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Abstract

Context Landscape genetics focuses on quantifying

relationships between landscape features and gene

flow. Most past landscape genetic studies have

addressed relationships between landscape structure

and genetic differentiation in single study areas.

However, failure to investigate multiple areas across

a species range could produce misleading inferences

about which landscape variables generally limit gene

flow in a given species resulting in faulty management

decisions.

Objectives The main objectives of this paper were to

identify the landscape features that facilitate or impede

stone marten gene flow across its Iberian range, and to

test whether gene flow is always influenced by the

same set of landscape features or if they are detected

only when they are limiting in a particular landscape.

Methods We conducted an individual-based meta-

replicated landscape genetic analysis using multivari-

ate-restricted optimization with reciprocal causal

modeling in three study areas within the Iberian

Peninsula with strongly contrasting landscape

characteristics.

Results Variables explaining the stone marten dis-

tribution differed among areas, confirming that

relationships between genetic connectivity and land-

scape features are variable across Iberia. We found

clear patterns in which variables were included in the

final optimized model related to how limiting those

variables were to gene flow in each particular study

area.

Conclusions This study highlights that variability in

limiting factors can have a large effect on predictions

of which landscape features affect gene flow. Our

results suggest that landscape models specific to the

region of interest should be developed before propos-

ing management and conservation actions, and con-

tribute to the growing understanding of limiting

factors in landscape genetics.

Keywords Isolation by distance � Isolation by

resistance � Limiting factors � Martes foina � Meta-

replication � Multivariate optimization � Reciprocal
causal modeling � Spatial replication
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Introduction

Landscape genetics combines population genetics,

landscape ecology and spatial statistics (Manel et al.

2003; Balkenhol et al. 2015). In individual-based

landscape genetic analyses, the individual is used as

the operational unit, avoiding potential biases associ-

ated with the delimitation of pre-defined populations

(Schwartz and McKelvey 2009; Cushman et al. 2015),

and often providing higher statistical power and

spatial resolution (Manel et al. 2003; Landguth et al.

2010).

The predominant approach to identifying relation-

ships between landscape features and genetic differ-

entiation used in landscape genetics today is based on

correlations between pairwise individual genetic dis-

tances (GDs) and effective distances among individ-

uals across the landscape mosaic. The goal is to

quantify the effect that landscape composition, con-

figuration and quality have on micro-evolutionary

processes and on the spatial patterns of genetic

variability (Balkenhol et al. 2009, 2015). There has

been controversy over the use of Mantel tests in

landscape genetics (Balkenhol et al. 2009; Guillot and

Rousset 2011, 2013; Graves et al. 2012, 2013), but an

alternative has yet to be identified that does not also

suffer drawbacks. Shirk et al. (2010) proposed a

restricted multivariate optimization approach that uses

Mantel r value as the objective function being

optimized across combinations of resistance parame-

terizations. Castillo et al. (2014) showed using sim-

ulations that the Shirk et al. (2010) multivariate

optimization using the reciprocal causal modeling

approach proposed by Cushman et al. (2013b) iden-

tified the true drivers of genetic differentiation and

produced useful resistance estimates. The approach is

based on relative support (RS) of each candidate

model in competition with all other candidate models

at each step of a restricted multivariate optimization.

Recently, Zeller et al. (2016) found that restricted

multivariate optimization with reciprocal causal mod-

eling provided better identification of factors driving

gene flow than several other approaches. Furthermore,

in one of the most comprehensive simulation studies

of landscape genetic methods conducted to date, Shirk

et al. (2017) found that Mantel-based models selection

methods performed very well in identifying the correct

driving variables and their relative influence. In

addition, the approach we have used here seems to

avoid most of the issues associated with spatial

autocorrelation identified by Guillot and Rousset

(2011). First, the main issue identified by Guillot and

Rousset is that spatial autocorrelation inflates Type I

error rates by affecting p-values. However, our

approach does not use p-values, but rather optimizes

the objective function of the relative magnitude of the

partial Mantel r value. Second, Guillot and Rousset

showed that the absolute values of the correlation

coefficients were affected, but not the relative mag-

nitudes. Therefore optimizing based on the relative

magnitude of the partial Mantel r value likely avoids

these issues. In addition, while there have been a

number of other approaches proposed for landscape

genetic analysis and optimization of resistance sur-

faces, such as Bedassle (Bradburd et al. 2013) and

Sunder, most of them have not been well vetted with

simulation analysis. It was not the purpose of this

paper to evaluate the relative performance of such

methods, but to apply a well known and widely

applied method to a meta-replicated analysis of stone-

marten landscape genetics on the Iberian Peninsula.

One of the key ideas in landscape ecology to

emerge over the past two decades is the importance of

landscape-level replication to determine generality

and variation in pattern–process relationships (e.g.,

Turner and Gardner 1991; Hargrove and Pickering

1992; Wiens et al. 1993; McGarigal and Cushman

2002; Radford et al. 2005). Factors that affect species

distributions (e.g., Shirk et al. 2014) and gene flow

(e.g., Short Bull et al. 2011) may differ among study

areas, with certain factors limiting distributions or

gene flow in some landscapes while other factors are

seen to be important elsewhere. Reliable inferences

about relationships between landscape patterns and

population processes require replicated studies at the

landscape-level to identify general patterns and quan-

tify threshold relationships where landscape features

begin to limit ecological processes (e.g., Cushman

et al. 2013a).

Meta-replicated landscape genetic studies (e.g.,

Johnson 2006, independent analysis conducted fol-

lowing the same methodology in more than one area)

are necessary to derive reliable inferences about which

variables driving gene flow in the study species, and

when these features become limiting to gene flow.

Despite the fact that pattern–process relationships may

differ in different parts of a species’ geographic range,

there have been very few spatially replicated
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landscape genetics studies (Segelbacher et al. 2010;

Short Bull et al. 2011; Balkenhol et al. 2015). Thus, it

has recently been argued that further advance and

generalization of landscape genetics will require a

focus on meta-replicated studies to identify limiting

factors and thresholds of landscape pattern where they

become limiting to gene flow (e.g., Short Bull et al.

2011; Cushman et al. 2013a; Balkenhol et al. 2015).

The stone marten (Martes foina; Erxleben, 1777) is

a medium-sized mustelid which is widely distributed

throughout much of Europe, central Asia and the

Middle East (Tikhonov et al. 2008). In the Iberian

Peninsula, the western limit of its distribution, the

species is widespread and locally abundant (Reig

2007). The stone marten is considered a food and

habitat generalist, but its habitat preferences vary in

different parts of its range (Santos and Santos-Reis

2010; Virgós and Garcı́a 2002). Vergara et al. (2015b)

found a tendency of the species to select human

associated environments, mostly extensive agricul-

tural areas with a high density of small villages,

although in Iberia it is rarely found in or near large

urban areas (Basto 2014). The Iberian stone marten

prefers forested habitats when the pine marten is

absent (Virgós and Garcı́a 2002), but expresses niche

displacement away from preferred pine marten habi-

tats when co-occurring (Vergara et al. 2015b).

Despite the extensive distribution of the stone

marten, there have been few population and landscape

genetic studies published on the species, in contrast to

other species of the genus Martes which have been

more thoroughly studied (e.g., pine marten, Ruiz-

González et al. 2014, Larroque et al. 2015; American

marten, Wasserman et al. 2010, and Fisher, Hapeman

et al. 2011). To our knowledge, there have been two

landscape genetic studies on the species, which were

conducted in Portugal (Basto 2014) and France

(Larroque et al. 2016), and two population genetic

country level studies, in Bulgaria (Nagai et al. 2012)

and the Iberian Peninsula (Vergara et al. 2015a). In

Vergara et al. (2015a), the authors combined mito-

chondrial DNA sequencing and microsatellite geno-

typing to infer the population genetic structure of the

species across Iberia using several Bayesian individ-

ual-based clustering approaches and concluded that

the main watercourses may act as semi-permeable

barriers to gene flow in stone martens. In this paper we

used a subset of the genetic data (microsatellites)

produced in Vergara et al. (2015a) to investigate the

extent to which several landscape variables facilitate

or impede stone marten gene flow in each of three

study areas which are widely distributed across the

Iberian Peninsula and differ substantially in topogra-

phy, landcover and road density. A main focus of this

paper is to evaluate the generality of which factors

affect gene flow and to evaluate if factors observed to

limit gene flow follow the predictions of Short Bull

et al. (2011) and Cushman et al. (2013a, b) who argued

that landscape features will only be detected as

limiting gene flow when they are highly variable

across the landscape such that their pattern directly

affects dispersal across a large portion of the

population.

Methods

Study areas

We selected three study areas that were widely

distributed across the Iberian Peninsula and exhibited

strongly divergent topography, land-cover, and road

density (Fig. 1; Table S1). The first study area (BC)

covered 15,600 km2 and included most of the Basque

Country and part of the adjacent territories of

Cantabria, La Rioja and Navarre, ranging from the

sea level to 1748 m of the Cantabrian Mountains. The

second study area (CAT), of 55,390 km2 in extent,

was located in Catalonia and Aragón, with the highest

elevation found in the Pyrenees (3400 m). Lastly, we

included a region of southern Portugal (SP), of

17,460 km2 in extent, centered on the watersheds of

the Tagus and Guadiana Rivers (Fig. 1).

Stone marten genetic diversity and pairwise

genetic distances

In this study we used genetic information from 23

microsatellites across 179 individual stone martens

across the 3 study areas (BC = 65 individuals,

CAT = 60 individuals, SP = 54 individuals), which

is a subset of the 333 individuals genotypes for an

Iberia-wide population genetic study (Fig. 1;

Table S2; Vergara et al. 2015a). Samples were

obtained from museum collections, wildlife rescue

centers, road-killed individuals and hair samples from

live-trapped individuals. Samples were individually

genotyped with a novel multiplex panel of 23
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autosomal microsatellite markers: 13 species-specific

microsatellites and 10 additional markers described in

closely related mustelids (Vergara et al. 2015a).

We used FSTAT v.2.9.3 (Goudet 1995) to calculate

the Fst values (Weir and Cockerham 1984) of the 179

individuals. The observed and expected heterozygosi-

ties (Ho and He) were calculated in GenAlEx 6.5

(Peakall and Smouse 2012). Mean allelic richness

across loci (AR) was calculated with the PopGenRe-

port package in R (Adamack and Gruber 2014). Inter-

individual GDs were estimated using Rousset’s ar
distance (2000) in SPAGEDI v.1.4 (Hardy and Veke-

mans 2002), which has previously been successfully

applied to infer the effect of landscape on genetic

structure of continuously distributed carnivores (Ruiz-

González et al. 2014; Larroque et al. 2015). We

performed a spatial autocorrelation analysis in GenA-

lEx 6.5 (Peakall and Smouse 2012) to evaluate the null

hypothesis of random genetic structure within each

area. The autocorrelation coefficient (r) was calculated

for each pair of individuals and divided into even

distance classes for each of the three areas while the

overall significance was evaluated with the hetero-

geneity test (Peakall and Smouse 2012). Additionally,

we tested for the presence of IBD in each of the study

areas using a simple Mantel test between the matrix of

GDs and the matrix of geographic distances with the

adegenet package in R (Jombart 2008).

Predictor variables and parameter space

for optimization

We hypothesized a priori that the genetic differenti-

ation of the stone marten could be driven by landscape

resistance (IBR) due to four landscape variables:

landcover type, elevation, topographical roughness

(ruggedness) and/or roads. For each variable we

specified a range of maximum resistance value

Fig. 1 Location of the three study areas (BC, CAT and SP) and

the 179 genotyped stone martens (blue, green and purple dots,

respectively) in Iberia. Each landcover type is shaded in a

different color while the updated distribution of the species in

Spain is reported in 10 9 10 km grids (Reig 2007). (Color

figure online)
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(RMax) and functional shape (power exponent) to

define a parameter space for optimizing landscape

resistance (e.g., Shirk et al. 2010).

We obtained landcover data from The European

landscape database (EEA, CORINE) and we reclassi-

fied into nine broad landcover types; natural forests,

forestry plantations, agroforestry mosaics, scrublands,

pastures, crops, rocks, urban areas and wetlands

(Fig. S1). We specified a range of power functions

that affect the functional response shape of landscape

resistance to landcover type. Following Shirk et al.

(2010) we ordered landcover classes from least

resistant to most resistant, based on expert knowledge

of the species’ ecology, setting resistance of natural

forest to 1 and scaling resistance of the other landcover

types to increase as power functions with exponents of

0.001, 0.2, 0.4, 0.6, 1, 1.5, 2, 3, and 5 to produce a

range of functional shapes ranging from highly

concave to highly convex. We also specified five

maximum resistance values (10, 20, 30, 40, 50) which

were applied to each variable. In combination, this

produced 45 (9 power functions * 5 RMax values)

resistance parameter combinations for landcover

(Fig. S1).

Elevation data was obtained from a 25 m resolution

Spanish digital elevation model (Spanish Geograph-

ical National Institute; CNIG 2008) and 50 m resolu-

tion Portuguese digital elevation model (Portuguese

Geographical National Institute). We evaluated a

combination of 9 functional shapes of how elevation

could affect landscape resistance across 5 levels of

RMax, producing 45 combinations of elevation land-

scape resistance parameterizations (Fig. S1). Specif-

ically, the nine functional shapes of landscape

resistance due to elevation was then modeled by

applying inverted Gaussian functions, as in Cushman

et al. (2006), to produce unimodal functions specify-

ing optimal elevation and rate of increase in resistance

as one moves away from that optimal elevation.

Specifically, we evaluated three optimal elevations

where resistance was set to 1 (100, 500, 900 m) and

three standard deviations of the Gaussian function

(100, 200, 300 m). The five levels of RMax were 10,

20, 30, 40, 50, as in the landcover parameterization.

Topographic roughness or ruggedness expresses

the amount of elevation difference between adjacent

cells of a digital elevation grid, providing an objective

quantitative measure of topographic heterogeneity

(Riley et al. 1999). Roughness was calculated from the

elevation layers using the surface gradient and

geomorphometric modeling tool (Evans et al. 2014)

in ARCGIS. Similarly to landcover, we produced 45

resistance layers for roughness, across the same 9

power function exponents and same 5 RMax values,

for each area.

Finally, we modeled resistance arising from roads

by building 36 resistance layers (Fig. S1) through the

combination of 6 values for each road type (primary

roads = 10, 20, 40, 80, 160, 320, secondary

roads = 5, 10, 20, 40, 80, 160) based on traffic

volume (global roads open access data set).

Multivariate restricted optimization and reciprocal

causal modeling

We evaluated the large pool of alternative hypothe-

ses described by the full combination of functional

shape and maximum resistance for each of the four

predictor variables across each of the three study

areas, and optimized the functional form and

relative resistance level for each factor. In each

study area, we used the multivariate restricted

optimization approach developed Shirk et al.

(2010) within the reciprocal causal modeling frame-

work (Cushman et al. 2013b) to optimize the

relative influence and functional form of the rela-

tionship between gene flow and landcover, roads,

elevation and topographical roughness. This

approach has been shown to reduce Type I error

rates in landscape genetic analyses when compared

to the original causal modeling approach (Cushman

et al. 2014), and has been shown through simulation

modeling to correctly identify the landscape factors

driving gene flow and reject highly correlated

alternative models (e.g., Castillo et al. 2014).

Measures of resistance distance (RD) between

sampling points were calculated with the least-cost

path approach using the UNICOR software (Landguth

et al. 2012). To assess the relationship between GD

and RD matrices, we used the partial Mantel test

(1967) implemented in the ECODIST package

(Goslee and Urban 2007) in R.

The multivariate restricted optimization approach

is conducted in three steps. First, each candidate

variable is optimized univariately across a range of

functional shapes and maximum resistance values.

Second, we conducted a multivariate restricted

optimization in which each variable was evaluated
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across all combinations of its potential parameter

values, holding the others at their previously opti-

mal states, and cycling through until the predicted

parameter values stabilized for each variable in the

context of the optimized values of the other

variables. Third, we conducted an analysis of all

combinations of variables at their optimal parameter

values to determine which variables to include in the

final optimized model.

In each of these three optimization steps we used

reciprocal causal modeling to simultaneously compete

all alternative hypotheses against each other with

partial Mantel tests, with the goal of identifying, in

each step, the model that was uniquely supported

relative to the others. To do this, we calculated a

matrix of RS by taking the difference between (a) the

partial Mantel r of each candidate model partialling

out each alternative model, and (b) the partial Mantel

test of the alternative model partialling out the

candidate model. A fully supported model would have

positive values of (a)–(b) for all alternative models,

while no alternative models would have positive

values of (a)–(b) when partialling out the fully

supported model (Cushman et al. 2013b).

Univariate optimization

For each area, we conducted a univariate optimization

(e.g., Shirk et al. 2010) in which we directly competed

all functional forms for each individual variable

against each other in a reciprocal causal modeling

framework (see Fig. S2 for the graphic representation

of the univariate optimization step). For each land-

scape variable in each study area, the best candidate

univariate model was the one with positive RS in every

comparison (Cushman et al. 2013b) and for which no

other model had positive RS when partialling it out.

When there was not clear unique support for a single

model, we evaluated as potential explanation only

those hypotheses that had all positive values in their

column. When there were multiple hypotheses with all

positive values in their column of the RS matrix, we

chose the hypotheses with the lowest number of

positive values in its row, to choose the model that was

fully supported on test I (focal model partialling out

alternative models; supported independently of all

other models) and which had the fewest spurious

correlations on test II (alternative model partialling out

focal model; fewest models supported independently

of it; Cushman et al. 2013b).

Multivariate optimization

We used the multivariate optimization approach

developed by Shirk et al. (2010) as modified by

Castillo et al. (2014). Specifically, we repeated the

reciprocal causal modeling for the first input variable,

holding all other variables constant at their univariate

optima, and combining them through addition. We

then changed the model for that first input variable to

the one identified in this reciprocal causal modeling

step, and repeated for the next predictor variable. This

process was repeated until the supported model did not

change (Shirk et al. 2010; Cushman et al. 2013b) (see

Fig. S3 for the graphic representation of the multi-

variate optimization step).

Final multivariate combination analysis

In its original form, the Shirk et al. (2010) multivariate

optimization assumes that all variables combine at their

optimized values to produce the bestmodel of landscape

resistance. However, the best model predicting gene

flow may not include all predictor variables, even at

their optimal form (i.e., the best relationship between

landscape structure and gene flow may only be a

function of a subset of the predictors; Cushman et al.

2014). We evaluated this by conducting a final recip-

rocal causal modeling approach between all 15 combi-

nations of the 4 input variables landcover, elevation,

roughness and roads (at their multivariate optimization

parameters of functional shape and RMax), and iden-

tifying, for each study area, which combinedmodel was

most supported relative to the others. See Fig. S4 for the

graphic representation of the final step of the multivari-

ate optimization.

Finally, we tested whether this final combined

model was supported independently of IBD using a

final set of partial Mantel tests. For each area, the best

multivariate model needed to pass two causal model-

ing criteria to be significantly better than IBD. First,

the partial Mantel correlation between GD and RD of

the best multivariate model after partialling out IBD

must be significant. Second, the partial Mantel corre-

lation between GD and IBD after partialling out the

RD of the best model must be non-significant

(Wasserman et al. 2010; Castillo et al. 2014).
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Limiting factors

We hypothesized that the effect of a given landscape

variable (i.e., landcover, elevation, roughness and

roads) on stone marten gene flow would only be

detected when it is limiting in the study area (Short

Bull et al. 2011; Cushman et al. 2013a). Following

Cushman et al. (2013a) we hypothesized that a

variable would only be limiting when it was highly

variable across the study area such that its hetero-

geneity affected the gene flow of a large portion of the

marten population. Thus, the differences in the

supported combined resistance model among study

areas may be predictable based on the heterogeneity of

the pattern of each predictor variable among study

areas. Thus, if one variable is not included in the best

supported model, it does not necessarily mean that the

variable is not important to stone marten ecology; it

may imply that it is not limiting in that particular

landscape or it may reflect collinearity with other

predictors, overfitting or insufficient statistical power

to detect its influence.

We expected landcover to be identified as a

landscape factor influencing gene flow in heteroge-

neous and highly patchy landscapes but not in highly

homogenous ones (e.g., Short Bull et al. 2011,

Cushman et al. 2013b). Thus, we used FRAGSTATS

software v 4.2 (McGarigal et al. 2012) to calculate five

landscape level metrics [patch density (PD), edge

density (ED), correlation length (GYRATE_AM),

Shannon’s diversity (SHDI) and aggregation index

(AI)] that have previously been shown to measure

attributes of landscape heterogeneity that are highly

sensitive measures of when landscape patterns limit

gene flow processes (e.g., Cushman et al. 2013b). PD

is the density of patches of all cover types in the

landscape mosaic, ED is the length of edges between

dissimilar patch types per unit area, correlation length

is the area-weighted mean radius of patch gyration,

and is the expected value of the distance one can

traverse the landscape when starting in a random

location and moving in a random direction before

leaving the patch of origin. Shannon’s diversity is the

diversity of patch types, combining both richness and

evenness as formulated in the Shannon diversity

index. AI is a measure of landscape heterogeneity,

where high levels of aggregation occur when a large

proportion of cells in the landscape are surrounded by

cells of the same cover class.

Similarly, we expected elevation to be identified as

influencing gene flow in study areas with a relatively

high variance of elevation, but not in those where the

topography is relatively flat (e.g., Short Bull et al.

2011). Thus, to quantify the heterogeneity of the

landscape in terms of its elevation we calculated the

mean and the standard deviation of elevation in

ARCGIS.

Likewise, topographical roughness is likely to

influence gene flow in study areas with a high degree

of ruggedness, while in flatter study areas topography

would not limit gene flow and thus would not influence

population structure. We calculated the mean of the

topographical roughness surface (Evans et al. 2014)

within a 1000 m focal radius in ARCGIS. Finally, the

road network is expected to limit gene flow only in

areas where roads are extensive and dissect the

landscape, but not where roads are few and do not

fragment the area (e.g., Short Bull et al. 2011). To

measure the extensiveness of roads across the land-

scape we calculated the correlation length of roads in

FRAGSTATS (class-level metric correlation length;

GYRATE_AM), treating roads as a categorical cover

type. Correlation length provides a measure of land-

scape connectivity and represents the average

traversability of the landscape for an organism that is

confined to remain within a single patch.

Results

Genetic diversity

The CAT area had the highest genetic diversity

(AR = 4.971 ± 1.733, Ho = 0.530 ± 0.035, He

= 0.611 ± 0.031) followed by BC (AR = 4.414

± 1.967, Ho = 0.523 ± 0.027, He = 0.584 ±

0.031), with SP lowest (AR = 3.733 ± 1.517,

Ho = 0.474 ± 0.035, He = 0.521 ± 0.035). Fst val-

ues were highest between SP and CAT (Fst = 0.1148)

and SP and BC (Fst = 0.1082), and lowest between

BC and CAT (Fst = 0.0541), consistent with the

geographic distance among them. All three correlo-

grams (e.g., one for each study area) were significant

(heterogeneity test p\ 0.01) and showed a pattern of

decreasing relatedness with increasing distance

(Fig. 2). The x-intercept provides an estimate of the

extent of non-random genetic structure, and varied

from 50.4 km in BC and 59.1 km in SP to 93.8 km in
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CAT. The genetic versus geographic distance scatter-

plot provides a means to compare the relationship

between geographic and GD in all three study areas at

the same scale (Fig. 2). The CAT study area showed

low genetic structure and the highest intercept, when

comparing among areas (Fig. 2d).

Optimized resistance models

The best supported univariate parameterization dif-

fered among study areas for each of the four predictor

variables (Table 1). Optimized univariate models for

landcover had the lowest maximum resistance values

in BC and SP (e.g., 10) but the highest in CAT (e.g.,

50), and presented high variation in power function

exponents (0.001–5; Fig. S1). In CAT and SP the

landcover model identified in univariate and multi-

variate optimization steps was the same, while in BC

the power function exponent decreased slightly in the

multivariate optimization (Fig. S5).

When modeling IBR arising from elevation, the

best supported univariate and multivariate models all

had an optimal elevation of 500 m (Fig. S6). However,

across the three study areas, all the three standard

deviations and the maximum and minimum resistance

values were selected. The elevation model identified

by univariate and multivariate optimization was the

same in CAT but varied in BC and SP.

Fig. 2 a–c Spatial autocorrelation analysis. Correlogram plots

of the autocorrelation coefficient (r) as a function of 10 distance

classes for BC and SP areas and 30 distance classes for CAT area

calculated in GenAlEx. d Scatterplot of the geographic distance

(Log km) versus genetic distance (Rousset’s ar distance, dots)

and linear fit (lines) for BC, SP and CAT in blue, purple and

green, respectively (Fig. 1). (Color figure online)
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Univariate and multivariate models for roughness

did not change between the univariate andmultivariate

optimizations in CAT, but the power exponent varied

slightly in BC and also in SP, both at the maximum

RMax level of 50 (Fig. S7). Lastly, among the road

resistance models, BC showed a low resistance to

primary and secondary roads in univariate and mul-

tivariate optimization and so did CAT in the univariate

model selection step. On the other hand, in the

multivariate models for the SP and CAT study areas

the influence of primary roads was relatively weak, as

measured by RMax, while the influence of the

secondary roads was high (Fig. S8). The movement

of the supported model across the univariate and

multivariate optimizations in the hypothesis space is

reported in Fig. S9.

Final model selection

The final multivariate combination analysis identified

landcover (L), elevation (E) and topographical rough-

ness (R) (LER) as the best IBR model predicting gene

flow in BC (Fig. 3). The best supported IBR model for

CAT was LERRd, which included all the four

variables [e.g., LER and roads (Rd)], while the best

IBR model for SP included only topographical vari-

ables (e.g., E and R; Fig. 3). Thus, the three study

areas each had a different most-supported IBR model,

but elevation and topographic roughness were land-

scape features identified as influencing gene flow in all

of them.

IBDwas statistically significant in all areas (Mantel

r values of BC = 0.233, CAT = 0.161, SP = 0.237;

p\ 0.001) based on a simple Mantel test (Fig. S10).

The Mantel regression plot displayed a single high-

density nucleus (Fig. S10). The final reciprocal causal

modeling showed IBR independently of IBD in the BC

and SP study areas (e.g., the Mantel r value for IBR

partialling out IBD is positive and the Mantel r value

for IBD partialling out IBR is negative) showing that

the genetic differentiation among stone martens in

these areas is driven by IBR independently of IBD

(Table 2). However, the IBRmodel for CAT (LERRd)

was not supported independently of IBD (e.g., Mantel

values for IBR partialling out IBD and IBD partialling

out IBR are both positive; Table 2).

Limiting factors

Landcover was included in the multivariate optimized

models in the BC and CAT study areas, and both study

areas presented high landscape heterogeneity as

measured by five FRAGSTATS landscape-level met-

rics (Table S1). However, landcover was not among

the variables included in the best supported IBRmodel

for SP, which also had substantially lower hetero-

geneity of the landcover mosaic (Table S1). The BC

and CAT study areas had high variation in elevation

and roughness, while SP had relatively lower topo-

graphical variation. Roads were included only in the

optimized CAT model, and the correlation length of

roads in CAT area was 176% greater than in BC and

134% greater than in SP area (Table S1).

Discussion

Topography as a common driver of genetic

differentiation

To be detected as a factor influencing gene flow a

landscape feature must significantly vary across the

Table 1 Best univariate

and multivariate models of

landscape resistance for the

stone marten identified

following the reciprocal

causal modeling framework

for each of the variables and

areas

Study areas/model types Landcover Elevation Roughness Roads

BC

Univariate p4m1 g5_1_9 r8m1 prim10sec5

Multivariate p1m1 g5_3_49 r9m1 prim10sec5

CAT

Univariate p8m5 g5_3_9 r9m1 prim20sec5

Multivariate p8m5 g5_3_9 r9m1 prim40sec160

SP

Univariate p9m1 g5_2_49 r8m5 Prim10sec160

Multivariate p9m1 g5_3_49 r7m5 prim40sec160
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Fig. 3 Final reciprocal causal modeling matrix for the 15

multivariate combination analyses performed (including all

combinations of the 4 input variables; landcover, elevation,

roughness and roads, at their optimal form). Columns indicate

focal models, and rows indicate alternative models. The color

gradient from blue to yellow indicates relative support for the

focal model independent of the alternative model (e.g., focal

model | alternative model - alternative model | focal model is

positive). The best IBRmodel predicting gene flow in each study

area; a BC, b CAT and c SP are indicated in black. (Color

figure online)

Table 2 Mantel’s r values of the reciprocal causal modeling analysis for the best supported IBR model and the IBD models for each

area (BC, CAT and SP)

BC CAT SP

IBR (LER) IBD IBR (LERRd) IBD IBR (ER) IBD

IBR – 0.1956 – 0.0536 – 0.0959

IBD -0.0385 – 0.0399 – -0.0323 –

Rows indicate focal model and columns indicate the model being partialled out. For example, in the BC matrix, the partial Mantel r

for IBR partialling out IBD is 0.1956, and for IBD partialling out IBR is -0.0385, indicating support for the IBR model independent

of IBD. IBR (LER) is the model identified as the best IBR model in BC and was built with three variables, landcover, elevation and

roughness. The best model for CAT [e.g., IBR (LERRd)] included landcover, elevation, roughness and roads; while the best IBR

model in SP [e.g., IBR (ER)] was built with only the topographic variables elevation and roughness
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study area in a way that limits gene flow (Short Bull

et al. 2011; Cushman et al. 2013a). In this study, all

three replicate landscapes multivariate optimization

identified elevation and topographical roughness as

drivers of genetic differentiation. This is interesting

given that SP has a substantially lower degree of

topographical complexity that do CAT or BC. This

suggests that elevation and topographical roughness

affect gene flow of stone martens even at the relatively

lower heterogeneity seen in SP (Table S1). Stone

marten gene flow presented a consistent response to

topography across the three study areas, with optimal

elevation of 500 m and nonlinearly increasing resis-

tance with increasing topographical roughness. This

suggests that stone marten dispersal movement may be

highly related to extent of suitable climatic zones

(with elevation as a proxy variable), as was also found

for American marten by Wasserman et al. (2010,

2012), or to changes in vegetation types with eleva-

tion. In addition, the observation of a consistent

response to topographical roughness suggests that

cliffs, ridges and steep mountains may act as filters or

partial barriers to gene flow of this species.

Variation in landscape resistance hypotheses

among areas

In contrast to their common response to elevation and

topographical roughness, the three study areas differed

with regard to the other variables (roads and landuse).

In SP the genetic differentiation of the stone marten

was a function of elevation and roughness alone, while

landcover and roads were not included in the best

supported resistance models. This is consistent with

our a priori expectations given that SP had the lowest

heterogeneity of landcover and lowest correlation

length of roads of the three study areas, suggesting

these variables are not variable enough in SP to limit

gene flow. Consistent with our results, Basto (2014)

found that landcover did not have a clear influence on

the genetic structure of the stone marten in Portugal,

but suggested a restricted gene flow across rivers (e.g.,

the most resistant landcover class). However, we did

not find a clear response to rivers is SP, where

landcover was not included in the best supported

resistance model.

In addition to topographic variables, the BC study

area also included landcover in its final optimized

model of landscape resistance to stone marten gene

flow. We expected land cover to be limiting in BC a

priori given its very high landscape heterogeneity.

Cushman et al. (2012) found that the strength of spatial

genetic structure is related to the heterogeneity of the

landscape mosaic and the degree of contrast in

resistance to gene flow among the different landcover

types. Correlation length (GYRATE_AM) and PD are

among the most effective landscape metrics for

predicting the effects of landscape heterogeneity on

genetic differentiation (Cushman et al. 2012). There-

fore, based on the comparison of the values obtained in

each of the study areas, we expected the BC study area

to show the strongest relationship between gene flow

and landcover because it had lowest GYRATE_AM

and highest PD. Consistent with this a priori expec-

tation, the best supported model in BC area (LER),

which was supported independently of IBD, suggested

that landcover influences the genetic differentiation

among individuals in this area. However, the final

multivariate parameterization of resistance due to

landcover in the BC study area indicated that all nine

landcover types had very similar resistance coeffi-

cients, suggesting little difference among landcover

types in their resistance to gene flow. Thus, while our

results identify a significant effect of landcover, as

expected due to the heterogeneity of the BC area, they

also suggest that gene flow in BC is primarily limited

by topographical variables, with relatively weaker

effects of landcover.

It should be noted that the ranking of land-cover

classes in order of increasing landscape resistance to

the stone marten gene flow was based on expert

knowledge of the species, and it would have been

computationally infeasible to run the optimization

across all orders of possible resistance ranking as well

as functional shape and maximum resistance. How-

ever, a misspecification of the order of landcover

classes in terms of their relative resistance could mask

the influence of landcover in the genetic structuring of

the species. Future research should empirically eval-

uate a full range of landscape resistance parameteri-

zation for landcover, including alternative relative

resistance ranks of landcover classes.

The best supported IBR hypothesis for the CAT

study area included all four of the predictor variables,

as we would expect based on limiting factors. The

CAT landscape is highly heterogeneous, with high

landscape fragmentation and pronounced topographic

variation. The forth variable, roads, was only
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identified as influencing gene flow in CAT, which is

consistent with the high correlation length of roads in

this area. This suggests that the road network may only

impede stone marten gene flow when it exceeds a

threshold of extensiveness where it begins to limit

dispersal, below which it is not limiting to gene flow

(Short Bull et al. 2011; Cushman et al. 2013a).

Several factors may explain the fact that the best

supported IBR hypothesis (e.g., LERRd) was not

supported independently of IBD in CAT, the largest

study area. First, CAT had the highest genetic

diversity of all areas (e.g., number of alleles and mean

AR; Table S1), suggesting a greater population size,

which could result in high gene flow and low genetic

drift and thus, could limit the emergence of genetic

structure due to either IBR or IBD. Second, to obtain a

higher number of individuals and coverage, museum

samples were included in CAT area (a quarter of all

samples were collected before 2006). Thus, the large

temporal variation in sampling periods among recent

(2006–2012) and older samples could hinder the

identification of the landscape variables limiting gene

flow in CAT area. Third, the independent IBD signal

could be an indicator of additional spatial variance in

genetic differentiation, not explained by the IBR

model because it does not perfectly reflect the true

process driving gene flow. Nevertheless all four

factors (LERRd) are supported and appear limiting

as they are all included in the top IBR model, and even

if not independent of IBD, the IBR model was more

strongly supported than IBD (e.g., larger partial

Mantel r in reciprocal causal modeling matrix).

Differences in spatial and temporal scales

among areas

Several studies have underlined the importance of the

spatial and temporal scales of the sampling design

when conducting a landscape genetic study (Cushman

and Landguth 2010; Segelbacher et al. 2010; Oyler-

McCance et al. 2013). The spatial scale (i.e., sampling

design and extent of the study area) is known to

influence the ability to correctly infer the impacts of

landscape patterns on gene flow (Anderson et al. 2010;

Oyler-McCance et al. 2013). In this study, however,

samples were opportunistically collected and there-

fore, each of the three study areas presents a particular

sampling scheme; while in CAT area samples are quite

homogeneously distributed, in SP area most of the

samples are concentrated in the southwest. In addition,

the CAT area is three times larger than BC or SP areas,

which can influence the power of the model to detect

the underlying spatial genetic structure (Cushman and

Landguth 2010; Oyler-McCance et al. 2013).

The temporal scale can also affect the power of

landscape genetics methods to detect spatial genetic

structure and landscape correlates of genetic differen-

tiation (Anderson et al. 2010; Cushman and Landguth

2010). In BC and SP areas[85% of the samples were

collected between 2006 and 2012 but in CAT area, in

order to obtain a higher spatial coverage, approxi-

mately a 25% of the samples were museum specimens

(i.e., collected before 2006). Thus the temporal

variation in sampling periods, which differed among

areas, could have influenced the ability to make

inferences on stone marten gene flow based on the

observed current spatial genetic structure.

Importance of meta-replication studies

McGarigal and Cushman (2002) argued that land-

scape-level replication was the most important char-

acteristic for studies to produce reliable and

generalizable inferences about the effects of habitat

heterogeneity on populations and species distribu-

tions. For the same reason, meta-replication of land-

scape studies is critical to understand the factors that

control gene flow. Balkenhol et al. (2015) identified

meta-replicated landscape genetic studies as one of the

areas of highest priority for future research. Short Bull

et al. (2011) conducted one of the first meta-replicated

landscape genetic studies, and their results motivated

Cushman et al. (2013a) to use simulation modeling to

understand limiting factors and how they act in

different study areas, and the thresholds where they

emerge. These studies demonstrated that differences

in supported models may arise when landscape

features do not limit gene flow in a given landscape,

because of their extent or pattern, but do limit gene

flow in other landscapes (Short Bull et al. 2011;

Cushman et al. 2013a).

Our results demonstrate that key variables explain-

ing the stone marten gene flow differed among areas in

ways consistent with our a priori expectations based

on limiting factors. These results confirmed the

importance of meta-replicated studies to draw robust

and general conclusions regarding a species-specific

response to landscape characteristics. However, to

1280 Landscape Ecol (2017) 32:1269–1283

123



date, few landscape genetic studies include spatial

replicates (e.g., Short Bull et al. 2011; Larroque et al.

2015), highlighting the urgent need for more studies of

this kind to understand limiting factors across multiple

landscapes (Balkenhol et al. 2015).

In addition to the importance of meta-replication in

general, it is critical for future studies to undertakemeta-

replicated analyses with high levels of spatial replica-

tion across controlled gradients of landscape structure in

a comparative mensurative replicated design (e.g.,

McGarigal and Cushman 2002). Only then will there

be sufficient power to generalize results and rigorously

identify thresholds where heterogeneity and resistance

contrast are sufficient to limit gene flow. Based on past

empirical (Short Bull et al. 2011) and simulation

(Cushman et al. 2013b) studies, wewere able to propose

a priori hypotheses about which landscapes we would

expect each predictor variable to be limiting to gene

flow and our results were consistent with those a priori

expectations. We hope future studies will continue to

explore limiting factors in well replicated comparative

mensurative studies that a priori select replicate land-

scapes across a range of landscape heterogeneities for

multiple predictor variables.

Conclusions

The main conclusions of this study are that roads,

landcover and topography are factors that can limit

stone marten gene flow. Our results suggest that roads

will limit gene flow when roads are extensive and

fragment the study area, as was also found by Short

Bull et al. (2011) for American black bear. We found

that topography can limit gene flow when the

landscape has high roughness and high variation in

elevation, as was seen in Short Bull et al. (2011), and

Wasserman et al. (2010) for American marten. Land-

cover type can be limiting to stone marten gene flow

when the landscape is highly heterogeneous, with low

resistance cover types distributed in a patchy and

irregular pattern interspersed with high contrast cover

types, as was also seen by Short Bull et al. (2011). Our

results support the idea that topography, landcover and

roads can limit stone marten gene flow and identify

some circumstances where they do or do not limit gene

flow in several case-study landscapes.
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