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Abstract

Context Forest insect outbreaks are influenced by

ecological processes operating at multiple spatial

scales, including host-insect interactions within stands

and across landscapes that are modified by regional-

scale variations in climate. These drivers of outbreak

dynamics are not well understood for the western

spruce budworm, a defoliator that is native to forests of

western North America.

Objectives Our aim was to assess how processes

across multiple spatial scales drive western spruce

budworm outbreak dynamics. Our objective was to

assess the relative importance and influence of a set of

factors covering the stand, landscape, and regional

scales for explaining spatiotemporal outbreak patterns

in British Columbia, Canada.

Methods We used generalized linear mixed effect

models within a multi-model interference framework

to relate annual budworm infestation mapped from

Landsat time series (1996–2012) to sets of stand-,

landscape-, and regional-scale factors derived from

forest inventory data, GIS analyses, and climate

models.

Results Outbreak patterns were explained well by

our model (R2 = 93%). The most important predictors

of infestation probability were the proximity to

infestations in the previous year, landscape-scale host

abundance, and dry autumn conditions. While stand

characteristics were overall less important predictors,

we did find infestations were more likely amongst pure

Douglas-fir stands with low site indices and high

crown closure.

Conclusions Our findings add to growing empirical

evidence that insect outbreak dynamics are driven

by multi-scaled processes. Forest management plan-

ning to mitigate the impacts of budworm outbreaks

should thus consider landscape- and regional-scale

factors in addition to stand-scale factors.
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Introduction

Defoliation by insects is a natural phenomenon that

occurs in forest ecosystems around the globe. Species

from the genus Choristoneura ssp. are the most

important native forest defoliators in North America

(Volney and Fleming 2007; Nealis 2008). While

native defoliators are an integral part of forest

ecosystems and important for maintaining ecosystem

functioning and heterogeneity (Turner 2010), past

outbreaks of the eastern spruce budworm (C. fumifer-

ana Clemens), jack pine budworm (C. pinus pinus

Freeman), western spruce budworm (C. freemani

Razowski = C. occidentalis Freeman), and 2-year-

cycle spruce budworm (C. biennis Free.) have caused

widespread defoliation in coniferous forests of North

America. Historic records indicate that outbreaks have

increased in duration, intensity, and spatial extent

during the last century (Swetnam and Lynch 1993;

Flower et al. 2014), raising concerns about the future

role of susceptible forests for provision of important

ecosystem services such as carbon sequestration (Kurz

et al. 2008; Dymond et al. 2010) and timber supply

(Alfaro et al. 1982; Gray and MacKinnon 2006). To

better predict and manage the impact of future

defoliator outbreaks, an improved understanding of

their underlying ecological processes is required.

Several studies have identified common stand

factors influencing the dynamics of western spruce

budworm outbreaks: stand species composition, stand

structure, and site quality, among others (Hadley and

Veblen 1993; Alfaro et al. 2001; Heppner and Turner

2006; Nealis and Régnière 2009; Nealis and Regniere

2014). Those studies, building on earlier recommen-

dations (Carlson and Wulf 1989), led to the develop-

ment of management strategies to reduce stand

susceptibility to future outbreaks, such as changing

the species composition or structure by thinning or

similar silvicultural actions (MacLean et al. 2001).

However, as research on eastern spruce budworm

(Cappuccino et al. 1998; Campbell et al. 2008) and

other forest insect species (Simard et al. 2012;

Bouchard and Auger 2013; Foster et al. 2013)

indicates, stand characteristics alone cannot fully

explain observed spatiotemporal patterns of insect

outbreaks. This suggests that the dynamics of insect

outbreaks are also driven by processes that extend well

beyond the stand scale (Raffa et al. 2008). Not

accounting for larger-scale processes hampers

predictive models of budworm dynamics and man-

agement strategies to mitigate the impacts of future

outbreaks.

Landscape- to regional-scale variations in climate

and forest composition/structure are important drivers

of insect outbreak dynamics. Regional weather vari-

ability, in particular moisture deficits, governs bud-

worm population dynamics through synchronizing

budworm and host phenology and through determining

the quantity and quality of food (Nealis 2012).Weather

variability can thus trigger and synchronize the erup-

tion of localized outbreaks (Flower et al. 2014). During

outbreak build-up, higher budworm abundance leads

to increased dispersal (Anderson and Sturtevant 2011)

and thus to the expansion of distinct and randomly

distributed infestation patches to more continuous,

landscape-scale patterns (Sturtevant et al. 2004;

Bouchard and Auger 2013; Turner and Gardner

2015). However, even within regional-scale homoge-

nous climate, not all susceptible forests experience the

same level of defoliation, suggesting that some factors

at the landscape scale facilitate or dampen the expan-

sion of budworm outbreaks. Several studies provide

empirical evidence that outbreak severity is not only

affected by stand-scale characteristics but also by the

composition and configuration of host populations in

the surrounding landscape (Radeloff et al. 2000;

Campbell et al. 2008; Bouchard and Auger 2013). In

particular, landscape-scale host abundance and con-

figuration is thought to influence adult moth dispersal

and predator–prey interactions. Thus, while stand-

scale characteristics can explain variation in localized

infestations patterns during periods of low budworm

densities, it is the interaction of regional-scale weather

variability and landscape structure that likely determi-

nes infestation patterns during outbreaks (Sturtevant

et al. 2015). To improve our understanding—and

capacity to predict—the spatiotemporal patterns of

budworm outbreaks, we therefore need to consider

processes and interactions across multiple scales,

including the stand, landscape, and regional scale.

Understanding the multi-scaled processes underly-

ing insect outbreaks requires an explicit view at the

spatial and temporal outbreak patterns over large

geographic extents, yet little data sources exist that

track the dynamics of forest insects at a spatial and

temporal resolution suitable for conducting landscape-

scale analyses. Previous studies either used aerial

overview survey maps (Bouchard and Auger 2013),
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which have known limitations in terms of spatial

accuracy (Wulder et al. 2006); or maps created from

aerial photo interpretation (Seidl et al. 2015), which

often only cover small geographic extents (Wulder

et al. 2004). Remote sensing, in particular the Landsat

series of satellites, have the potential to fill this data

gap (Kennedy et al. 2014). Recent advances in the

Landsat time series based mapping of bark beetles and

defoliator disturbances have allowed to map the

spatiotemporal dynamics of insect infestation at an

ecologically valuable spatial (30 m) and temporal

(annual) resolution (Townsend et al. 2012; Meigs et al.

2015; Senf et al. 2015), thus allowing for the

development of spatially and temporally explicit

models of outbreak dynamics (Foster et al. 2013).

Our aim was to assess how ecological processes at

multiple spatial scales drive budworm outbreak

dynamics. We focused on the western spruce bud-

worm, which is an important native defoliator of

coniferous forests in western North American. Wes-

tern spruce budworm primarily feeds on Douglas-fir

(Pseudotsuga menziesii (Mirb.) Franco) and true fir

(Abies spp.) and has recently been affecting large parts

of the western United States and Canada (Hicke et al.

2012). Despite its economic and ecological impor-

tance for forests of western North America, the drivers

of western spruce budworm outbreak dynamics are yet

largely unknown. Using annual (1996–2012) Landsat-

based maps covering the recent outbreak of western

spruce budworm in British Columbia, Canada, our

objective was to assess the relative importance and

functional relationship of a set of factors hypothesized

to influence western spruce budworm outbreak

dynamics at stand, landscape, and regional scales.

We hypothesized that—in addition to stand factors—

the probability of western spruce budworm infestation

is driven by spatiotemporal variability in the abun-

dance and configuration of budworm populations and

their hosts within the landscape, by regional variability

in climate, and by the interactions among these factors.

Data and methods

Study area

Our study area is located inBritishColumbia, Canada. It

is delineated by the Interior Douglas-fir (IDF) biogeo-

climatic zone (Hope et al. 1991) plus a 10 km buffer,

whichwas added tomitigate possible edge effects in our

analysis (Fig. 1). The study area, which is amongst the

driest bioclimatic regions of Canada, is dominated by

nearly homogeneous stands of Douglas-fir between 900

and 1200 m,mixed stands ofDouglas-fir and ponderosa

Fig. 1 Map of western spruce budworm infestations (a) for the
study area location in British Columbia, Canada (b). For better
interpretability years of infestation were grouped in quintiles.

Forest land indicates all land potentially covered by forest

according to the Vegetation Resource Inventory, whereas forest

represents actual forest cover in 1996 as mapped from Landsat.

The inset (c) shows sampling location example with the three

radial buffer sizes (1000, 2000, 5000 m) used for calculating

landscape indices (host abundance and host edge density)
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pine (Pinus ponderosaDouglas ex C. Lawson) between

600 and 900 m, and mixed stands of Douglas-fir and

lodgepole pine (Pinus contorta Douglas) between 1200

and 1450 m above sea-level. Forests at higher eleva-

tions and further north in the study area are dominated

by lodgepole pine, which is not a budworm host. The

study area has experienced widespread defoliation by

western spruce budworm in recent decades (Maclauch-

lan et al. 2006) and infestation by mountain pine beetle

(Wulder et al. 2009). Forest health reports produced by

the province of British Columbia indicate that western

spruce budworm has defoliated more than one million

hectares of forest in the province since 1999 (numbers

obtained from: http://www2.gov.bc.ca/gov/content/

environment/research-monitoring-reporting/monitoring/

aerial-overview-surveys/summary-reports).

Response variable and sampling design

In a previous study, Senf et al. (2015) identified and

attributed annual changes in the spectral-temporal signal

of Landsat pixels (30 by 30 m) to either harvest/fire,

bark beetle, or defoliator disturbances. In turn, this

information supported a landscape-scale analysis of

spatiotemporal western spruce budworm infestation

patterns (Senf et al. 2016). Based on this information,

the response variable used for subsequent analyses—

annual spruce budworm infestation in a given Landsat

pixel—was derived for the period 1996–2012. To

minimize the number of data points (i.e., Landsat pixels)

used, and thus the computational resources needed for

data analyses,we applied a case-cohort samplingdesign.

Acase-cohort samplingdesign is efficient for rare events

(as in our case where outbreaks pixels only represented

0.4% of all pixels) that allows for un-biased parameter

estimation with minimum correction (King and Zeng

2001). We first randomly sampled 10,000 pixels from

the whole study area and for each year and then, in a

second step, randomlydroppedabsence samples inorder

to arrive at 1000 samples per year. The total sample size

thus consisted of 17,000 Landsat pixels (1000 per year

for 17 years, Table 1).

Potential predictors of western spruce budworm

infestation

We assembled 13 predictor variables hypothesized to

influence the dynamics of spruce budworm at the

stand, landscape, and regional scale (Table 2).

Stand-scale predictors

Stand characteristics were obtained from British

Columbia’s Vegetation Resource Inventory (VRI)

database, which is a polygon-based inventory database

populated and updated by photo-interpretation and

field measurements (Leckie and Gillis 1995). We

focused on six stand characteristics known to influence

budworm habitat (Alfaro et al. 1985; Shepherd 1994;

Nealis et al. 2009): age (years), crown closure (percent

of forest floor covered by forest canopy), host

abundance (density of hosts as a percentage of total

tree density), site index (a metric of forest productivity

measured as tree height at a given reference age) as

measure of site productivity, and vertical complexity

of the tree canopy (ordinal measure from 1 [very

uniform] to 5 [very non-uniform]). The polygon-based

inventory database was rasterized to a 30 by 30 m grid

to match the spatial resolution of the Landsat-based

map. Finally, we used a digital elevation model for

estimating elevation and slope at each sampling

location.

Landscape-scale predictors

We developed three predictors that describe the spatial

distribution of host stands and budworm populations at

Table 1 Annual distribution of samples with western spruce

budworm infestation

Year Not infested Infested

1996 999 1

1997 997 3

1998 993 7

1999 998 2

2000 976 24

2001 909 91

2002 871 129

2003 808 192

2004 943 57

2005 943 57

2006 972 28

2007 951 49

2008 975 25

2009 968 32

2010 999 1

2011 997 3

2012 1000 0
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landscape scale. First, we calculated the abundance

and edge density of host tree patches within 1000,

2000, and 5000 m radial buffers centered on each

sampled Landsat pixel to characterize the spatial

composition and configuration of host forests within

the surrounding landscape (Fig. 1c). The buffer sizes

were chosen based on a study of another Choris-

toneura species (Radeloff et al. 2000), because little is

known about western spruce budworm dispersal

distances (Flower et al. 2014). Second, we calculated

the Euclidian distance between each sampled pixel

and the nearest western spruce budworm infestation in

the previous year, assuming proximity to an infesta-

tion in the previous year increases the risk of

infestation in the current year from dispersing adult

moths (Anderson and Sturtevant 2011).

Regional-scale predictors

We acquired climate data from ClimateWNA (Wang

et al. 2012), which generates climate time series for

given locations using a down-scaled version of the

Table 2 Predictor variables used in the model

Scale Predictor variable

(unit)

Hypothesized influence on infestation

Sign Hypothesis Source

Stand Host abundance (%) ? Higher availability of food and reduced losses

during budworm dispersal

Swetnam and Lynch

(1993) and Nealis and

Régnière (2009)

Age (years) ? High age indicates stands more susceptible to

defoliation from Choristoneura fumiferana

(Clem.)

MacLean (1980)

Crown closure (%) ? Higher crown closure decreases budworm dispersal

losses

Nealis and Régnière

(2009)

Site index (m) - Higher site index indicates stands less susceptible

to defoliation by Choristoneura fumiferana

(Clem.)

Alfaro et al. (2001)

Vertical complexity ? Higher vertical complexity decreases budworm

dispersal losses

Shepherd (1994)

Elevation (m) - Higher elevation areas might experience less

moisture stress

Slope (degree) - Steeper slopes might experience less moisture

stress

Landscape Host abundance [%] within

1000, 2000, and 5000 m

radial buffer (Fig. 1c)

? Higher landscape-scale host abundance facilitates

insect dispersal

Radeloff et al. (2000) and

Campbell et al. (2008)

Host edge density (%) within

1000, 2000, and 5000 m

radial buffer (Fig. 1c)

± Higher edge density facilitates insect dispersal,

though higher edge density also increases risk of

budworm predation and disease

Radeloff et al. (2000)

Distance to infestation in the

previous year (m)

- Stands closer to infestation in the previous year are

at higher risk of adult moth dispersal

Anderson and Sturtevant

(2011) and Bouchard

and Auger (2013)

Regional Summer precipitation (mm) - Lower summer precipitation increases host water

stress and thus supports larvae development

Senf et al. (2016) and

Flower et al. (2014)

Autumn precipitation (mm) - Lower autumn precipitation increases host water

stress and thus supports larvae development

Senf et al. (2016) and

Mildrexler et al. (2016)

Winter temperature (�C) ? Higher winter temperatures improve larvae

overwintering success

Senf et al. (2016) and

Flower et al. (2014)

Spring temperature (�C) ? Higher spring temperatures improve larvae

survival through increased synchrony with host

Swetnam and Lynch

(1993)

The predictor variables are grouped among observation scale (stand, landscape, and regional scale). A brief description of the

hypothesized relationship with western spruce budworm infestation is given
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regional-scale PRISM climate model (Daly et al.

2002). We generated seasonal values of average

temperature and total precipitation for our study

region for each year of our study period. From these

data, we extracted four climate variables: summer

precipitation and autumn precipitation in the previous

year, as well as winter and spring temperature, which

for all four we found evidence for importance for the

development of regional scale western spruce bud-

worm outbreaks in a previous study (Senf et al. 2016).

Summer and autumn precipitation deficits may

decrease Douglas-fir growth, vigor, and resistance to

defoliation, allowing western spruce budworm popu-

lations to build (Flower et al. 2014). Extreme winter

temperature can substantially reduce populations of

over-wintering larvae. Spring temperatures, and to a

lesser extent winter temperatures, influence the phe-

nological synchrony of western spruce budworm egg

hatch and the annual flush of Douglas-fir foliage on

which newly emerged larvae feed (Swetnam and

Lynch 1993; Nealis 2012).

Statistical analysis

We used hierarchical generalized linear mixed models

(GLMM) with a logit link function to explain the

annual probability of western spruce budworm infes-

tation at the pixel level (Bolker et al. 2009). Using

hierarchical GLMM allowed us to integrate fixed

effects measured at varying spatial scales while

simultaneously accounting for annual differences in

western spruce budworm infestation probability not

explained by our model. A model that does not

consider the multi-level structure of the data might not

detect minor effects and bias inferences made based on

the model. The model used in this study is defined as:

Pðyi ¼ 1Þ ¼ log it�1ðXibþ ajÞ

with P(yi = 1) indicating the probability of infestation

at pixel i, Xi is a matrix containing the stand- and

landscape-scale predictors at each pixel, the vector b
contains the fixed effects at the stand-and landscape-

scale, and aj is the intercept varying among years

j. The varying intercept is modeled by a normal

distribution:

aj ¼ Nðc0 þ Ujc; r
2Þ

with c0 representing the baseline probability of

occurrence, Uj is a matrix of regional-scale predictors

available for each year j, the vector c contains the

regional-scale fixed effects, and r2 is the annual

variability in infestation probability.

We first fitted a full model with all predictors

shown in Table 2 as fixed effects. However, host

abundance and host edge density were highly corre-

lated among the three nested buffer sizes (Pearson

r[ 0.7 and variance inflation factor[5 for the 1000

and 2000 buffers), and host abundance within the

1000 and 2000 m buffer correlated moderately with

host abundance at the stand scale (Pearson r[ 0.55).

To reduce multicollinearity in our model, we dropped

host abundance and edge density measured within the

1000 and 2000 m buffers and only included both

variables measured within the 5000 m buffer. That

way, we reduced the variance inflation factor to\5,

indicating low multicollinearity among predictors,

while two variables characterizing host abundance

and configuration in 5 km around each pixel and one

variable characterizing host abundance at a smaller

spatial scale (within a stand) were included in the

model. We tested for intra-scale interactions between

stand host abundance and other stand-scale predic-

tors, for intra-scale interactions between landscape-

scale host abundance and edge density and distance

to infestation in the previous year, and for cross-scale

interactions between the distance to infestation in the

previous year and regional-scale weather variables.

Intra-scale interactions for stand-scale variables were

considered in order to control for species composi-

tion, on the one hand, and for effects of habitat

structure on moth dispersal, on the other. Inter-scale

interactions were chosen to represent the effect of

weather on moth dispersal. We finally centered and

scaled all predictors to zero mean and a standard

deviation of one to improve model convergence and

interpretability of the estimated parameters and

interactions.

To identify the models with the greatest likelihood

from all possible predictor combinations, we followed

a multi-model inference framework (Burnham et al.

2010). The performance of each model was assessed

based on the marginal R2 [Rm
2 , variance explained by

the fixed effects; Nakagawa et al. (2013)], the

conditional R2 [Rc
2, variance explained by both the
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fixed and random effects; Nakagawa et al. (2013)], the

Akaike’s information criterion corrected for small

sample sizes [AICc; Grueber et al. (2011)], and the

corresponding Akaike weights (wAICc), which

assigns a relative strength of evidence to each

competing model (Link and Barker 2006). This

information-theoretic framework is better suited to

conducting statistical inference than classical meth-

ods, because it does not rely on arbitrary thresholds

such as P\ 0.05. Using the likeliest set of models

(DAICc\ 2), we used model averaging to calculate

average estimates and confidence intervals for each

predictor. To address a potential bias in our estimates

due to spatial and temporal auto-correlation in the

residuals, we used robust sandwich estimators of the

variance–covariance matrix (Zeileis 2006). The rela-

tive influence of each predictor was assessed based on

the summed Akaike weights (
P

wAICc). All statisti-

cal analyses were performed in the R Language and

Environment for Statistical Computing (R Core Team

2014), using the sandwich (Zeileis 2006), lme4 (Bates

et al. 2015), and MuMIn (Bartoń 2009) packages.

Results

We identified nine models with DAICc\2 and very

good explanatory power of 93–94% for the

marginal R2 and 95% for the conditional R2 (Table 3).

Thus, the random effect from annual variation in the

intercept term explained only 1–2% of the observed

variance in spatiotemporal outbreak patterns. The

intercept of -7.81 indicated a very low baseline

infestation probability of\0.01 at mean values of all

predictors [after correction for the case–control sam-

pling design; King and Zeng (2001)], with small

annual variation (r2 *0.67).

We identified several important predictors of

budworm outbreak dynamics (Table 3). Distance to

infestation in the previous year, host abundance at the

stand- and landscape-scale, crown closure, site index,

vertical complexity, autumn precipitation, elevation,

and slope were included in all candidate models with

DAICc\ 2 (
P

wAICc = 1). Spring temperature had

lower but still moderate support from the candidate

models (
P

wAICc = 0.63). Age, edge density, sum-

mer precipitation, and winter temperature had lowest

support from the candidate models (
P

wAICc\ 0.2).

There was strong evidence for cross-scale interactions

between autumn precipitation and distance to infes-

tation in the previous year (
P

wAICc = 1). More-

over, there was strong evidence for intra-scale

interactions between landscape-scale host abundance

and distance to infestation in the previous year

(
P

wAICc = 1), as well as for intra-scale interactions

between stand-scale host abundance and site index

and vertical complexity (both
P

wAICc = 1).

At the stand scale, host abundance was positively

associated with infestation probability (Table 3); with

a 50% increase in host abundance, the probability of

infestation increased by a maximum of 14%. There

was strong evidence that host abundance interacted

with site index and vertical complexity (Table 3). For

pure host stands, infestation probability decreased as

site index increased (Fig. 2a), but no significant

changes in infestation probability could be observed

if host stands became vertically more complex

(Fig. 2b). When Douglas-fir was not the dominant

tree species in a stand, site index and vertical

complexity had opposite effects. Specifically, high

vertical complexity lead to low infestation probability,

while high site index values were associated with high

infestation probability (Fig. 2a, b). Crown closure was

also important in our model (Table 3) with high

infestation probabilities predicted for stands with high

canopy closure (Table 3). Finally, infestation proba-

bility decreased with increasing site slope and with

increasing elevation (Table 3).

At the landscape scale, we found strong evidence

for the importance of proximity to budworm infesta-

tion in the previous year and for landscape-scale host

abundance (Table 3). With increasing distance to an

infestation in the previous year, the probability of

infestation dropped substantially. Interestingly, the

distribution of distances to infestations in the previous

year changed remarkably throughout the outbreak

cycle (Fig. 3). Before (\1999) and after ([2007) the

outbreak, the distributions were nearly uniform.

During the outbreak period (1999–2007), however,

more than 90% of all newly initiated patches were

within 5 km proximity to infestations in the previous

year. Hence, while infestations seemed to occur

independently from existing outbreak centers within

the landscape before and after the outbreak, there was

a clear pattern of spatial contagion observable during

the outbreak (see also Fig. 1). According to our study,

the average dispersal distance was 1.3 km during the

outbreak (1999–2007).
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A higher abundance of Douglas-fir patches in the

surrounding landscape led to a higher probability of

infestation, though the effect was moderated by the

distance to infestations in the previous year (Fig. 4).

For example, while landscape-scale host abundance

had little effect on infestation probability when the

closest infestation was more than 15 km away, the

effect increased with proximity to infestations in the

previous year. However, at very close proximity to an

infestation in the previous year (\500 m), the effect of

landscape-scale host abundance diminished and infes-

tation probability was high, regardless of host abun-

dance in the surrounding landscape.

Considering the regional-scale predictors, infesta-

tion probability decreased if preceded by higher than

average autumn precipitation (Table 3), but only if the

distance to budworm infestations in the previous year

was low (Fig. 5). For pixels in close proximity to

budworm infestations in the previous year (\5 km),

infestation probability increased significantly when

average autumn precipitation was below 200 mm in

the preceding year. Lower support was found for

spring temperature, with slightly increased infestation

probability following warmer springs (Table 3).

Discussion

Using annual Landsat-based maps of the most recent

outbreak in British Columbia, Canada, we tested the
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hypothesis that spatiotemporal patterns of western

spruce budworm outbreaks are driven by multi-scale

processes, that is, by ecological interactions among

budworm, its host, and their physical environment at

stand, landscape, and regional scales. Our results

support this hypothesis, adding to the growing empir-

ical evidence that insect outbreak dynamics are driven

by ecological processes occurring across multiple

scales (Raffa et al. 2008; Seidl et al. 2015; Turner and

Gardner 2015). In particular, we showed that the

probability of infestation was mainly driven by host

abundance at the landscape scale, by stand structure

and species composition, and by regional-scale pre-

cipitation patterns. In addition, we found that those

processes interacted within and across scales to

determine probability of infestation.

Species composition had the most important influ-

ence on infestation probability at the stand scale, with

stands having a high percentage of Douglas-fir having

a higher probability of infestation. This finding aligns

well with previous studies of western spruce budworm

(Swetnam and Lynch 1993; Maclauchlan et al. 2006)

and similar budworm species (Alfaro et al. 2001).

Stands with high proportions of Douglas-fir can

sustain larger populations of western spruce budworm

due to higher availability of food, and dispersal losses

are reduced with decreasing proportion of non-host

species (Brookes et al. 1985, 1987). The effects of

other stand characteristics (i.e., crown closure, site

index, and vertical complexity) were not as strong

(i.e., smaller scaled estimates in the model), though

higher infestation probabilities tended to be associated

with a lower site index and higher crown closure (in

Douglas-fir dominated stands). Denser stands tend to

have low losses during larvae and moth dispersal and

can thus sustain larger budworm populations (Swet-

nam and Lynch 1993; Nealis et al. 2009). Trees on

high quality sites might accumulate high levels of

secondary metabolites used for tree defense against

budworm herbivore (Alfaro et al. 2001), resulting in

lower probability of infestation. The reasons why

stand-scale characteristics were generally weaker

predictors of infestation probability compared to

landscape- and regional-scale factors may be related

to the geographic scale of the analysis (Sturtevant et al.

2015). For example, while stand characteristics might

explain differences in infestation probability among

stands with similar environmental conditions, those

effects are likely overridden by larger-scale processes

once considering the landscape or regional scale.

Similar effects were described for the mountain pine

beetle, where once stand-scale thresholds are passed,

outbreak dynamics are mostly governed by processes

at the landscape and regional scale (Raffa et al. 2008).

We found that the distance to infestations in the

previous year was the strongest factor determining the

probability of infestation at a given location. Our

model suggests that spatiotemporal outbreak patterns

are mainly driven by adult moth dispersal, which leads

to the colonization and infestation of new habitat and

to the eruption and synchronization of local population

dynamics. This finding aligns well with several studies

of eastern spruce budworm and gypsy moth across

North America (Bouchard and Auger 2013; Foster

et al. 2013). By integrating two factors describing the

composition and configuration of host patches within a

5 km radial buffer centered on each pixel location, and

their interactions with budworm dispersal (i.e., dis-

tance to infestation in the previous year), we tested the

hypothesis that dispersal of adult moths is only

possible if habitat is available in the surrounding

landscape, that is within average dispersal distance.

We found that a higher abundance of Douglas-fir

within the landscape increased infestation probability

and thus of successful dispersal of adult moths from

distant populations ([500 m). Hence, it is the com-

bined effect of adult moth dispersal and landscape-

scale host availability that shaped the landscape-scale

outbreak patterns observed in our study.

Regional weather variability, especially regional

precipitation patterns, also had important effects on the
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probability of budworm infestation, but we found that

the effect was strongly dependent on distance to

infestation in the previous year. As shown by previous

research, water stress in host trees is an important

driver of regional-scale western spruce budworm

outbreaks (Flower et al. 2014), supporting our findings

of increased infestation probability following lower

autumn precipitation. Autumn precipitation was also

shown to be a good indicator ofwater stress inDouglas-

fir in other regions (Mildrexler et al. 2016), highlight-

ing the importance of regional scale moisture variabil-

ity for the eruption and spread of localized budworm

populations throughout its native range. The moderate

support for spring temperature in our model might

suggest a higher degree of synchrony between larvae

development and Douglas-fir bud-break under warmer

spring conditions, though we here acknowledge that

the mechanisms controlling budworm and host phe-

nology are much more complex (Nealis 2012). Inter-

estingly, we did not find strong support for the

importance of summer precipitation and winter tem-

perature in our model, even though expected based on

our prior knowledge. The missing effect of summer

precipitation might be explained by the fact that late

summer water deficits are more important for drought

stress in Douglas-fir than early summer water deficits

(Mildrexler et al. 2016). A missing effect for winter

temperature indicates that overwintering larvae—once

in their hibernacula—are insensitive to winter temper-

ature variations. Finally, elevation and slope, which

were both important stand-scale predictors in our

model, might further explain local variation in precip-

itation and moisture availably. Precipitation generally

increases with increasing elevation and highest pre-

cipitation values are found on the steep slopes of the

coastal mountain range at the western fringe of the

study area. Lower elevation sites with more moderate

slopes might thus have higher risk of local water

deficits supporting budworm population development.

Implications and conclusion

Our findings have several implications for understand-

ing, management, and modelling of budworm distur-

bances. First, our study highlights that there are

important drivers beyond stand-scale characteristics

that need to be evaluatedwhen developingmanagement

strategies to mitigate the impacts of future budworm

outbreaks. In particular, our study suggests that reducing

western spruce budworm habitat quantity and quality

within the landscape might prevent the development of

regional-scale outbreaks. Reducing habitat quantity and

quality could be achieved by developing management

strategies that mimic natural disturbances (Long 2009)

and by increasing the landscape heterogeneity in terms

of tree species composition, among other characteristics

(Robert et al. 2012). Second, our study suggests that

climate is an important driver of western spruce

budworm outbreak development. Consequently, cli-

mate change will likely alter the duration, intensity, and

spatial extent of future outbreaks (Murdock et al. 2013).

While our study does not project how climate change

might affect futurebudwormoutbreaks, forestmanagers

should be mindful of the uncertainties associated with

climate change in long-term planning (Millar et al.

2007). Third, our study adds important information to a

process-based understanding of budworm outbreaks,

and could further enhance the development of mecha-

nistic models (e.g., LANDIS, Sturtevant et al. 2004)

simulating the landscape-scale progression of out-

breaks. In particular, our study suggests thatmechanistic

models should incorporate processes across multiple

scales to improve predictions of western spruce bud-

worm outbreak dynamics under varying management

and climate scenarios (Seidl et al. 2011; Sturtevant et al.

2015). Finally, our study demonstrates the usefulness of

Landsat-based time series for assessing landscape- to

regional-scale drivers of insect outbreaks. Many factors

found important in our studywould be difficult to tackle

without the spatially and temporally explicit view

offered by long-term landscape-scale observations

based on globally available satellite data. Landsat

allows for analyzing insect outbreaks over larger extents

than would be possible with field data alone, and with

higher ecological resolution than using aerial overview

survey maps (Meigs et al. 2015).
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Merganičová K, Netherer S, Arpaci A, Bontemps J-D,
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