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Abstract

Context Ungulate browsers often alter plant compo-

sition and reduce diversity in forests worldwide, yet

our ability to predict browse impact on vegetation

remains equivocal. Theory suggests, however, that

ungulate distribution and foraging impacts are shaped

by scale-dependent decisions based on variation in

habitat composition and structure encountered within

their home range.

Objective Examine how variation in habitat compo-

sition at landscape (259 ha) scales modulates browse

impact on vegetation at local scales.

Methods We measured vegetation richness and

abundance in plots with and without white-tailed deer

(Odocoileus virginianus) at 23 northern hardwood

forest sites distributed across a 6500 km2 area in

Pennsylvania, USA. Experimental sites were embed-

ded within landscapes with varying levels of habitat

composition and deer densities.

Results Browsing reduced vegetation richness and

cover by as much as 53 and 70%, respectively;

however, we found browse impact was modulated by

variation in the relative abundance of managed

habitats that alter forage availability. Specifically,

relative to fenced areas, browse impact weakened and

ultimately disappeared as the proportion of forage-rich

habitats (e.g., recent harvests) increased to C20%.

Conversely, vegetation grew increasingly depauperate

as landscapes contained greater proportions of forage-

poor habitats (i.e., older harvests), particularly when

browsed.

Conclusions Our results underscore how manage-

ment actions that alter forage availability to ungulates

throughout the landscape (i.e. the foodscape) can

shape forest-ungulate interactions and suggest a new

paradigm whereby managers evaluate and undertake

actions at the appropriate spatio-temporal scales to

proactively limit the deleterious impact of browsing

on plant biodiversity.
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Introduction

Abundant empirical and theoretical evidence exists

demonstrating that ungulate overbrowsing can under-

mine multiple ecosystem services provided by forests

including biodiversity and sustainable wood produc-

tion (Gill 1992; Russell et al. 2001; Rooney and

Waller 2003; Côté et al. 2004). Consequently, research

has focused on developing approaches to mitigate

browse impacts including identifying population den-

sity thresholds compatible with sustaining diversity,

population control, and fencing (Porter et al. 1991;

Horsley et al. 2003; Vercauteren et al. 2006; Tremblay

et al. 2007). While these approaches have merit, the

fundamental question of predicting when and how

ungulate foraging negatively affects plant biodiversity

remains unanswered (Gordon et al. 2004; Wisdom

et al. 2006). Thus, land managers are confronted with

the dilemma of sustaining forest diversity within

unpredictable and variable browsing regimes and

often are forced to employ costly measures to maintain

biodiversity (Waller and Alverson 1997).

Ecological theory, however, argues that ungulate

distributions and foraging behavior are mediated by

scale-dependent decisions based on habitat structure,

resource availability, and predation risk (Senft et al.

1987; Kie et al. 2002; Hobbs 2003). In particular,

spatio-temporal variation in the diversity, distribution,

and abundance of habitat patches that provide forage

or cover can shape population size, home range, and

thus, browsing impacts across the landscape (e.g., Kie

et al. 2002; Månsson 2009; Millington et al. 2010;

Massé and Côté 2012). The growing awareness of

scale-dependency has led to two differing views

regarding how habitat diversity and abundance inter-

act with resident ungulate herds to shape foraging

impacts.

One view conjectures that variability in habitats at

larger scales is critical in moderating ungulate forag-

ing impacts at local scales (Johnson et al. 1995;

Takada et al. 2002; Augustine and deCalesta 2003).

This view suggests browse impact on vegetation may

be weaker in forested landscapes containing a diverse

configuration of habitat patch types and sizes, relative

to large and relatively homogeneous forested land-

scapes. Consequently, from a forest management

perspective, natural and anthropogenic disturbances

that create a diversity of habitats, particularly those

that increase forage, should mitigate browse impact

(deCalesta and Stout 1997; Månsson 2009; Miller

et al. 2009; Hurley et al. 2012; Herfindal et al. 2015).

Alternatively, others hypothesize that ungulate

populations will respond numerically via increased

fecundity to increases in forest habitat and structural

diversity (Cadenasso and Pickett 2000; Kie et al. 2002)

and thereby, ultimately intensify browse impact on

vegetation (Alverson et al. 1988; Augustine and

Jordan 1998; Palmer et al. 2003; Reimoser et al.

2009). Hence, this viewpoint suggests that land-use

decisions that minimize disturbance, such as main-

taining large, contiguous forested blocks or low-

intensity silvicultural systems (e.g., single-tree selec-

tion), may mitigate browse risk whereas more exten-

sive and intensively managed areas would ultimately

increase browse risk (Reimoser and Gossow 1996;

Kramer et al. 2006; Faison et al. 2016).

To date, empirical evidence testing the degree to

which browse impact on vegetation is scale-dependent

on variation in ungulate densities and habitat compo-

sition remains limited and inconsistent. Existing

findings suggest browse risk is mitigated (e.g., Hurley

et al. 2012; Jarnemo et al. 2014), intensified (e.g.,

Reimoser and Gossow 1996; Faison et al. 2016), or

even unaffected (e.g., Möst et al. 2015; Evans et al.

2016) by variation in landscape composition. Gener-

alizing from existing work is problematic given that

most existing studies offer limited replication, rely

solely on existing variation in ungulate populations

and habitat configuration, or utilize metrics that may

inadequately capture the spatial complexities that

shape foraging (e.g., one-dimensional metrics such as

distance to edge). More importantly, existing studies

lack vegetation surveys in paired exclosures. Conse-

quently, it is difficult to separate browsing effects from

site-to-site variation in plant diversity or additional,

confounding factors (Côté et al. 2004).

Untangling these relationships is critically impor-

tant to maintain diversity and productivity in forests

where wide-ranging large ungulates exist at high

density (Millington et al. 2010). Regrettably, Beguin

and colleagues (2016) recently concluded that dis-

cerning how land management actions across scales

shape browse risk remains equivocal. Here, we

provide insight into this question using a hybrid

experimental approach that incorporates a manipula-

tive (i.e., fence/control) treatment to test how localized

(i.e., stand-level) browse impact by white-tailed deer

(Odocoileus virginianus) varies among multiple,
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broadly distributed sites that vary in deer densities and

habitat diversity. We hypothesized that variation in

habitat types and abundance at the scale of a resident

deer’s home range shapes deer foraging behavior,

thereby modulating browse impact on plant diversity

at local scales. We predict that as the proportion of

forage-producing habitat increases within the resident

deer’s home range, localized browse impact will

decline, and vegetation cover, richness, and diversity

will increase. Nonetheless, an alternative hypothesis is

also possible wherein deer populations experience a

numerical response as a function of habitat quality. If

so, we predict increasing proportions of forage-

producing habitats will cause a concomitant upsurge

in deer populations, intensified browse impact, and

decreases in vegetation cover, richness and diversity.

In either case, we further predict the combination of

habitat variables and deer density will predict browse

impact on vegetation better than models containing

deer densities alone.

Methods

Study area

We conducted our study at 23 sites distributed across a

6500 km2 area of Pennsylvania, USA (Fig. 1, Online

Appendix 1). Major tree species include red maple

(Acer rubrum), sugar maple (A. saccharum), black

cherry (Prunus serotina), and American beech (Fagus

grandifolia), with lesser abundances of hemlock

(Tsuga canadensis), birches (Betula alleghaniensis,

B. lenta), and white ash (Fraxinus americana) (Mar-

quis 1975). Understory vegetation is dominated by

unpalatable striped maple (A. pensylvanicum) and

beech in the shrub layer, and ferns (e.g., Dennstaedtia

punctilobula) in the herb layer (Royo et al. 2010b).

Deer populations within Pennsylvania, as through-

out much of the USA, were excessively high for much

of the 20th century (i.e., 15–23 deer/km2; Horsley

et al. 2003). Beginning in 2003, changes in deer

management policies, including additional antlerless

licenses and concurrent buck-doe hunting seasons,

allowed many of the public and private industrial

landowners in the region to intensify hunting on their

lands, resulting in deer herd reductions for over a

decade (Royo et al. 2010b; Stout et al. 2013; see

Online Appendix 1).

Experimental design

At each of the 23 sites, we selected one stand where

managers initiated a regeneration sequence as the

location of the experimental treatment. In all stands,

managers conducted the initial cut of a shelterwood

sequence to reduce stand relative density to levels

appropriate for hardwood regeneration in mature

Allegheny and northern hardwood forests

(i.e.,\75% relative density; Marquis et al. 1992).

With the exception of one site (Regen134), shelter-

wood harvests occurred 0–5 years prior to fence

construction (Online Appendix 1). The harvest

reduced basal area across all sites from an average of

26.6–16.6 m2/ha. Additionally, 22 stands received

broadcast herbicide treatments (glyphosate and sul-

fometuron methyl; Marquis et al. 1992) to control

dense layers of interfering plant species within 4 years

prior to fence construction (Online Appendix 1). By

deploying our experiment within managed stands, we

can (1) detect browse impacts on vegetation more

rapidly and on a greater variety of species than in

uncut areas (Horsley et al. 2003); (2) reduce the

potential for lagged responses attributed to established

recalcitrant layers (Royo et al. 2010b); and (3) directly

link our results to common forest management actions.

Within each stand, we established paired 4200 m2

(60 9 70 m2) plots and randomly assigned one plot a

deer exclosure (fence) treatment while the other

served as an unfenced control. Exclosure construction

was completed by September 2013 except for one site

(Rush) on which harvest occurred during winter of

2013/14. At this site, the exclosure was constructed in

early spring 2014. Centered within each plot, we

established a 2000 m2 (40 9 50 m2) sampling area,

divided into a 10 9 10 m2 grid, leaving a *10 m

wide buffer between the perimeter of the plots and the

sampling area.

Data collection

In summer 2015, two growing seasons after exclosure

construction, we censused the plant community in 2 m

radius (12.56 m2) subplots located at five randomly

chosen nodes of the 10 9 10 m2 grid. Vegetation was

censused in the vertical dimension at 20 cm intervals

from ground level to 2 m in each of the four cardinal

directions (see Collins and Becker 2001; Rohleder

2013). We recorded vascular plant species richness of
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the vegetation profile in each height interval along a

2-m line-intercept in each cardinal direction and

species frequency by height class as the proportion

of sample directions in which a species was tallied.

Lastly, we estimated total vegetation cover along the

vertical profile using a 20 9 20 cm2 cover template

placed at the plot center viewed horizontally from a

distance of 2 m in each cardinal direction (Online

Appendix 2).

For each site, we assessed habitat composition at

the landscape scale by developing 259 ha land cover

maps centered on each experimental site. Following

Putman and colleagues’ (2011) advice, we scaled our

assessment of habitat configuration to the typical

home range size of the resident ungulate species.

Hence, we chose a 259 ha buffer size because within

the northern-hardwood region of the eastern U.S., this

area encompasses the typical deer mean home range

size (range 64–223 ha; Tierson et al. 1985; Campbell

et al. 2004). Maps were developed using the 2011

National Land Cover Database (Homer et al. 2015) as

a basemap and augmented with aerial imagery,

landowner spatial data, and on-the-ground verifica-

tion. We identified 10 distinct habitats:Mature Forest,

Shelterwood, Recent Removal, Older Removals (here-

after, stem exclusion stage), Thinning/Salvage, Con-

ifer, Herbaceous, Water, Developed Areas, and

Agriculture. We classified mature forest as any closed

canopy hardwood stand that had not received recent

timber harvest. Shelterwood was reserved for stands

with a shelterwood harvest within the past 5 years.

Recent removals were stands that had received a clear-

cut B5 years prior to the year of classification,

whereas areas entering stem exclusion stage were

Fig. 1 Map showing the 23 study sites scattered throughout a

four county region in northwest Pennsylvania, USA. Dots

represent the approximate location of experimental stands and

the center of a 900 m radius (259 ha) buffer within which

landscape metrics were calculated
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clear-cut areas[5 years but B17 years prior to clas-

sification. Thinning and salvage timber areas were a

distinct classification wherein a portion of the mature

overstory was removed, but there were no immediate

plans to proceed to a clearcut. Conifer areas con-

tained[90% conifer (primarily hemlock) in the

overstory. Herbaceous patches are dominated by

non-woody vegetation (e.g., food plots, rights-of-

ways, and failed regeneration harvests). Developed

areas included roads, buildings, and other infrastruc-

ture. Agriculture included pastures and active or

fallow cropland. Lastly, water represented areas where

water is present during all or portions of the year (e.g.,

reservoirs, streams). We resampled the basemap to a

higher resolution of 5 m following classification and

used available landowner data to identify the timing of

forest management treatments concluded prior to the

start of winter 2015. Questionably classified areas

were verified using aerial imagery from USGS

National Agriculture Imagery Program (NAIP) and

Google Earth for the summers of 2013, 2014, and 2015

and field visits in fall of 2015. Thus, our map captures

the diversity and abundance of habitats within the

home range of deer in the year vegetation data were

sampled (see Online Appendix 1).

Finally, we estimated deer densities throughout

each of the 259 areas surrounding each stand using

fecal pellet surveys. Data were collected along five,

1.6 km transects spanning the site in spring (April to

early May) of 2013–2015. Within each transect, deer

pellet group counts were obtained on fifty-two, 4.67

m2 plots spaced 30.5 m apart. Estimates derived from

pellet group counts represent the average number of

deer over winter for each site and therefore, the

number of adult deer surviving into the spring and

summer (see deCalesta 2013 for further details on

methodology).

Statistical analyses

To avoid model overfitting our analyses proceeded

hierarchically. We first screened potential analysis of

covariance variables for collinearity using correlation

analyses (Online Appendix 3). Additionally, as our

hypotheses make specific predictions regarding avail-

able forage, we aggregated land cover classes capable

of producing forage into a composite variable: prop-

forage. These include recent forest management areas

(i.e., shelterwood, recent removal, thinning, and

salvage harvests), agricultural areas, and herbaceous

habitats. Stem exclusion patches generally lack abun-

dant forage as sapling canopy closes and is increas-

ingly out of reach of deer and the ensuing low-light

conditions reduce herbaceous cover to very low levels

(Johnson et al. 1995; Roberts 2004). Unmanaged,

mature forest strongly covaried (r = -0.75) with

propforage as it encompassed most of the habitat

remaining across the landscape after accounting for

managed forest habitats, and was therefore removed

from further consideration.

Following preliminary variable screening, we used

an exploratory model selection approach with model

averaging to determine whether treatment (fence/con-

trol) and the landscape covariables of deer density and

proportions of the landscape in forage, stem exclusion,

and conifer cover were robust predictors to include in

final models. We pooled the data and fit linear models

to the mean species richness, total cover (log[-

cover ? 0.1]), and Shannon diversity (H0) of each

experimental unit (i.e., average of five subplots within

each plot). For these models, treatment was converted

to binary variable (0/1) and all possible variable

combinations were examined the R function dredge

(MuMIn package; Barton 2013). We compared com-

peting models using AICC scores and weights and

present AICC-weighted average parameter estimates

across the top models (DAICC\ 2; Burnham and

Anderson 2002).

We used a generalized linear mixed model to test

how plant community responses varied as a function

of deer browsing alone and interactions between deer

browsing and selected landscape-level covariates. We

modelled treatment (fence/control) and height as fixed

effects. The model included one random effect for site

and a second random effect of height nested within

treatment(site) to account for the hierarchical nature of

the design (Milliken 2006). We used an autoregressive

first order covariance structure (AR(1)) in the G-ma-

trix to model the dependence in samples between

successive height strata. We initially tested the single

treatment effect of fence to examine whether localized

deer browsing affected vegetation across the entire

2 m profile, as established by Rohleder’s (2013)

methods. However, as our sites were fairly early in

stand development, vegetation was almost uniformly

low in stature with all of the species and 75% of the

total plant cover contained in the first 60 cm of height.

Hence, to examine whether localized deer browsing
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impact on the plant community varied as a function of

landscape-level covariates, we restricted our analyses

to the lowermost 60 cm in height, corresponding to the

three lowest height strata.

All analyses included a treatment 9 covariate term

to test the homogeneity of slopes assumption. This

interaction is central to our hypothesis testing whether

landscape covariates modulate vegetation responses to

browsing as a significant interaction would indicate

treatment effects do not respond in a similar manner

(i.e., non-parallel) to variation in the covariate. In

cases where treatment was significant (P\ 0.10), we

utilized least-squared means to test pair-wise differ-

ences and, where treatment 9 covariate interactions

were significant (P\ 0.10), we tested for treatment

differences along the entire range of the landscape

covariate in 5% increments using least-squared means

(Proc Glimmix; SAS Institute Inc. 2011). This

approach allowed us to assess, for example, at which

point along the landscape covariate, vegetation

responses to browsing in control plots became indis-

tinguishable from fenced plots.

We did not include the simple main effects of the

landscape covariates as these were collinear with the

blocking term Site (i.e., each site has unique values for

landscape covariates) and were applied to responses in

both the fence and control plots. Instead, we examined

whether responses against landscape covariates had

non-zero slopes. For all analyses, we utilized the

Kenward-Rogers denominator degrees of freedom

method. Compliance to the ANOVA assumptions of

homoscedasticity and normality of the residuals was

assessed using boxplots and Levene’s test. Species

richness was modelled using a Poisson distribution,

percent cover was modelled using a gamma distribu-

tion, and diversity (H0) was modelled using a normal

distribution.

To examine whether species composition differed

across treatments, and treatments 9 landscape covari-

ate interactions, we ran partial redundancy analyses

(RDA) using the Jaccard distance metric on the mean

frequency of species throughout 0–60 cm stratum.

Redundancy analyses are the canonical extension of

principal component analysis (PCA) and have the

flexibility of allowing the effects of known covari-

ables, such as spatial blocking effects, to be accounted

for (i.e., ‘partialled out’; ter Braak 1988). Species

present on\3 plots (42% of species) were culled from

the analyses as rare species exert unduly large

influence in multivariate analyses and distort interpre-

tation (McCune and Grace 2002). Species frequencies

were standardized using the Hellinger standardization

following Legendre and Gallagher (2001). To account

for the paired nature of the design, site was included as

a conditional covariable in the RDA and permuted

tests of significance (999 permutations) were con-

strained within sites using the strata option in the

vegan package in R version 3.1.2 (Oksanen et al.

2015). Species associations with the constraining

variables were visualized using RDA biplots. Com-

munity composition analyses were run using the rda

and anova functions in the vegan package.

Results

General patterns

We censused vegetation in plots covering a two-

dimensional footprint of *3141 m2 and a total vol-

ume across the entire vegetation profile of 6282 m3.

We surveyed 61 taxa of which 16 were tree species.

Across the entire 2-m height, deer browsing reduced

overall plant species richness by 53% (RichnessTrt:

F1,73.3 = 6.31; P = 0.01; Fig. 2a) and overall cover

by 70% (CoverTrt: F1,34.4 = 41.73; P\ 0.0001;

Fig. 2b, see also Table 2 for similar results on lower

strata). Progressively taller strata grew increasingly

depauperate, exhibiting both fewer species and less

cover (RichnessHt: F9,389.3 = 47.6; P\ 0.0001 and

CoverHt: F9,370.2 = 85.23; P\ 0.0001; Fig. 2) and

browsing exacerbated this decline for cover

(CoverTrt9Ht: F9,370.2 = 6.85; P\ 0.0001). Across

all strata, the most abundant species were Rubus

allegheniensis (16% relative frequency), Dennstaed-

tia punctilobula (9%) and various grasses and sedges

(17% combined). Among the tree species, Prunus

pensylvanica (8%), Acer rubrum (8%), and Betula

spp. (B. allegheniensis and B. lenta; 4.8%) were the

most frequently tallied.

Habitat composition modulates browse impact

The most plausible (i.e., lowest AICC) models pre-

dicting species richness, cover, and diversity all

included treatment (fence vs control), forage-produc-

ing habitats, and stem exclusion stands as essential

landscape variables (Table 1A). In fact, stem
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exclusion stands were selected in all models receiving

competitive support (D AICC\ 2). Forage-producing

habitats were selected in 78% of all alternative,

competitive models. None of the remaining landscape

variables, including average deer density, were iden-

tified in the most plausible (lowest AICc) model.

While average deer density and proportion conifer

appeared in the confidence set of models, confidence

intervals crossed zero. Additionally, models without

any landscape variables (i.e., intercept only or an

intercept ? treatment models) were not identified as

competitive or plausible models (e.g., high AICc

values, low R2 values, low weights). Excluding deer

and increasing proportions of forage habitat were

associated with greater richness, cover, and diversity

whereas increasing the proportion of stands in stem

exclusion diminished these metrics (Table 1B).

Land cover covariates consistently modulated

browse impact across the lowermost strata of the

vegetation profile (Table 2). Specifically, we found

the negative impacts of deer browsing on richness and

abundance weakened as the proportion of forage-

producing habitats increased across the landscape

(significant treatment 9 propforage interaction;

Table 2; Fig. 3). This relationship was not observed

within areas where deer were excluded. Comparisons

of the two treatments along the propforage covariate

found that when landscapes contained C20% in

forage-producing habitats, the plant community rich-

ness cover became indistinguishable from that found

within exclosures (Online Appendix 4). Overall

species richness, abundance, and diversity grew

increasingly depauperate in landscapes with greater

proportions of stem exclusion stands, and particularly

so in areas with ambient browsing (significant treat-

ment 9 stmex interaction; Table 2; Fig. 4). However,

even within exclosures, we detected richness and

diversity declines in sites embedded in landscapes

with more area in stem exclusion stands.

Deer browsing significantly altered species com-

position (RDATrt: F1,20 = 2.19, P = 0.004; Online

Appendix 5). The RDA indicated that in areas with

ambient browsing, ferns and graminoids (D. punc-

tilobula, Carex spp., T. noveboracencis) were 20, 37,

and 300% more frequent, respectively. In contrast,

eliminating browsing increased the frequency of P.

pensylvanica, F. grandifolia, Magnolia acuminata,

and Sambucus spp. by 177, 192, 358 and 204%,

respectively. Additionally, in areas with ambient

browsing, stands embedded in landscapes with greater

proportions of forage-producing habitats resulted in

greater frequencies of some species including
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Fig. 2 Mean overall (± 1SE) percent cover (a) and species

richness (b), by 20 cm interval height strata, with and without

ambient browsing. In both responses there were significant

(P\ 0.05) treatment and height main effects. Percent cover also

had a significant treatment 9 height interaction and therefore

we further examined treatment differences within height strata.

Asterisks (*) denote a significant pair-wise difference in

treatment within a height strata
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Polygonum cilinode, Fragaria virginiana, and Eury-

bia divaricata (RDATrt9PF: F1, 20 = 1.60, P = 0.057).

Discussion

Dynamic foodscapes

Our experiment demonstrates that variation in the

relative abundance of key habitats at large spatial

scales modulates localized browse impact in two

diametrically opposed ways: disturbances that open up

forest canopies and create early-successional habitats

initially mitigate browse impact whereas expanding

mid-successional habitats intensify browsing. In the

largely forested landscapes where we conducted our

study, land cover changes are mainly created by

harvesting, although herbaceous areas and agricultural

patches occur and natural disturbances are common

(Online Appendix 1, Royo et al. 2016b). Overstory

tree harvests, coupled with the herbicide applications,

increased light availability and disturbed the soil

Table 1 Linear model selection results for the overall cover

(ln[Cover ? 0.1]), species richness (ln[richness ? 0.1]), and

diversity (Shannon H’) of the vegetation in the 0–60 cm

stratum. (A) Models with DAICC\ 2 are presented as well as

an intercept-only model and a intercept ? treatment only

model. For all models we present the degrees of freedom (df),

the second-order Akaike information criterion (AICC), the

distance from the best model (DAICC), likelihood ration based

R2, and Akaike weight (wi). (B) Model averaged results

averaged across top models (DAICC\ 2)

A

Response Model df Log-likelihood AICC DAICC R2 wi

Cover Int ? Trt ? StmEx ? PropFor 5 -137.1 284.7 0.00 0.26 0.21

Int ? Trt ? StmEx ? PropFor ? DeerDens 6 -136.4 285.5 0.74 0.27 0.15

Int ? Trt ? StmEx ? PropFor ? Conif 6 -137.0 286.7 1.98 0.26 0.11

Int 2 -157.8 319.9 35.20 0.03 0.00

Int ? Trt 3 -155.5 317.2 32.50 0.03 0.00

Richness Int ? Trt ? StmEx ? PropFor 5 -272.9 556.3 0.00 0.17 0.21

Int ? Trt ? StmEx 4 -274.3 556.9 0.59 0.15 0.16

Int ? Trt ? StmEx ? PropFor ? DeerDens 6 -272.8 558.2 1.92 0.17 0.08

Int ? Trt ? StmEx ? PropFor ? Conif 6 -272.8 558.3 1.99 0.17 0.08

Int 2 -285.8 575.7 19.42 0.00 0.00

Int ? Trt 3 -282.5 571.3 14.97 0.05 0.00

Diversity Int ? Trt ? StmEx ? PropFor 5 -73.9 158.2 0.00 0.19 0.21

Int ? Trt ? StmEx 4 -75.1 158.5 0.39 0.18 0.17

Int ? Trt ? StmEx ? PropFor ? Conif 6 -73.7 160.1 1.96 0.19 0.08

Int 2 -88.4 180.9 22.73 0 0.00

Int ? Trt 3 -84.8 175.7 17.55 0.05 0.00

B

Cover Richness Diversity

Est. SE Pr([|z|) Est. SE Pr([|z|) Est. SE Pr([|z|)

Intercept 3.84 0.19 \0.0001 3.82 0.43 \0.0001 1.17 0.09 \0.0001

Stem Exclusion -0.04 0.01 \0.0001 -0.08 0.02 \0.0001 -0.02 0.00 \0.0001

PropForage 1.10 0.52 0.04 2.29 1.38 0.10 0.52 0.32 0.12

Treatment 0.27 0.11 0.02 0.83 0.30 \0.01 0.21 0.07 \0.01

Deer density 0.03 0.02 0.24 0.03 0.06 0.62 – – –

Conifer 0.00 0.00 0.66 0.00 0.02 0.66 0.00 0.00 0.64

Int intercept, Trt treatment (i.e., exclosure versus control), PF proportion of landscape in forage, StmEx proportion of landscape in

stem exclusion, DeerDens 3 year average deer density (2013–2014), Conif proportion of stands in conifer
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Table 2 Results of analyses of covariance on overall cover, species richness, and diversity (H0) for vegetation in the 0–60 cm height

stratum

Source Cover Richness Diversity

Treatment F1,30.0 = 3.67; P = 0.07 F1,45.6 = 6.76; P = 0.01 F1,44.1 = 4.25; P = 0.05

Height F2,23.4 = 40.23; P\ 0.0001 F2,56.1 = 125.66; P\ 0.0001 F2,45.9 = 111.21; P\ 0.0001

Trt*Height F2,46.5 = 3.89; P = 0.03 F2,63.5 = 63.49; P = 0.09 F2,77.1 = 1.08; P = 0.34

Trt*PF F2,35.9 = 3.42; P = 0.04 F2,43.3 = 2.90; P = 0.07 F2,45.0 = 2.30; P = 0.11

ControlTtt9PF b = 1.43 ± 0.56; t = 2.55* b = 1.30 ± 0.54; t = 2.41* –

ExclosureTrt9PF b = -0.16 ± 0.56; t = -0.28 b = 0.05 ± 0.51; t = 0.11 –

Trt*StmEx F2,35.9 = 11.10; P\ 0.001 F2,44.2 = 3.68; P = 0.03 F2,45.1 = 8.17; P = 0.01

ControlTrt9StmEx b = -3.59 ± 0.77; t = -4.64* b = -1.69 ± 0.80; t = -2.11* b = -1.91 ± 0.65; t = -2.93*

ExclosureTtt9StmEx b = -1.06 ± 0.77; t = -1.37 b = -1.29 ± 0.72; t = -1.79* b = -1.18 ± 0.65; t = -2.80*

Where a significant (P\ 0.10) treatment 9 covariate effect exists, we present the regression equations for each treatment to test

whether their slopes are significantly different (*) from zero. Vegetation cover was tested using a gamma distribution, species

richness was modelled with a Poisson distribution, and diversity was modelled using a normal distribution

Trt treatment, PF proportion of landscape in forage, StmEx proportion of landscape in stem exclusion
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Fig. 3 Relationships between percent of landscape (259 ha) in

forage-producing habitats and overall a species richness and

b cover, in the 0–60 cm strata with (filled circle) and without

(open circle) ambient browsing. For richness and cover data

plotted are back-transformed values of the Poisson and gamma

distributions, respectively. Data analysis was based on a

hierarchically nested approach wherein each height strata within

a plot was a unit of observation and the nestedness and

covariance structure among successive heights within plot were

accounted for in the model. For convenience, data are presented

separately for each height strata (0–20; 20–40; 40–60 cm). See

Table 2 for analyses
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surface thereby promoting plant germination, growth,

flowering, and fruiting within the lower vegetation

strata. The concomitant changes in composition and

structure caused by harvesting creates high quality

forage patches favored by wildlife (reviewed by

Greenberg et al. 2011) and mitigate localized browse

impact in the short term (deCalesta and Stout 1997;

Månsson 2009; Miller et al. 2009; reviewed by Hurley

et al. 2012; Gerhardt et al. 2013; Herfindal et al. 2015).

Our study extends and enhances these prior findings by

unequivocally isolating deer impact across nearly two

dozen sites that vary greatly in habitat composition

and deer densities. Moreover, our study identifies

target levels of area under forest management beyond

which negative effects of browsing on plant commu-

nity richness, diversity, and abundance are completely

mitigated. Our analyses indicate that, under the range

of deer densities observed in our study, when approx-

imately 20% of the landscape (52/259 ha) is in forage-

producing habitats (e.g., forest harvests, agriculture,

herbaceous openings), browse impact on cover and

diversity of the plant community is indistinguishable

from that found within a fence.

Our findings also indicate that interactions between

browsing and variation in relative abundance of

forage-producing habitats create communities with

contrasting plant composition. Excluding deer bene-

fited fast-growing, highly preferred species trees,

particularly P. pensylvanica (Horsley et al. 2003).

Under ambient browsing, however, species composi-

tion in areas embedded in landscapes with high

amounts of alternative forage did not mirror that

found within a fence. Instead, the habitat-mediated

reductions in browse impact allowed moderately
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Fig. 4 Relationships between percent of landscape (259 ha) in

stem exclusion habitat and overall a species richness and

b cover, in the 0–60 cm strata with (filled circle) and without

(open circle) ambient browsing. For richness and cover data

plotted are back-transformed values of the Poisson and gamma

distributions, respectively. Data analysis was based on a

hierarchically nested approach wherein each height strata within

a plot was a unit of observation and the nestedness and

covariance structure among successive heights within plot were

accounted for in the model. For convenience, data are presented

separately for each height strata (0–20; 20–40; 40–60 cm). See

Table 2 for analyses
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preferred species, including Polygonum cilinode,

Fragaria virginiana, and Eurybia divaricata (Atwood

1941) to persist. In contrast, as forage became less

available to resident deer herds, browsing intensified

and constricted species composition toward the least

nutritious, browse tolerant and highly recalcitrant

species, including ferns and sedges (Royo and Carson

2006). These findings suggest that deer may suppress

or promote species coexistence, depending on land-

scape context. Although herbivory and stand-level

disturbances are known to promote coexistence where

they co-occur (Royo et al. 2010a; Faison et al. 2016),

such interactions occurring at larger spatial scales

remain largely unexplored.

Our findings also suggest the role of disturbance in

modulating browsing is temporally dynamic as

changes to vegetation structure, composition, and

abundance that occur during succession eventually

reverse and intensify browse impact. We found plant

communities became increasingly depauperate when

embedded in landscapes with higher proportions of

stem exclusion stands. We suggest this effect is caused

by both historic and present intensification of browse

pressure. During stem exclusion, plant biomass

becomes increasingly concentrated in the competing

tree canopy and, concomitantly, woody and herba-

ceous biomass available to deer in lower strata

declines (Christensen and Peet 1984; Johnson et al.

1995; Howard and Lee 2003; Roberts 2004). Hence,

from an ungulate browser’s perspective, stem exclu-

sion stands present a tradeoff between suboptimal,

forage-poor habitat and dense hiding cover, both of

which will concentrate foraging activity in forage

hotspots created by harvesting (Partl et al. 2002;

Vospernik and Reimoser 2008; Månsson 2009).

Within our study areas, stem exclusion stands predate

the building of the exclosures. Hence, we suggest our

sites experienced past browse pressure that intensified

in landscapes with abundant stem exclusion stands

which may have negatively impacted plant richness,

cover and diversity, even in areas that were ultimately

fenced.

Considered in their entirety, our findings suggest

habitat-mediated effects on foraging activity and

browse pressure are both scale-dependent and

dynamic. Our findings indicate that in largely forested

areas, the application of even-aged forest management

practices that stimulate vegetation establishment and

growth in hardwoods initially mitigates and ultimately

intensifies browse impacts on vegetation as succes-

sional changes to forage availability cause deer to

concentrate browsing. Hence, the modulating effect of

disturbance-driven habitat heterogeneity on browsing

changes as the ‘foodscape’ (sensu Searle et al. 2007)

throughout the home range of the ungulate population

may wax and wane both spatially and temporally.

Reconciling opposing predictions

Our experimental findings support the hypothesis that

variation in habitat composition, and particularly the

relative abundance of forage patches, mitigates the

negative effect of browsing on plant cover and species

richness. This modulating effect assumes deer popu-

lations are relatively stable throughout the landscape.

However, natural or anthropogenic disturbance that

increases productivity and forage availability increase

carrying capacity and, thereby, may eventually

increase deer populations (Gill et al. 1996; Kramer

et al. 2006) and, thereby, ultimately intensify browse

impacts (Alverson et al. 1988; Augustine and Jordan

1998; Reimoser et al. 2009). Moreover, some have

argued that any modulating effects of increasing

forage throughout a landscape may be overwhelmed

at high deer densities (Augustine and Jordan 1998;

Beguin et al. 2016). Our findings cannot refute these

alternative predictions as our experiment was carried

out under conditions where landowners and game

management policies encouraged strong top-down

control over deer population growth by increasing

hunting opportunities and courting hunter participa-

tion (Stout et al. 2013). In fact, although average deer

densities in our study were higher than precolonial

estimates (\4 deer/km2; McCabe and McCabe 1997),

they are intermediate between thresholds identified to

maintain overall plant biodiversity (*4 deer/km2;

Alverson et al. 1988; deCalesta and Stout 1997) and

negative thresholds identified for tree regeneration

(*8 deer/km2; Horsley et al. 2003; Tremblay et al.

2007). Moreover, within our study areas, deer popu-

lations remained stable over time, even in areas with

high forage (see Online Appendix 1 and 3). Thus, our

results apply to managed forests in which deer

densities are moderately high (median = 6.3 deer/

km2; range 3.2–12.3 deer/km2) and which are largely

open to seasonal hunting pressure. Therefore, it is not

clear the degree to which our conclusions would apply

in landscapes with weak top-down control (i.e., lax
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hunting, absence of predators) where deer populations

would be free to respond positively to increasing

forage availability. Nonetheless, even under those

conditions, populations may build over a few years as

a result of lags in juvenile recruitment and low

emigration from nearby social groups (Fryxell et al.

1991; Miller et al. 2010). Understanding spatiotem-

poral dynamics and interplay between vegetation

development and ungulate populations should be a

focus of future studies.

Deer matter, but density estimates lack precision

Contrary to expectations, we found estimated deer

densities were not a robust predictor of vegetation

responses, even when coupled with landscape predic-

tors. However, we do not conclude deer are unimpor-

tant in driving vegetation dynamics in this system.

Indeed, our results demonstrate that browsing limited

species richness, abundance, diversity, restricted

recruitment of species into taller strata, and altered

species composition. We suggest the reason average

deer densities fail to consistently emerge as a robust

predictor in this and other studies may lie in the

precision of the variable itself relative to the response

(Royo et al. 2010b). Indeed, although fecal surveys

provide a comparative population density index at the

scale critical to our analyses (Forsyth et al. 2007),

variability in fecal deposition and persistence rates

may render them unreliable as predictors of localized

impact (Putman et al. 2011). Indeed, estimates based

on standing crop (i.e., without removing prior year’s

pellets) may be biased because pellets may take years

to disappear (Alves et al. 2013). Moreover, indices

based on over winter fecal deposition rates reflect deer

habitat use during a time when deer limit their

movement and seek thermal cover (e.g., conifer

stands). Thus, the temporal disconnect between winter

thermoregulation needs and summer browse foraging

in harvested areas may limit the utility of these

estimates. Additionally, although we used a 3-year

average density estimate in our models, observed

browsing impacts at individual sites may be highly

idiosyncratic, resulting from foraging bouts that

occurred in the past, present, or both, hence further

complicating interpretation. Finally, efforts to relate

aggregate plant community metrics (e.g., richness,

abundance) to densities of selective foragers like deer

is problematic as variation in the composition and

abundance of the plant community may mask inter-

pretation. Given these complications, it is not surpris-

ing that studies that detect relationships between deer

density and vegetation are generally focused on highly

palatable species (e.g., Augustine and Jordan 1998),

specific growth forms (e.g., woody sprouts; Royo et al.

2016a), subsets of the plant community (e.g., native

herb cover; Hurley et al. 2012), or analyses that are

sensitive to changes in species composition (Bachand

et al. 2015).

Proactive management of deer impact

Our work provides empirical evidence to substantiate

a paradigm shift in how land managers can sustainably

manage their forests under resident ungulate herds

(Reimoser and Gossow 1996). Currently, management

options to sustain and promote plant diversity are

reactive and costly, including the removal of matriar-

chal social groups from localized areas, localized culls

using sharpshooters, or the widespread use of fencing

(Porter et al. 1991; Vercauteren et al. 2006; Miller

et al. 2010). Our findings inform guidelines for a

distinct alternative whereby managers manipulate the

landscape on the appropriate temporal and spatial

scales to mitigate deer impacts on plant biodiversity at

the stand level. Specifically, we suggest that in

forested landscapes managed under even-aged silvi-

culture in which deer are hunted, land managers might

consider entering approximately 20% of the area

within the average home range of deer into a

regeneration sequence within 5 years in order to

buffer plant communities from browsing. This pro-

portion may be adjusted downward, according to the

degree to which alternative forage patches already

exist within the landscape (e.g., agriculture). Follow-

ing these initial entries, we recommend managers limit

any additional harvesting within the area as browse

risk will increase over the next couple decades as

stands transition into stem exclusion. Indeed, stem

exclusion patches are an important consideration, as

we show browse risk intensifies as the relative

abundance of this habitat type increases. Harvests in

landscapes containing abundant stem exclusion stands

may require increased deer harvest pressure or fencing

to mitigate potential risks to biodiversity.

Our recommendation regarding the proportion of

the landscape in forage producing habitats is higher

than Miller and colleagues’ (2009) recommendation
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of 14% in\10 year old stands and Stout and col-

leagues’ (2013) finding that 15% of early successional

forests are sufficient to ensure diverse regeneration

without fencing and enhance growth and reproduction

of browse sensitive herbs. The lower proportions

identified byMiller et al. (2009) and Stout et al. (2013)

relative to ours may arise as a consequence of their

harvests all being recent removals which stimulate

abundant regeneration, whereas our classification

combines recent removals with partial harvests con-

taining a more subdued regeneration response, and

hence, less forage (Horsley et al. 2003).

Our findings are applicable to forests across the

eastern United States and elsewhere where forest

managers practice even-aged silviculture and contend

with browse impact from white-tailed deer. Collec-

tively, our results underscore the importance of

understanding how management practices exert

scale-dependent influences on ungulate foraging

which may intensify or mitigate conflicts between

deer and forest management (Jarnemo et al. 2014;

Beguin et al. 2016). More broadly, our results support

the growing consensus of the benefits of early

successional forest habit to biodiversity conservation

(Swanson et al. 2011) and demonstrate that forest

management may mitigate deer impact and maintain

biodiversity while circumventing the contentious

socioeconomic-political debates that often surround

ungulate management in forests.
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