection (Blue-gray Gnatcatcher,

Polioptila caerulea; Great-tailed Grackle, Quiscalus

mexicanus; Say’s Phoebe, Sayornis saya; and Western

Wood Pewee, Contopus sordidulus) to a maximum of

465 of sites having at least one detection (Western

Meadowlark, Sturnella neglecta) (see Supplementary

Appendix 1).

Bayesian latent indicator scale selection

We estimated the posterior probabilities of nine

candidate spatial scales for each of six land cover

predictors for 86 species and present the estimated

posterior probability of the single scale with the most

posterior probability (e.g., the designated SCSS;

Supplementary Appendix 2). Species varied in the

amount of uncertainty associated with selecting a

single SCSS for each predictor such that posterior

probability was often distributed among multiple

candidate scales, rather than a majority of posterior

probability being assigned to a single scale. Of the 86

species modeled, 16 species had greater than 0.50

probability in a single spatial scale (e.g., an absolute

majority in a single scale) for row crop, 23 species for

CRP, 15 species for grassland, 14 species for small

grain, 17 species for woodland, and 15 species for

wetland (Supplementary Appendix 2). Only 14

species had high posterior probabilities (i.e., greater

than 0.95) in a single scale for at least one land cover

predictor (Supplementary Appendix 1), indicating

unambiguous evidence for selecting a single best-

performing spatial scale for that predictor. On average,

species had a 0.35 probability in their most probable

spatial scales across predictor variables (sd = 0.17),

indicating weak evidence in support of selecting a

single best-performing spatial scale (see Fig. 1 for

example of species with high and low average spatial

scale posterior probabilities).

Relationship between SCSS, body size,

and mobility

In the equal error propagation meta-model, species

had, on average, smaller SCSSs designated for CRP,

small grain, and grassland compared to row crop

(Intercept; Table 1), and larger SCSSs designated for

woodland and wetland predictors than for row crop.

Under proportional error propagation (i.e., rare species

given less weight in the meta-model), on average, the

row crop predictor had the smallest designated SCSSs

(Table 1). After propagating the uncertainty in model

selection to subsequent linear regression modelling,

neither body size, nor mobility predicted the SCSS

explaining relative abundance across 86 species

(Fig. 2). Conducting proportional error propagation

did not alter the analysis (Table 1).

Discussion

By sampling a large number of species, spanning a

wide range of body size, and characterizing SCSS over

numerous candidate spatial scales we present a

cFig. 1 Posterior distributions of the spatial scales (in km) of six

land cover predictors: row crop, CRP, grassland, small grain,

woodland, and wetlands for Lark Buntings (LARB top- high

average posterior probability in a single scale) and Chipping

Sparrow (CHSP bottom- low average posterior probability in a

single scale) breeding in Nebraska as estimated by Bayesian

latent indicator scale selection
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comprehensive examination of evidence suggesting

that neither body size nor species’ mobility explain

variation in SCSS across multiple land cover types.

Although the traditional, sometimes arbitrary

approach of haphazardly selecting spatial scales at

which to conduct investigations is slowly being

replaced by multi-scale, and optimized multi-scale

studies (Wheatley and Johnson 2009; Holland and

Yang 2016), a predictive framework for making

selections remains elusive. Because only 25% of

multi-scale studies optimize the selection of spatial

scales (reviewed in: McGarigal et al. 2016) there is

much still to be learned from optimizing multi-scale

investigations. Indeed, methods for optimizing scale

selection are continually evolving, and traditional

model selection approaches (e.g., AIC), improperly

applied in multi-scale studies have been demonstrated

to indicate false scales of effect with disconcerting

frequency (Stuber et al. 2017). Previous multi-scale

studies based on small sample sizes and limited

variation across predictors have suggested an allom-

etry of SCSS (Holland et al. 2005; Fisher et al. 2011;

22 citations investigated within Thornton and Fletcher

2014 meta-analysis), which has spurred continued

scientific interest in determining the existence of a

biological relationship (Thornton and Fletcher 2014;

Jackson and Fahrig 2015); however, even after

accounting for the potential spurious effects of rare

species in our analysis, we were unable to predict the

spatial scale at which to measure habitat relationships

based on species’ body size or mobility alone.

Although we can hypothesize a relationship between

body size and the spatial scale at which a species

associates with the landscape based on sound theoret-

ical foundations such as energetic requirements and

mobility (Jenkins et al. 2007; Hendriks et al. 2009),

our study adds to those demonstrating no statistical

relationship (Hostetler and Holling 2000; Desrochers

et al. 2010; 22 avian studies analyzed in: Thornton and

Fletcher 2014). The largest and smallest species

included in our sample had characteristic spatial

scales across the full spectrum of candidate scales,

including the smallest and largest. This was also true

for the most localized and furthest-moving species

considered, indicating that neither size nor mobility

were systematically related to the size of the spatial

scale best predicting species’ response. Our study

encompassed substantial variation in body size,

mobility, and spatial scales, as well as a substantial

sample of species in a continuous landscape, which is

important for correctly identifying SCSS given the

expected weak relationship (Thornton and Fletcher

2014), but like many others we did not detect an

allometric relationship.

Given the preponderance of theoretical support for

an allometry of SCSS, why have we, and so many

others failed to find a relationship between body size

and SCSS? One possibility is the complexity of the

relationship between species abundance and the

environment within which a species is found. The

presence of individuals at a given location is the

product of a multitude of individual decisions as well

as the realization of multiple hierarchically linked

ecological processes that act over varying time scales

including birth, death, immigration, and emigration

(Wu 2006; Miguet et al. 2016). For example, popu-

lation fecundity, one component of population abun-

dance, is shaped by resource availability over short

time scales (e.g., during the breeding season) and

small spatial extents (e.g., within the breeding habitat),

whereas we expect immigration to be influenced by

longer-term, and larger spatial processes (Miguet et al.

Fig. 2 Estimated relationship between species average female

body mass and Bayesian latent indicator scale selection of

species characteristic selection scale. The regression is given

with 95% credible intervals based on equal error propagation

with species’ mobility held at the mean. Open circles represent

species characteristic selection scales defined as the single scale

with the highest posterior probability for each land cover type

within species
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2016). Hierarchy theory suggests that processes can be

better-understood if both lower and higher level

dynamics are considered in context. For example,

lower level individual dynamics occurring on rela-

tively fast time scales collectively contribute to

abundance, but may average out at higher levels,

while higher level meta-population dynamics may

constrain possible abundance values (Wu and Loucks

1995). The concatenation of multiple hierarchical

processes, associated with multi-scale influences, each

with potentially wide variation in SCSS, may result in

a single response variable (i.e., abundance) that

contains substantial noise obscuring the presumed

biological relationship between body size and SCSS.

Similarly, our measure of mobility, the distance

between wintering and breeding range centroids,

may better-reflect larger-scale responses such as

species occurrence at a location rather than abun-

dance, which may be predicted by local movements

(Holling 1992). Indeed, if abundance at a location

were to be broken down into its constituent processed

(e.g., births, deaths, immigration, emigration) and

investigated at the level of these processes, a pattern

may emerge. However, characteristics of aggregate

processes, such as those leading to abundance, may be

the result of non-linear interactions, or supervenient

properties where reductionist decomposition is not

advisable (Holling 1992; Wu 2007). While we expect

this avenue for future research to be fruitful, the

current body of evidence does not support the

hypothesis that the spatial scale of biological response

(abundance) scales with species’ body size. Although

we focused our analysis on a single level of the

hierarchy, we demonstrate multi-scale patterns within

species due to relationships between abundance and

land cover predictors manifesting at different spatial

scales. Patchiness of abiotic environmental conditions

likely influences the distribution of resources on the

landscape, which in turn can shape the distribution of

consumers (Wu and Loucks 1995). Because different

abiotic and vegetative processes manifest at process-

specific characteristic scales (Wu 2006), or ranges

within which processes are scale-invariant (Holling

1992), it is unsurprising that consumers also display

relationships with resource parameters at different

spatial scales. Characteristic scales of consumer

response to resource distribution or physical environ-

mental properties should reflect an interaction

between the characteristic scales of resources or

abiotic conditions and the species’ relevant grain size

of observation (Kolasa et al. 2012). Identifying the

biological variables indicating perceptive ability, or

perception of environmental characteristics is neces-

sary to create a predictive framework for multi-scale

studies.

In postulating an allometry of SCSS it is assumed

that because larger species move farther to satisfy

resource requirements (Perry and Garland 2002) they

are more likely to perceive and associate with the

environment at larger scales (Mech and Zollner 2002).

Although selection may act to affect the relationship

between body size, mobility, and the scale of

environmental perception, ecological conditions may

ultimately constrain our ability to measure the out-

come through the metric of population abundance.

Indeed, a lack of an allometry of SCSS may be

evidence supporting the energy equivalence rule

(EER). Although evidence is equivocal, EER predicts

that the energy available to populations in a commu-

nity is independent of body size (Damuth 1981). The

prediction of equal population energy use is based on

the cancelling effects of opposing relationships

between population density and body size (slope

approximately - 0.75), and metabolic rate and body

size (slope approximately ? 0.75) either because of

energetic or non-energetic mechanisms (Blackburn

et al. 1993). Under the EER, where energy use is

equivalent across populations in a community, we

would not expect the predicted relationship between

SCSS and metabolic rate, and thus between body size

and SCSS. One amendment to the EER suggests that

the - 0.75 slope relationship for population density

and body size only holds for energy-limited popula-

tions (e.g., at the tail of an abundance distribution), and

a quantile regression of abundance rather than of

average abundance may be more appropriate to

understand such relationships between size and abun-

dance (Blackburn et al. 1993; Marquet et al. 1995).

Furthermore, this approach ignores that allometric

relationships may vary with diet, age, or phylogeny; it

may be that there is no general allometric relationship.

Given the complexity of the interactions affecting

how a species relates to its environment and how much

variation is expected in SCSS, should we really expect

a species to have a single SCSS at all? Is selection

acting on species’ response to habitat characteristics or

species’ response to spatial scales? Does SCSS vary

with population size, environmental quality, or
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intraspecific variation in population traits? All are

open questions. The current SCSS paradigm, which

seeks to define a ‘single’ characteristic scale for each

species limits our understanding of the potential

underlying variation. Although our results do not

suggest a size-dependent ecological process underly-

ing between-species differences in spatial selection

scale for abundance, we demonstrate clear evidence

that species are responding to different habitat com-

position factors independently at different scales. A

noteworthy example being the ring-necked pheasant

(Phasianus colchicus), which is responding to the

proportion of woodland at a relatively large scale

(10 km) and the proportion of grassland at a much

smaller scale (1 km). RNEP are non-migratory, with

low mobility, which may suggest two distinct ecolog-

ical processes governing population distribution,

rather than multi-scale hierarchical habitat selection

in individuals’ settlement decisions. For example, the

configuration of woodland may be associated with

edge effects in grassland birds (Fletcher et al. 2003;

Bollinger et al. 2004), while the amount of grassland

might be related to patch size, regulating carrying

capacity (Ribic et al. 2009). As such, it is not

biologically appropriate to assume that the effects

operate at the same scale. Most previous studies

investigating spatial scale relationships with species

abundance or occupancy are often limited to a single

habitat parameter (e.g., Holland et al. 2004; Holland

et al. 2005; Cunningham and Johnson 2006; Buler

et al. 2007; Garcia and Chacoff 2007; Bergman et al.

2012), constrain multiple predictors to the same scale

(e.g., Seavy et al. 2009), or average the spatial scales

selected when multiple predictors are evaluated (e.g.,

Thornton and Fletcher 2014). Such practices may limit

our ability to reveal important species-habitat rela-

tionships. Future studies may benefit from considering

the influence of multiple, possibly independent, habi-

tat predictors on species abundance. In particular, we

caution that a SCSS determined from a study consid-

ering only a single habitat parameter should not

necessarily be extrapolated to other habitat parameters

(but see Martin and Fahrig 2012).

Developing a predictive framework for determin-

ing the spatial scale at which to conduct investigations

or carry-out management actions is valuable from both

fundamental and applied perspectives. Such a frame-

work would add to our understanding of ecological

processes regulating biological responses and increase

the accuracy and efficiency of conservation and

management actions. The study of spatial scaling of

biological responses is still young, and while a

predictive framework is being developed, it may

behoove investigators and conservation practitioners

alike to determine the species’ spatial scale of

selection prior to conducting investigations such that

relevant data collection may be applied at appropriate

spatial scales to address the questions at hand. The

continued, systematic compilation of scale-optimized

studies will certainly help to uncover systematic

relationships between species traits and ecological

factors that shape species characteristic scales of

selection.
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