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Abstract

Context Although multi-scale approaches are com-

monly used to assess wildlife-habitat relationships,

few studies have examined selection at multiple

spatial scales within different hierarchical levels/

orders of selection [sensu Johnson’s (1980) orders of

selection]. Failure to account for multi-scale relation-

ships within a single level of selection may lead to

misleading inferences and predictions.

Objectives We examined habitat selection of the

federally threatened eastern indigo snake (Drymar-

chon couperi) in peninsular Florida at the level of the

home range (Level II selection) and individual

telemetry location (Level III selection) to identify

influential habitat covariates and predict relative

probability of selection.

Methods Within each level, we identified the char-

acteristic scale for each habitat covariate to create

multi-scale resource selection functions. We used

home range selection functions to model Level II

selection and paired logistic regression to model Level

III selection.
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Results At both levels, EIS selected undeveloped

upland land covers and habitat edges while avoiding

urban land covers. Selection was generally strongest at

the finest scales with the exception of Level II urban

edge which was avoided at a broad scale indicating

avoidance of urbanized land covers rather than urban

edge per se.

Conclusions Our study illustrates how characteristic

scales may vary within a single level of selection and

demonstrates the utility of multi-level, scale-opti-

mized habitat selection analyses. We emphasize the

importance of maintaining large mosaics of natural

habitats for eastern indigo snake conservation.

Keywords Home range selection function � Habitat

selection � Scale � Urbanization � Second-order habitat

selection � Hierarchical habitat selection � Radio

telemetry � Road crossing

Introduction

Ecological patterns and processes are influenced by

factors operating at multiple spatial scales (Wiens

1989; Bowyer and Kie 2006; Martin et al. 2016). For

example, species often respond to habitat features at

multiple spatio-temporal scales (Boyce 2006; Mayor

et al. 2009; Wheatley and Johnson 2009) or even show

multi-scale responses to specific habitat features

(Thompson and McGarigal 2002; Leblond et al.

2011; Shirk et al. 2014). Assessing habitat selection

at one or a few spatio-temporal scales, even based on

biologically-relevant criteria, may result in weak or

misleading inferences regarding species-habitat rela-

tionships (e.g., Grand and Cushman 2004; McClure

et al. 2012). Multi-scale habitat models often outper-

form single-scale models (Graf et al. 2005; Martin and

Fahrig 2012; Timm et al. 2016). Characteristic scales

(sensu Holland et al. 2004) may vary seasonally

(Boyce et al. 2002; Zweifel-Schielly et al. 2009;

Leblond et al. 2011), by sex, and behavioral state

(Zeller et al. 2014). Despite the growing awareness of

spatial scale in wildlife-habitat relationships, many

studies fail to consider multi-scale relationships or do

so at too few scales (McGarigal et al. 2016).

In their review of multi-scale habitat selection

modeling, McGarigal et al. (2016) identified two non-

exclusive approaches for assessing multi-scale

wildlife-habitat relationships. The first and most

common approach assessed selection at hierarchically

nested levels reflecting different behavioral processes

(Johnson 1980; Meyer and Thuiller 2006; Mayor et al.

2009). For example, researchers might examine home

range selection within a study area (i.e., Johnson’s

(1980) second order of selection) and selection of

resource patches within a home range (i.e., Johnson’s

third order of selection). While levels vary in their

spatial extent, and therefore scale, these extents vary

among species or populations. The second approach

assesses multi-scale selection by varying the spatial

size (i.e., grain) of the observation unit and/or extent of

analysis (e.g., Leblond et al. 2011). While scales may

be selected to correspond to particular behavioral

processes (e.g., home range selection), multi-level

analyses explicitly link selection with different behav-

ioral processes occurring over different spatial extents.

Although multi-level studies are implicitly multi-scale

(but see Wheatley and Johnson 2009), habitat covari-

ates within each hierarchical level are predominately

measured at a single spatial scale (e.g., Johnson et al.

2004). Yet multi-scale relationships may still be

present within a given hierarchical level (e.g., DeCe-

sare et al. 2012; Shirk et al. 2014; Zeller et al. 2017).

Because characteristic scales may differ among

covariates, using a single a priori scale for each

covariate and each level may lead to misleading

inferences. An alternative, and arguably more ideal,

approach is to assess selection for each covariate at

each level across a gradient of scales to identify the

characteristic scale of each covariate at each level

(e.g., Leblond et al. 2011; Bellamy et al. 2013).

McGarigal et al. (2016) described this approach as a

‘‘multi-level scale optimized’’ approach. Despite its

advantages, multi-level scale-optimized studies

remain a minority among habitat selection studies

(but see Zeller et al. 2017).

We examine multi-level scale-optimized habitat

selection by the federally threatened eastern indigo

snake (EIS, Drymarchon couperi). Endemic to the

southeastern Coastal Plain of the U.S.A. (Enge et al.

2013), the EIS has declined throughout its range

primarily due to anthropogenically induced habitat

loss and fragmentation (U.S. Fish and Wildlife Service

2008). Its large body size ([ 2 m), large home range

sizes (Breininger et al. 2011; Hyslop et al. 2014), and

year-round active foraging behavior, particularly in

peninsular Florida (Bauder et al. 2016), increase its
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vulnerability to anthropogenic landscape changes.

Quantitative data on EIS habitat selection within

peninsular Florida are lacking. Anecdotal observa-

tions suggest that EIS in peninsular Florida use a

variety of natural and anthropogenically-disturbed

habitats including rural and suburban development

(Steiner et al. 1983; Moler 1992; Breininger et al.

2011; Enge et al. 2013). While flexible habitat use may

mitigate population-level effects of anthropogenic

landscape changes (e.g., Knopff et al. 2014), disturbed

habitats may also act as population sinks (Mumme

et al. 2000; Breininger et al. 2004), particularly if

individuals select anthropogenic landscape features

that increase mortality. Many snake species regularly

cross roads (Andrews and Gibbons 2008) and selec-

tion for habitats containing roads combined with high

road crossing rates may negatively impact population

viability and connectivity (Row et al. 2007; Fahrig and

Rytwinski 2009). Multi-level, multi-scale assessments

of EIS habitat selection are therefore needed to better

understand the impacts of anthropogenic landscape

changes.

Our goal was to evaluate EIS second- and third-

order selection (hereafter Level II and Level III,

respectively) to provide a multi-level, scale-optimized

assessment of EIS habitat selection in central penin-

sular Florida. We also estimated the probability of EIS

road crossings to provide a fine-scale assessment of

EIS responses to roads. We predicted that EIS would

show negative associations with anthropogenic devel-

opment and low probabilities of road crossing

(Breininger et al. 2011, 2012; Hyslop et al. 2014).

While EIS in peninsular Florida are surface-active

year-round, they nevertheless utilize a variety of

winter retreat sites, including gopher tortoise (Go-

pherus polyphemus) burrows (Bauder et al. 2016).

Because tortoises primarily occupy terrestrial upland

habitats (Auffenberg and Franz 1982; Castellon et al.

2015), mosaics of wetland and upland habitats may

increase resource concentrations for EIS. We therefore

predicted that EIS would show positive selection for

natural habitat heterogeneity (e.g., Hoss et al. 2010;

Steen et al. 2012) and comparatively stronger selection

for upland habitats compared to wetlands during the

winter. We predicted that males and females would

show seasonally-variant patterns of Level III selection

resulting from differences in breeding season (i.e.,

winter) reproductive behavior between males and

females (Bauder et al. 2016).

Methods

Study areas

We used VHF telemetry data from two EIS studies

occurring in a similar suite of habitats across central

peninsular Florida. The Brevard study (1998–2002)

encompassed Cape Canaveral/Titusville (28.63�N,

80.70�W; datum = WGS84 in all cases), southern

Brevard County (27.83�N, 80.58�W), and the Avon

Park Air Force Range (27.62�N, 81.32�W). The

Highlands study (2011–2013) took place in central

and southern Highlands County (27.28�N, 81.35�W).

Natural habitats included xeric oak scrub, mesic pine

flatwoods, hardwood hammocks, maritime scrub and

hammocks, and various wetland habitats. Anthro-

pogenic habitats present included improved cattle

pasture, unimproved pasture/woodlands, citrus

groves, commercial agriculture, and rural and urban

development. Additional descriptions of the study

areas and these habitats are provided elsewhere

(Abrahamson et al. 1984; Myers and Ewel 1990;

Breininger et al. 2011; Bauder and Barnhart 2014).

Telemetry data

Descriptions of telemetry data collection procedures

are provided in Bauder and Barnhart (2014) and

Breininger et al. (2011) and briefly recounted here. We

monitored a total of 137 snakes (Highlands: n = 30,

Cape Canaveral: n = 71, southern Brevard: n = 12,

Avon Park: n = 25). Most snakes ([ 90%) were

captured opportunistically although a small number

were captured through road-cruising, visual encounter

surveys, or constant-effort trapping. Radio transmit-

ters were surgically implanted into adult snakes

weighing C 500 g by professional veterinarians fol-

lowing standard surgical procedures (Reinert and

Cundall 1982; Hyslop et al. 2009). Transmitter battery

duration ranged from 12–24 months and a subset of

individuals was recaptured and received new trans-

mitters to extend their tracking duration. We located

individuals approximately weekly in the Brevard

study and once every two days in the Highlands study.

We visually confirmed each snake’s location for the

majority of telemetry fixes and estimated the remain-

ing [113 of 3219 (3.5%)] using triangulation (White

and Garrott 1990), retaining only those with predicted

linear error B 150 m (Bauder and Barnhart 2014).
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Home range estimation

We estimated ‘‘total’’ home ranges using all telemetry

locations from each snake using the 95% volume

contour polygon of a fixed kernel utilization distribu-

tion. Given that our data were collected at relatively

infrequent intervals, we used the unconstrained refer-

ence bandwidth to provide a relatively high degree of

smoothing and account for the uncertainty of an

individual’s location between telemetry fixes (Bauder

et al. 2015). We estimated bandwidths using the

package ks (Duong 2007, 2014) in R (R Core Team

2017). We used snakes that were monitored for C 255

consecutive days because this duration provides an

unbiased estimate of annual home range size (Bauder

et al. 2015). However, some individuals meeting this

criterion from the Brevard study had as few as 10 fixes.

We therefore calculated area-observation plots to

determine the number of fixes needed to reach a

stable estimate of home range size (Bauder et al.

2016). Of the individuals from the Brevard study with

C 20 fixes, 90% (57 of 63) reached 90% of their

observed home range size with\ 17 fixes. We

therefore assumed that C 17 fixes would provide a

reasonable estimate of the home range while still

maximizing the number of individuals included in our

analyses. We therefore estimated home ranges for 83

individuals (Highlands: n = 18, Cape Canaveral:

n = 36, Indian River: n = 8, Avon Park: n = 21).

Most variation in home range size is due to inter-

individual variation rather than variation in sampling

intensity making it important to maximize the number

of individuals (Borger et al. 2006). Additionally, other

studies have found that\ 20 fixes can still provide

unbiased fixed kernel home range estimates (Said et al.

2005; Borger et al. 2006).

Habitat covariates

We used several habitat covariates that we predicted

would influence EIS habitat selection (Table 1).

Although we used land cover data from multiple

sources and years, we took steps to ensure our habitat

data were representative of conditions during each

telemetry study period. We used the Cooperative Land

Cover Map v. 3.0 (CLC, collected 2014) from the

Florida Natural Areas Inventory and Florida Fish and

Wildlife Conservation Commission (Knight 2010;

Kawula 2014) for the Highlands study area and

protected conservation areas in the remaining study

areas. We used the St. John’s (2000), South Florida

(2004), and Southwest Florida Water Management

District (2004) land cover data for remaining areas

(additional details provided in Online Appendix 1).

We also used the 2014 National Wetlands Inventory

(NWI) data (U.S. Fish and Wildlife Service 2014)

after visually confirming that the NWI data reflected

land cover conditions when the telemetry data were

collected in each study area. We classified a pixel as

wetland if it was mapped as a wetland by any data

source. We combined and reclassified the CLC and

WMD data following Knight (2010) and considered

five land cover types in our analyses: urban, undevel-

oped, wetlands, citrus, and improved pasture (Online

Appendix 2). We considered urban, wetland, and

citrus edge as additional land cover types. We also

included paved roads (data collected 1998), linear

wetland features (i.e., rivers, streams, canals, and

ditches\ 15 m wide, hereafter ‘‘canals’’), soil mois-

ture (available water storage (AWS) at 150 cm), and

winter and spring normalized differenced vegetation

index (NDVI) as habitat covariates (Online Appen-

dices 3, 4). We calculated NDVI using imagery

concurrent with our telemetry data. Lastly, we also

calculated the standard deviation (SD) of AWS and

NDVI to represent habitat heterogeneity. All GIS data,

except NDVI, were obtained in vector format and

converted to 15-m rasters. We assigned different

weights to different road classes, urban densities, and

undeveloped land covers to test if EIS responded

differently to different development intensities

(Table 2).

Characterization of spatial scale

To characterize scale-specific responses to our habitat

covariates, we used Gaussian kernels to calculate the

amount of each habitat covariate within ecological

neighborhoods of varying sizes (Addicott et al. 1987).

We used Uniform kernels to calculate the SD of AWS

and NDVI as measures of habitat heterogeneity. We

systematically varied the Gaussian bandwidth from

15–75 m using 15-m increments and from 100 to

2000 m using 100-m increments (e.g., DeCesare et al.

2012; Shirk et al. 2014). We varied the uniform kernel

radii from 30 to 150 m using 30-m increments and

from 200–4000 m using 200-m increments. We

masked out open water pixels prior to smoothing our
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continuous raster surfaces and following the smooth-

ing of all raster surfaces.

Measuring habitat use and availability

For our Level II analyses, we estimated home range

selection functions (HRSF, Zeller et al. 2012). We

measured habitat use by taking the home range-wide

average of each habitat covariate measured at each

scale and habitat availability by randomly shifting and

rotating each home range 250 times within each

snake’s respective study area. We defined the extent of

our study areas by buffering all telemetry fixes and

then merging all the buffers within each study area. To

select the buffer radius, we measured the maximum

distance between the telemetry fixes for each individ-

ual as an approximation of home range width. We used

the 95th percentile of this distribution as our buffer

radius (3860 m). We down-weighted each random UD

so that the sum of the weights of the used UD equaled

the sum of the weights of the available UD, ensuring a

1:1 ratio of used to available observations (Barbet-

Massin et al. 2012; Squires et al. 2013).

For the Level III analyses, we evaluated how

individuals selected locations relative to available

habitats conditional upon the individual’s current

location and movement potential. We deemed it best

to treat our data as points given our relatively low

tracking intensity and therefore estimated point selec-

tion functions (PSF, Zeller et al. 2012) implemented

conceptually as step-selection functions (Johnson

et al. 2004; Thurfjell et al. 2014). We measured an

individual’s habitat use at time t and paired that value

with a measure of the habitat available to that

Table 1 Habitat covariates used to assess multi-level, multi-scale eastern indigo snake (Drymarchon couperi) habitat selection in

central peninsular Florida

Class Covariate Description Source

Land cover Undeveloped Natural (e.g., scrub, flatwoods, dry prairie)

and anthropogenic (e.g., unimproved

pasture/woodland, rural)

CLC (Knight 2010; Kawula 2014) and WMD land

cover

Land cover Wetlands Forested and unforested wetland CLC and WMD land cover, Archbold Biological

Station wetlands map (unpublished data), National

Wetlands Inventory (USFWS 2014)

Land cover Urban High, medium, and low density urban CLC and WMD land cover

Land cover Citrus Citrus groves CLC and WMD land cover

Land cover Pasture Improved pasture CLC and WMD land cover

Land cover Canals Permanent and intermittent canals and

ditches B 15 m wide

1:24,000 scale National Hydrography flowline data

(USGS 2014)

Land cover Roads Paved roads (primary, secondary, tertiary) 1998 1:24,000 roads layer (USGS 1990)

Habitat

edge

Wetland

Edge

Wetland pixels adjacent to other land covers CLC and WMD, Archbold Biological Station wetlands

map (unpublished data), National Wetlands Inventory

(USFWS 2014)

Habitat

edge

Urban Edge Urban pixels adjacent to other land covers CLC and WMD land cover

Habitat

edge

Citrus Edge Citrus pixels adjacent to other land covers CLC and WMD land cover

Soil

moisture

AWS Available water storage at 150 cm Soil Survey Geographic Database (ESRI 2014)

Vegetation

cover

Spring

NDVI

Normalized differenced vegetation index

(NDVI, Apr-May)

USGS Earth Explorer (http://earthexplorer.usgs.gov/)

Vegetation

cover

Winter

NDVI

NDVI (Dec-Jan) USGS Earth Explorer

See Online Appendices 1–4 for additional details

CLC Florida Natural Areas Inventory and Florida Fish and Wildlife Conservation Commission Cooperative Land Cover Map, WMD

Florida Water Management District, USFWS U.S. Fish and Wildlife Service, USGS U.S. Geological Survey
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individual at time t - 1, thereby comparing habitat

use to what an individual could have used. We

measured use at each individual’s unique telemetry

location. For triangulated locations, we centered a

Uniform kernel on the estimated location with a radius

equal to that location’s predicted linear error (Bauder

and Barnhart 2014) and took the mean habitat value

within that kernel. We measured availability using

empirically-derived generalized Pareto distribution

(GPD) kernels centered on the location at t - 1 (Zeller

et al. 2014). Because the durations between successive

telemetry locations varied, we allowed the size of the

GPD kernel to increase as step duration increased. We

modeled the relationship between the scale parameter

of the GPD and the duration (i.e., number of days)

between successive telemetry locations which showed

scale increasing asymptotically with increasing dura-

tion (Online Appendix 5). We estimated separate PSFs

for each sex and each 6-month season (breeding, Oct.–

Mar., and non-breeding, April–September, Bauder

et al. 2016). We used data from individuals monitored

C 105 days during a given season (n = 80), following

Bauder et al. (2016), because our home range

estimates are unbiased at these sampling durations

(Bauder et al. 2015) and to ensure the seasonal home

range was adequately sampled. This resulted in 728

observations for breeding season females (n = 34),

969 observations for non-breeding season females

(n = 28), 841 observations for breeding season males

(n = 28), and 983 observations for non-breeding

season males (n = 37).

Resource selection analysis

We used a pseudo-optimization approach (McGarigal

et al. 2016) to identify the characteristic scale for each

covariate by fitting a series of single-variable models

for each covariate across all scales and then retaining

the scale with the lowest AIC as the characteristic

scale (sensu Holland et al. 2004). For covariates with

multiple weighting scenarios (Table 2) we retained

the lowest-AIC scenario. We combined all covariates

at their characteristic scales to create a multi-variable,

multi-scale model for each level. We used a non-

parametric Kruskal–Wallis test to test for differences

in Level III characteristic scales among sex 9 season

groups.

We constrained the range of scales considered for

Level III to avoid confounding the effects of Level II

and Level III selection. We defined the maximum

scale for each sex 9 season group by taking the lower

5th percentile of seasonal home range size (HR5) for

each group and then calculating the radius of a circular

home range whose area equaled HR5. We then

selected the maximum Gaussian bandwidth (h) such

that 2 9 h equaled the radius of the circular home

range and the maximum Uniform kernel radius

equaled the radius of the circular home range. The

Table 2 Weighting scenarios for different road classes and urban and undeveloped land covers

Equal weights Strong differences Weak differences Strong effect Weak effect No rural

Roads

Primary 1 5 3 5 2 NA

Secondary 1 2.5 2 5 2 NA

Tertiary 1 1 1 1 1 NA

Urban/urban edge

High density 1 5 3 5 2 NA

Medium density 1 2.5 2 5 2 NA

Low density 1 1 1 1 1 NA

Undeveloped upland

Undeveloped 1 NA NA 5 2 1

Rural 1 NA NA 1 1 0

Weights were assigned to each class/category prior to Gaussian smoothing. Undeveloped includes sandhill, scrub, flatwoods,

hammock, and dry prairie land covers while rural includes unimproved pasture, mixed rangeland, and rural land covers. See Online

Appendices 2 and 4 for additional details
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size of HR5 was 12.07 ha (females—breeding sea-

son), 23.41 ha (females—non-breeding season),

46.44 ha (males—breeding season), and 35.10 ha

(males—non-breeding season), which corresponded

to maximum h’s of 105, 135, 195, and 165 m,

respectively, and maximum radii of 210, 270, 390,

and 330 m, respectively. We identified the character-

istic scale as the scale with the lowest AIC that was not

part of a monotonic decrease extending beyond the

maximum scale. We tested for collinearity among

covariates at their characteristic scales using Pearson’s

correlation coefficients (r). If two variables had

|r|[ 0.60 we retained the variable with the lowest

AIC. Because urban and roads were moderately

correlated with SD of NDVI at Level II

(r = 0.63–0.68), we evaluated their effects post hoc

by rerunning the analyses (see below) including urban

or roads while excluding one or more other covariates

to reduce collinearity. Variance inflation factors

were B 1.86 and B 2.52 for the Level II and Level

III analyses, respectively.

We estimated HRSFs using fixed-effects general-

ized linear models in R’s glm function. We estimated

PSFs using paired logistic regression (Compton et al.

2002; Zeller et al. 2014) and weighted each pair of

used and available locations by the number of

telemetry fixes observed at that location (median = 1,

range = 1–10). We controlled for within-individual

autocorrelation by grouping all observations by indi-

vidual and computing robust (i.e., empirical) standard

errors (Nielson et al. 2002; Hardin and Hilbe 2003;

Fortin et al. 2005) using the coxph function in the R

package survival (v. 2.38, Therneau 2015).

We fit all combinations of our covariates for both

Level II and Level III because all covariates reflected a

priori hypotheses, yet we had no reason to consider

any particular combination of our covariates. We

ranked models using AIC and used AIC parameter

weights to assess relative variable importance (Burn-

ham and Anderson 2002; Giam and Olden 2016). We

standardized our data by subtracting the median from

each observation and dividing it by its 0.05–0.90

quantile range. We report model-averaged standard-

ized beta estimates, following Lukacs et al. (2010),

across models whose cumulative weight summed

to[ 90% and deemed effects ‘‘significant’’ if their

model-averaged 95% CI did not include zero.

Predicted surfaces

When creating predicted surfaces (e.g., Boyce et al.

2002), the data used to create each surface must be of

the same type (i.e., have the same interpretation) as the

data used to estimate the RSF (e.g., Zeller et al. 2016;

Holbrook et al. 2017). For our Level II analyses, we

therefore re-smoothed our Gaussian/Uniform kernel-

smoothed rasters using a Uniform kernel equal in area

to the median EIS home range (677 ha). Studies using

paired logistic regression typically calculate predicted

surfaces using the parameter estimates from paired

logistic regression in an unpaired framework by

applying the parameter estimates to habitat data

without first differencing used and available data

(Zeller et al. 2016). Thus, to create Level III predicted

surfaces, we followed Zeller et al. (2016) to create

raster surfaces representing the differences between

habitat use and context-dependent availability. We

used the GPD kernel corresponding to a 1-day step

duration and applied it to every pixel in our kernel-

smoothed raster surfaces. We then differenced these

GPD kernel-smoothed surfaces (representing avail-

ability) from the original Gaussian/Uniform kernel-

smoothed surfaces (representing use). We created

Level III predicted surfaces for each sex 9 season

group. We created model-averaged predicted surfaces

using the models in the 90% model set. We also

calculated the proportion of deviance explained (D2)

for each model.

We evaluated the predictive performances of our

Level II and Level III RSF using Johnson et al.’s

(2006) v-fold cross-validation procedure. Briefly, this

approach divides relative probability of selection into

equal-interval bins and compares the proportion of

used observations within each bin to the area-weighted

expected proportion of available points within each

bin. We quantified the relationship between used and

expected proportions using Lin’s (1989) concordance

correlation coefficient (CCC) following Zeller et al.

(2014). Because we were interested in applying the

results of our models beyond our study areas, we

cross-validated our models across study sites (v = 4)

such that for v = i, the ith site was used as testing data

and the remaining sites as training data. For the Level

III models, we created our available data by sampling

our differenced raster surfaces using random points

drawn from each study area at a density of 2.5 points/

ha. For breeding season females, most training models
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did not converge when cross-validating by site so we

used 4-fold cross-validation without regard to site.

We multiplied our Level II and Level III predicted

surfaces to create a multi-level, scale-optimized

predicted surface of EIS relative probability of selec-

tion (Johnson et al. 2004). While not truly condition-

ally nested (DeCesare et al. 2012), our hierarchical

multi-level design ensures that our surfaces are

conceptually hierarchically nested (e.g., Johnson

et al. 2004; Zeller et al. 2017).

Road crossing analysis

We modeled the daily probability of crossing a road as

a binomial probability using the straight-line distance

between consecutive telemetry fixes (i.e., one move-

ment step) as the sample, trial size equal to step

duration (i.e., the number of days between consecutive

telemetry locations), and number of successes per

sample as the number of observed road crossings for

each step. We only used steps where an individual had

moved (i.e., step length[ 0). We assumed that we

observed the true number of road crossings within

each step and that no more than one crossing occurred

per day. Because the validity of these assumptions

decreases with increasing step duration, we only

considered steps with 2–3 day durations to balance

the accuracy of our observations with maximizing the

number of individuals and steps included. We fit

separate models for each sex 9 season group using

road class (primary, secondary, tertiary) and Eucli-

dean distance from road as covariates. If the snake did

not move during the step, we measured the distance to

the nearest road. We only included distances that were

less than the diameter of a circular home range equal in

area to the median seasonal home range for each

group. To account for uncertainty due to maximum

step duration, we fit two models for each group, one

using 2 days and another 3 days as the maximum step

duration. We then calculated D2 for each model and

used the normalized D2 to calculate weighted average

predicted probabilities of road crossing.

Results

Level II

The characteristic scales of 13 of our 18 covariates

(including quadratic effects) were B 100 m

(Table 3). Among the remaining five covariates,

model support for a single characteristic scale was

weak (max. DAIC B 0.90, e.g., AWS in Fig. 1). The

best supported weighting scenarios for undeveloped

and urban land covers and urban edge was the equal

weights scenario while the best supported scenario for

roads was the strong effect scenario (Table 3). Model

support was equivocal across all scenarios (max.

DAIC B 2.84, Online Appendix 6).

At Level II, SD of spring NDVI (radius = 60 m),

urban edge (h = 1100 m), and undeveloped

(h = 60 m) received the strongest support (parameter

weights C 0.84) and had model-averaged 95% CI that

did not or slightly overlapped zero (Table 4, Fig. 2).

Post-hoc analyses including urban and roads indicated

moderate to low support for these covariates (param-

eter weights = 0.48 and 0.32, respectively). The

predictive performance of the top model was high

(CCC = 0.96, 0.77–0.99) when cross-validating by

site and D2 = 0.13. Model-averaged CCC and D2

across the 90% model set (n = 164) was 0.90

(range = 0.47–0.99) and 0.13 (range = 0.04–0.15),

respectively.

Level III

Although Level III characteristic scales spanned

nearly the entire range of scales we considered, the

15-m bandwidth was the most common across all

groups (53%, Table 3, Fig. 3). This percentage was

similar when we only considered significant covariates

(55%) and covariates with parameter weights[ 0.90

(62%). There was no significant difference in charac-

teristic scales among groups (significant covariates

only, v2 = 0.68, P = 0.88). Model-averaged D2 across

the 90% model set was 24, 20, 32, and 22% for

breeding and non-breeding season females and males,

respectively.

Three covariates (SD of NDVI, undeveloped, and

urban) received consistently strong support (w = 1.00)

across all groups (Table 5). While not significant in

each group, all groups selected increasing SD of NDVI

and undeveloped and decreasing urban (Fig. 4). The
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degree and direction of selection for the remaining

covariates varied among groups. Citrus and NDVI

received strong support among three groups, with

avoidance of the former and positive selection for the

latter. Both sexes avoided pasture, especially during

the breeding season (Table 5, Fig. 4). Males selected

wetland edge while females tended to select urban

edge and increasing SD of AWS while showing

neutral selection for roads. While breeding season

males showed broad scale (h = 180 m) selection for

roads (Fig. 4) they also exhibited a secondary charac-

teristic scale (h = 15 m, Fig. 3) and post hoc analyses

indicated avoidance at this finer scale (model-aver-

aged beta = - 0.16, 95% CI - 0.54 to 0.23,

w = 0.85). Breeding season males appeared most

selective of their habitat use showing significant

selection for 7 of 12 covariates included in their

analysis (Table 5).

Predictive performance varied across groups. We

initially included pasture in our analyses for non-

breeding season females and males but doing so

reduced the model-averaged CCC from 0.70 to 0.67

and 0.81 to 0.68, respectively. Because the parameter

weights for pasture were low (w = 0.28 and 0.39,

respectively) and the model-averaged 95% CI

included zero (b = - 0.01, 95% CI - 0.29–0.27,

b = - 0.09, - 0.72 to 0.54, respectively), we

removed pasture from our final analyses of non-

breeding season females and males. Model-averaged

CCC was 0.62 (0.56–0.68), 0.70 (0.57–0.79), 0.89

(0.87–0.96), and 0.81 (0.73–0.89) for breeding and

non-breeding season females and males, respectively.

Road crossing

The probability of road crossing decreased with

increasing distance from road and differed among

groups and road classes (Fig. 5). All groups had a

near-zero probability of crossing primary roads and

males had a near-zero probability of crossing sec-

ondary roads. Probability of crossing tertiary roads

was 0.23–0.35 when an individual was adjacent to a

road and became B 0.01 when distance from road

exceeded 340 m for breeding season females, 400 m

for non-breeding season females, 1160 m for breeding

season males, and 880 m for non-breeding season

males.

Table 3 Characteristic

scales (m) for Level II and

III selection for 18 habitat

covariates

*Scales refer to Uniform

kernel radius
�Wetlands and wetland

edge were evaluated using

linear and quadratic effects.

Superscripts denote the

following weighting

scenarios (Table 2): aequal

weight, bweak differences,
cstrong effect, dstrong

differences

Level II Level III

Males Females

Non-breeding Breeding Non-breeding Breeding

Terrestrial 45a 15b 15a 15b 15d

Urban 15a 15a 15a 15d 15c

Spring NDVI 60 15 15 15 75

Winter NDVI 60 15 15 15 90

Citrus 15 15 15 15 15

Pasture 15 15 15 15 15

Canals 1200 15 60 15 45

Wetland edge 15 45 135 30 75

Wetland edge� 15 NA NA NA NA

AWS 800 15 30 15 45

Roads 15c 15d 180d 30c 30c

Citrus edge 1400 60 15 15 15

Urban edge 1100a 135a 15a 75a 60a

Wetlands 400 90 15 30 15

Wetlands� 100 NA NA NA NA

SD of spring NDVI* 60 45 15 75 75

SD of winter NDVI* 60 60 225 90 90

SD of AWS* 60 150 90 105 150
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Discussion

Our results indicate that EIS in central peninsular

Florida showed consistent scale-specific responses to

habitat selection within two hierarchical levels of

selection. Within each level, the characteristic scales

of selection were predominately the finest scales we

considered. Because we used the home range as the

Urban Wetland Edge AWS

SD Spring NDVI Urban Edge Undeveloped
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Δ 
A

IC

Fig. 1 Change in DAIC

across scales for select Level

II covariates. Undeveloped

includes rural land covers.

Urban and urban edge use

the equal weights scenario

Table 4 Model-averaged standardized beta estimates, 95% CI, odds ratios, and AIC weights (w) for Level II covariates

Betas 95% CI Odds ratio w

SD Spring NDVI 2.64 0.52 to 4.76 14.01 0.89

Urban Edge - 1.97 - 4.15 to 0.21 0.14 0.84

Undeveloped 1.60 - 0.06 to 3.26 4.95 0.84

Wetland Edge 0.31 - 0.81 to 1.43 1.36 0.39

AWS - 0.22 - 1.36 to 0.92 0.80 0.37

Citrus - 0.10 - 1.07 to 0.87 0.90 0.30

SD AWS 0.20 - 0.76 to 1.16 1.22 0.30

Winter NDVI 0.09 - 0.74 to 0.92 1.09 0.29

Pasture 0.03 - 0.75 to 0.81 1.03 0.28

Urban* - 1.02 - 3.61 to 1.57 0.36 0.48

Roads* - 0.12 - 0.92 to 0.68 0.89 0.32

*Estimates obtained via post hoc analyses (see text for details). Data were standardized by subtracting the median from each

observation and dividing it by the 0.05–0.90 quantile range. Estimates were model-averaged across the 90% model set
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observation unit in the Level II analysis, selection at

fine scales suggests that EIS respond most strongly to

covariates across and slightly beyond the extent of

their home range. The strongest exception to this trend

was urban edge which, despite equivocal support

(DAIC\ 2) across all scales, showed the strongest

association at a relatively large scale. This equivocal

support across scales in our Level II analysis may

suggest that a multi-scale approach using the home

range as the observation unit was unnecessary. How-

ever, we still recommend that researchers conduct

multi-scale Level II analyses because species may

respond to habitat features beyond the extent of their

home range (Kie et al. 2002; Anderson et al. 2005;

Zeller et al. 2017). This may be particularly important

if Level II selection is assessed using telemetry

locations rather than home ranges as the observation

units.

In contrast, we observed markedly different support

across scales for some covariates in our Level III

analysis. For example, DAIC between the 15- and

30-m bandwidth for undeveloped land cover ranged

from 6.51–16.00. These results caution against using

single-scale analyses of habitat selection and highlight

the importance of scale optimization for all covariates

within a given hierarchical level. We recommend that

researchers constrain the range of potential scales to

correspond to a particular hierarchical level to avoid

confounding selection across hierarchical levels. The

broad (i.e., h[ 200 m) characteristic scales we

observed in our Level III analyses likely reflect

confounding effects of second- and third-order selec-

tion. These confounding effects can be minimized by

using observation units whose grain (i.e., spatial

extent) corresponds to the hierarchical level of interest

(e.g., assessing Level II selection using home ranges as

the observation unit, Meyer and Thuiller 2006; Meyer

2007). Such an approach also ensures that relative

probabilities of selection from each level are condi-

tionally nested, thereby allowing selection at multiple

hierarchical levels to be incorporated into a single

predicted surface (Fig. 6).

The need to consider habitat selection at multiple

spatial scales is widely recognized and many wildlife

habitat selection studies employ either multi-level

single-scale or single-level multi-scale analyses.

Pasture Urban Roads
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Fig. 2 Model-averaged

predicted relative

probabilities of selection

and 95% CI for Level II

using the 90% model set.

Values for urban and roads

were obtained via post hoc

analyses. Covariates were

standardized by subtracting

the median from each

observation and dividing it

by the 0.05–0.90 quantile

range
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However, McGarigal et al. (2016) found that out of

173 ‘‘multi-scale’’ studies, only 8 were multi-level and

scale-optimized. Multi-level, scale-optimized studies

may be implemented in various ways depending on the

study’s particular objectives (e.g., Leblond et al. 2011;

McNew et al. 2013). For example, researchers may

optimize scale for a subset of covariates at each

hierarchical level, particularly if previous research can

inform the appropriate scale for the remaining covari-

ates (Polfus et al. 2011; DeCesare et al. 2012).

Alternatively, measuring covariates at a single scale

within one hierarchical level while optimizing scale

for covariates at other hierarchical levels may be

appropriate in some applications, such as evaluating

the importance of nest- or location-level factors

relative to landscape-level factors (Irvin et al. 2013).

However, we suggest that, for many research ques-

tions, scale-optimization across all covariates within

each hierarchical level (Zeller et al. 2017) will lead to

the strongest inferences and predictive abilities.

Multi-level selection of anthropogenic

versus undeveloped habitats

Eastern indigo snakes also showed consistent patterns

of habitat selection across levels, selecting undevel-

oped upland habitats and habitat edge (measured using

SD of NDVI) and avoiding urbanized areas. Further-

more, EIS generally avoided citrus and pastures and

selected increasing NDVI at Level III. The greater

support for the equal weights scenario for urban edge

(Level II) and urban (Level III) suggest that EIS

consistently avoid urbanized habitat regardless of

development intensity. The large Level II character-

istic scale (h = 1100 m) for urban edge resulted in the

predicted avoidance of relatively large patches of

urban land cover rather than urban edge per se. This is

consistent with Level II avoidance (albeit non-signif-

icant) of urban land cover. These results are consistent

with our prediction that EIS would avoid anthro-

pogenic development. However, the best supported

weighting scenario for undeveloped upland for Level

II included natural and rural land covers, suggesting

that EIS select upland habitats with relatively low
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Fig. 3 Change in DAIC
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levels of anthropogenic disturbance. Multiple studies

of medium-bodied mammalian carnivores in urban-

ized landscapes have also reported fine-scale avoid-

ance of urban habitats (Riley et al. 2003; Gehrt et al.

2009; Gross et al. 2012). The fine-scale Level III

avoidance of urban land cover may allow EIS to utilize

relatively small patches of natural habitats within a

matrix of urban land covers, a pattern seen in other

snakes in urban landscapes (Mitrovich et al. 2009;

Anguiano and Diffendorfer 2015). Breininger et al.

(2011) found that EIS home ranges in suburban

landscapes were significantly smaller than those in

natural landscapes, a pattern consistent with our

results.

Table 5 Model-averaged standardized beta estimates, 95% CI, odds ratios (OR), and AIC weights (w) for Level III covariates

Non-breeding Breeding

Betas CI OR w Betas CI OR w

Males

SD winter NDVI 1.52 0.91 to 2.13 4.57 1.00 1.93 0.60 to 3.25 6.87 1.00

Urban - 1.13 - 2.39 to 0.14 0.32 1.00 - 1.80 - 3.25 to - 0.35 0.17 1.00

Undeveloped 0.89 - 0.23 to 2.00 2.43 1.00 1.16 0.17 to 2.14 3.18 1.00

Citrus - 1.75 - 2.52 to - 0.97 0.17 1.00 - 1.51 - 3.26 to 0.24 0.22 1.00

Winter NDVI 2.19 1.02 to 3.36 8.95 1.00 1.49 0.47 to 2.50 4.42 1.00

Pasture - 0.09* - 0.72 to 0.54 0.92 0.39 - 0.48 - 1.48 to 0.52 0.62 0.79

Canals 0.12 - 0.35 to 0.59 1.13 0.46 1.49 0.32 to 2.66 4.45 1.00

SD AWS 0.09 - 0.42 to 0.61 1.10 0.39 0.21 - 0.71 to 1.12 1.23 0.58

Wetland edge 0.79 0.12 to 1.46 2.20 1.00 1.43 0.33 to 2.53 4.17 1.00

AWS - 0.05 - 0.63 to 0.53 0.95 0.32 - 2.03 - 3.85 to - 0.21 0.13 1.00

Roads - 0.17 - 0.60 to 0.25 0.84 0.68 0.43 - 0.09 to 0.96 1.54 0.89

Urban edge - 0.18 - 1.25 to 0.88 0.83 0.54 NA NA NA NA

Wetland - 0.19 - 1.15 to 0.77 0.83 0.46 NA NA NA NA

Citrus edge NA NA NA NA 0.14 - 0.07 to 0.36 1.15 0.98

Females

SD winter NDVI NA NA NA NA 3.11 1.53 to 4.69 22.47 1.00

SD spring NDVI 2.97 1.91 to 4.04 19.57 1.00 NA NA NA NA

Urban - 1.42 - 2.64 to - 0.21 0.24 1.00 - 1.10 - 2.30 to 0.09 0.33 1.00

Undeveloped 1.30 0.32 to 2.29 3.68 1.00 1.33 0.19 to 2.46 3.78 1.00

Citrus - 0.07 - 0.76 to 0.62 0.93 0.40 - 0.55 - 2.18 to 1.08 0.58 1.00

Winter NDVI 1.10 0.29 to 1.90 3.00 1.00 0.17 - 1.63 to 1.98 1.19 0.37

Spring NDVI NA NA NA NA NA NA NA NA

Pasture - 0.01* - 0.29 to 0.27 0.99 0.28 - 0.62 - 1.72 to 0.48 0.54 1.00

Canals 0.52 - 0.13 to 1.17 1.68 0.99 0.18 - 1.07 to 1.42 1.19 0.51

SD AWS 0.70 - 0.07 to 1.46 2.01 0.93 1.57 - 0.07 to 3.21 4.81 1.00

Wetland edge 0.01 - 0.33 to 0.35 1.01 0.28 0.01 - 0.83 to 0.84 1.01 0.27

AWS - 0.07 - 0.60 to 0.46 0.93 0.34 - 0.18 - 1.19 to 0.82 0.83 0.46

Roads 0.03 - 0.20 to 0.25 1.03 0.33 0.08 - 0.29 to 0.46 1.08 0.50

Urban edge 0.13 - 0.54 to 0.80 1.14 0.45 1.05 0.22 to 1.88 2.86 1.00

Citrus edge NA NA NA NA 0.01 - 0.06 to 0.07 1.01 0.32

*Estimates obtained via post hoc analyses (see text for details) and were not included in the final model set. Data were standardized

by subtracting the median from each observation and dividing it by the 0.05–0.90 quantile range. Estimates were model-averaged

across the 90% model set
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We are limited in our ability to discern the

mechanisms responsible for EIS avoidance of anthro-

pogenic habitats. While it could reflect scarcity of

resources, anthropogenic habitats often support

numerous potential prey and shelter sites (Koenig

et al. 2001; Kwiatkowski et al. 2008; Pattishall and

Cundall 2009). Like other researchers (Enge et al.

2013), we have observed EIS in all three urban

development classes as well as citrus and pasture.

Avoidance of anthropogenic habitats may also reflect

risk avoidance behavior and/or cumulative effects of

road mortality and human persecution (Breininger

et al. 2012). However, EIS appeared to avoid urban

more strongly than roads. Only non-breeding season

males avoided roads (albeit non-significantly) and all

groups had relatively high daily probabilities (C 0.23)

of crossing adjacent tertiary roads.

Selection for habitat heterogeneity

Eastern indigo snakes also selected increasing SD of

NDVI at both levels, which represents selection for

habitat edges, either between vegetation communities

or between vegetated and impervious surfaces (e.g.,

roads, urban development). Wetland edge and SD of

AWS were also significantly selected at Level III by

males and females, respectively. These results are also

consistent with our prediction of selection for natural

habitat heterogeneity. We offer several hypotheses to

explain these patterns. First, heterogeneous habitats

may spatially concentrate resources and compress

home range sizes (Law and Dickman 1998; Kie et al.

2002; Hoss et al. 2010). Second, EIS are dietary

generalists (Stevenson et al. 2010) and habitat edges

may increase the diversity and abundance of potential

prey species. Edge selection has been noted for dietary

generalists in many mammalian and avian taxa

(Marzluff et al. 2004; Stewart et al. 2013; Beatty

et al. 2014). Third, habitat edges may increase

opportunities for thermoregulation, a pattern noted in

many north-temperate snakes (Blouin-Demers and

Weatherhead 2001a; Row and Blouin-Demers 2006).

However, ectotherms in mild climates may be more

flexible in their thermoregulation (Shine and Madsen

1996) and therefore less reliant on edges or habitat

openings for thermoregulation (Anderson and Rosen-

berg 2011). We did not observe a consistent increase

in selection for SD NDVI during the winter breeding
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Fig. 4 Model-averaged

predicted relative

probabilities of selection for

Level III by sex and season

using the 90% model set.

Covariates were

standardized by subtracting

the median from each

observation and dividing it

by the 0.05–0.90 quantile

range. Missing covariates

were excluded from final

analyses due to

multicollinearity
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season, although the resolution of our land cover data

may be poorly suited for testing this thermoregulatory

hypothesis.

Our predicted surfaces often showed strong selec-

tion along road and urban edges reflecting high SD

NDVI values. Given that EIS will readily cross tertiary

roads, selection for anthropogenically-induced habitat

edges may prove maladaptive (e.g., Mumme et al.

2000). Because EIS are active foragers with large

home ranges and high movement potential (Breininger

et al. 2011; Bauder et al. 2016), selection for these

edges likely increases their risk of road mortality and

human persecution (Whitaker and Shine 2000;

Andrews and Gibbons 2008). In particular, male

EIS, despite their near-zero probability of crossing

primary and secondary roads, may be at greater risk of

road mortality than females because of their greater

movement potential and positive selection for roads at

broader scales, which may lead to a greater absolute

number of attempted road crossings over tertiary

roads.

Seasonal variation in habitat selection

We found little evidence to support our prediction that

the strength of selection for undeveloped uplands

increased relative to that of wetlands during the

breeding season. Level III selection for uplands was

consistently strong year-round, whereas only males

avoided areas with high soil moisture during the

breeding season. However, some individuals in the

Cape Canaveral study area used large expanses of salt

marshes during the summer and predominately used

uplands during the winter. We were unable to directly

evaluate Level III selection for wetland in most groups

because of multicollinearity. While the wetland

parameter estimates from single-variable models were

consistent with our prediction, these estimates were
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non-significant (P C 0.152). This lack of consistent

seasonal variation in Level III selection differs from

patterns of EIS habitat selection at the northern edge of

their range (i.e., southern Georgia). During the winter,

EIS in southern Georgia showed near-exclusive use of

xeric sandhills supporting gopher tortoise burrows

(Speake et al. 1978; Stevenson et al. 2003; Hyslop

et al. 2014). During the summer, EIS used a greater

diversity of habitats particularly wetlands where most

foraging events were observed (Hyslop et al. 2014).

The lack of distinct seasonal differences in habitat

selection by EIS in central peninsular Florida may be

driven, at least in part, by relatively mild winter

temperatures that allow them to use a greater diversity

of winter shelter sites (Bauder et al. 2016).

Inter-sex differences in habitat selection

Inter-sex differences in habitat selection can result

from differences in reproductive behavior, selection of

suitable gestation, nesting, or birthing sites, and/or

differences in resource needs (e.g., Charland and

Gregory 1995; Blouin-Demers and Weatherhead

2001b; Harvey and Weatherhead 2006). Patterns of

selection for the most influential covariates (undevel-

oped upland and urban land covers, SD of NDVI) were

consistent between sexes, highlighting the importance

of these features. The greatest difference in patterns of

Level III selection between sexes was the greater

degree of selection by breeding-season males, for

which all but one covariate was either significant or

strongly supported (w[ 0.90). We suspect this is due
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0.5

0.75

d − Breeding Season Males

0.25

0.5

0.75

Fig. 6 Multi-level scale-

optimized predicted

surfaces from the Cape

Canaveral study area.

a Level II predicted surface,

b–d the normalized products

of Level II and III predicted

surfaces (rescaled from 0–1)

for breeding season females,

non-breeding season males,

and breeding season males,

respectively
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to larger male home ranges and movement potential

during the breeding season (Bauder et al. 2016) which

may therefore entail a greater degree of selective use

of both preferred and avoided habitats. Varying

patterns of selection as a function of home range size

have been reported in other taxa (Herfindal et al.

2009). Breeding season males strongly selected the

weighting scenario for undeveloped upland that

included rural land covers and selected roads at broad

scales. This may be due to males’ priority in locating

females during the breeding season, which may lead

them to traverse a greater diversity of habitats even if

those habitats may be less suitable for other activities

(e.g., foraging). Variation in home range size may

explain other inter-sex differences in Level III selec-

tion. For example, males selected wetland edge in both

seasons whereas females exhibited neutral selection of

wetland edge and roads. This may reflect a hierarchi-

cal process of habitat selection wherein smaller female

home ranges are selected in areas with optimal

densities of wetland edge and roads, thereby resulting

in neutral selection of these features within the home

range.

Scope, limitations, and conclusions

We acknowledge limitations in our study that may

influence our results and inferences. Several factors

may have influenced the accuracy of our GIS data.

First, there may have been some degree of temporal

mismatch between our telemetry data and GIS data,

although we attempted to minimize this by using GIS

data contemporaneous with our telemetry data. Visual

inspections of our GIS data using aerial imagery

indicated that our GIS data accurately reflected land

cover conditions when our telemetry data were

collected. Second, within-class heterogeneity in land

covers may have limited our ability to detect relation-

ships (Gaston et al. 2017). Vegetation cover and

building densities within urban and rural land covers

were highly variable; however, our use of multiple

weighting scenarios and other covariates (AWS,

NDVI) should have mitigated this variability. Use of

multiple land cover data sources may have introduced

additional variability, although our reclassification of

land cover into five classes should also have reduced

this variability. Finally, combining different data types

with different minimum mapping units may have also

obscured Level III relationships. However, our use of

kernel-smoothed surfaces should have reduced this

effect by effectively increasing grain size. Moreover,

the strong Level III relationships we observed suggest

that insufficient data resolution was not a primary

cause of weak relationships. Logistical constraints

prevented us from assessing selection for field-based

microhabitat features (e.g., shrub cover, retreat site

abundance). Many snake studies have demonstrated

selection for microhabitat features (Reinert 1984;

Moore and Gillingham 2006; Martino et al. 2012;

Croak et al. 2013) which may be more important than

selection for broader-scale habitat features (Harvey

and Weatherhead 2006). The moderate predictive

performances of our models may reflect our inability

to model EIS responses to microhabitat features.

While it is possible that large home range sizes and

high movement potential cause EIS to respond more

strongly to relatively broad-scale habitat features

compared to microhabitat features, our study was

unable to test this hypothesis.

Large tracts of undeveloped upland habitats con-

taining a mosaic of natural habitats, particularly

wetland-upland mosaics, are likely to prove essential

for EIS conservation. While EIS exhibit flexible

habitat use at multiple levels, our results corroborate

previously noted negative impacts of habitat loss and

fragmentation (Moler 1992; Breininger et al. 2004). In

particular, despite avoidance of urban land covers, EIS

will readily cross small paved roads and potentially

select roadside habitats which may increase road

mortality. While conservation of ‘‘rural’’ land covers

may benefit EIS, such benefits are likely contingent

upon low road densities and low rates of road-induced

mortality. Nevertheless, even infrequent road mortal-

ity may still contribute to population-level declines

(Mumme et al. 2000; Row et al. 2007; Fahrig and

Rytwinski 2009). Given the development pressures on

upland habitats within peninsular Florida (Turner et al.

2006; Swain and Martin 2014) maintaining and

expanding existing conservation networks will likely

benefit EIS conservation. We encourage additional

research to determine the spatial requirements for

viable EIS populations and the degree of EIS connec-

tivity among protected lands within peninsular

Florida.
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