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Abstract

Context Dispersal is essential for species persistence

and landscape genetic studies are valuable tools for

identifying potential barriers to dispersal. Macaws

have been studied for decades in their natural habitat,

but we still have no knowledge of how natural

landscape features influence their dispersal.

Objectives We tested for correlations between land-

scape resistance models and the current population

genetic structure of macaws in continuous rainforest to

explore natural barriers to their dispersal.

Methods We studied scarlet macaws (Ara macao)

over a 13,000 km2 area of continuous primary Ama-

zon rainforest in south-eastern Peru. Using remote

sensing imagery from the Carnegie Airborne Obser-

vatory, we constructed landscape resistance surfaces

in CIRCUITSCAPE based on elevation, canopy

height and above-ground carbon distribution. We then

used individual- and population-level genetic analyses

to examine which landscape features influenced gene

flow (genetic distance between individuals and

populations).

Results Across the lowland rainforest we found

limited population genetic differentiation. However,

a population from an intermountain valley of the

Andes (Candamo) showed detectable genetic differ-

entiation from two other populations (Tambopata)

located 20–60 km away (FST = 0.008,

P = 0.001–0.003). Landscape resistance models

revealed that genetic distance between individuals

was significantly positively related to elevation.

Conclusions Our landscape resistance analysis sug-

gests that mountain ridges between Candamo and

Tambopata may limit gene flow in scarlet macaws.

These results serve as baseline data for continued
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landscape studies of parrots, and will be useful for

understanding the impacts of anthropogenic dispersal

barriers in the future.

Keywords Population genetics � Dispersal �
Movement ecology � Feathers � Microsatellites �
Neotropics � Andes � Barriers � LiDAR

Introduction

Dispersal is an important ecological process as it

allows individuals to locate new resources, avoid

competition, and avoid inbreeding depression. On a

larger scale, dispersal influences spatial population

dynamics, maintains genetic diversity and enables

adaptation (Clobert et al. 2012; McDougald et al.

2012; Szövényi et al. 2012; Orsini et al. 2013; Smith

et al. 2016). Flight ability is assumed to be a good

proxy for dispersal (Hanski et al. 2004; Kokko and

López-Sepulcre 2006) as it often correlates with range

size (Böhning-Gaese et al. 2006), but understanding

what influences dispersal in flying species at a

landscape scale is important. Both natural and man-

made landscape features can impede gene flow, with

roads, rivers, or mountain ridges being potentially

impenetrable barriers for some species (Storfer et al.

2007). Direct tracking to infer dispersal across these

structures is notoriously difficult (Schofield et al.

2013) but landscape genetics can help elucidate

relationships between landscape features and gene

flow (Manel et al. 2003; Storfer et al. 2007; Manel and

Holderegger 2013), and identify potential dispersal

barriers (Andrew et al. 2012).

The Amazon basin is a highly diverse and globally

important ecosystem which is undergoing rapid

changes such as continual development of highways

and gold mining exploration at an enormous scale

(Beheregaray and Caccone 2007; Asner et al. 2013;

Baraloto et al. 2015; Keenan et al. 2015). To

understand the effect of these changes on Amazonian

fauna, we need baseline data about their biology and

ecology in continuous, natural habitat. Macaws have

been studied for decades in their natural habitat in

south-eastern Peru, providing insights about their

breeding biology (Brightsmith 2005; Vigo et al.

2011; Olah et al. 2014 ), foraging ecology (Bright-

smith 2004), parasitology (Olah et al. 2013),

population dynamics (Lee and Marsden 2012), and

conservation (Brightsmith et al. 2005). Nevertheless,

knowledge about how natural landscape features

affect their home-range and dispersal is still lacking.

Recent studies have shown contrasting results

about genetic structure in macaws. For example, some

studies found very low genetic differentiation among

populations in continuous rainforest at scales of

100 km distance (Table 1), which might be expected

given their large size and strong flying ability. Other

studies, however, showed significant genetic differen-

tiation between populations separated by only

80–170 km (Table 1). Unfortunately, these studies

did not explicitly include spatial information in their

genetic analyses and they had limited sample sizes

mainly from nesting birds, limiting insights into the

mechanisms behind these contrasting patterns. More

progress can be made in understanding dispersal at

landscape scales if spatial information about relevant

habitat features is incorporated into landscape genetic

analyses and more extensive, non-invasive samples

are analyzed from a wide geographic scale (Andrew

et al. 2013).

In the Peruvian Amazon, the preferred habitat of

scarlet macaws (Ara macao) is considered to be

lowland primary rainforest (Collar et al. 2016),

consistent with the general pattern of macaw distri-

bution noted by Forshaw (2011) to be up to 500 m

above sea level (asl). Within our study site, the

foothills of the Andes Mountains rise to over 1000 m

asl and thus might act as natural barriers to their

dispersal. Scarlet macaws also prefer riverside rain-

forest habitats with emergent trees so they can access

the canopy from the side (Britt et al. 2014), and habitat

suitability can influence gene flow (Wang et al. 2008).

In this study we used population genetic structure

analysis and landscape resistance modelling to test

whether elevation, canopy height, river system and

above-ground carbon distribution (biomass) might

influence dispersal in macaws.

Methods

Study site and target species

This study was conducted in the Tambopata/Candamo

region of the south-eastern Peruvian Amazon, includ-

ing two large protected areas: (1) the Tambopata
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National Reserve (13�80S, 69�370W; 2747 km2) and

(2) the Bahuaja-Sonene National Park (13�300S,
69�470W; 10,914 km2). The area is tropical moist

forest receiving an average annual rainfall of

3236 mm (Brightsmith 2004). Elevation gradually

increases from the Lower Tambopata (lowland rain-

forest with average elevation of 200 m), to Upper

Tambopata (lowland rainforest closer to the foothills

of the Andes Mountains, 260 m), and Candamo

(intermountain valley, 350 m) surrounded by foothills

of the Andes (up to 1300 m) that separate this region

from Tambopata (Fig. 1).

The distribution of the scarlet macaw extends from

Mexico to Bolivia (BirdLife International and Natur-

eServe 2014). Although population sizes are decreas-

ing in some regions, they are presently listed as Least

Concern with an estimated global population size

between 20,000 and 50,000 individuals (IUCN 2014).

They are secondary cavity nesters using hollows of

emergent trees (Brightsmith 2005; Renton and Bright-

smith 2009) and also occupy artificial nests in our

study site (Olah et al. 2014).

Sample collection and genetic markers

A total of 166 DNA samples was collected during the

breeding season (November–April) each year between

2009 and 2012. We collected 126 DNA samples non-

invasively by sampling naturally shed feathers from

nests, around nesting and roosting sites, and from clay

licks (Fig. 1). We collected about 100 lL of blood

from the jugular vein of 22 macaw nestlings and 18

adults in natural and artificial nests, accessed by using

single-rope ascending techniques (Olah et al. 2014).

Blood samples were stored in 70 % ethanol or on FTA

paper (Whatman). When blood samples from known

family units were identified, siblings or parent/off-

spring samples were excluded from the analyses

(keeping samples of one parent whenever possible),

so that only non-related individuals were included in

the data set.

DNA was amplified at nine species-specific, poly-

morphic microsatellite markers: SCMA 09, SCMA 14,

SCMA 22, SCMA 26, SCMA 30, SCMA 31, SCMA

32, SCMA 33, SCMA 34 (Olah et al. 2015). Geno-

typing errors were calculated from randomly selected

samples that yielded full genotype data, and the

markers selected in this study showed low or no error

and low amplification failure (Olah et al. 2016).T
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Molecular sexing of individuals was performed using

the P8_SCMA_F/P2_SCMA_R primers (Olah et al.

2016).

Population-level genetic differentiation

We divided the study area into three sampling sites

based on geographic location: Lower Tambopata

(N = 54), Upper Tambopata (N = 82), and Candamo

(N = 30), which were mainly aggregated around large

clay licks (Fig. 1). We used analysis of molecular

variance (AMOVA) in GenAlEx 6.5 (Peakall and

Smouse 2006, 2012) to partition genetic variation

within and among these sampling sites and to estimate

overall and pairwise population genetic differentiation

(FST) (Wright 1965; Excoffier et al. 1992; Peakall

et al. 1995). Tests for genetic differentiation were

performed by 1000 random permutations. In order to

assess if there was any bias in FST estimation given the

uneven sample size, we performed AMOVA on

Fig. 1 Locations of scarlet

macaw (Ara macao) DNA

samples in the foothills of

the Andes, south-eastern

Peru. Sampling sites were

located around three major

clay licks: Chuncho

(N = 26), Colorado

(N = 35), and Tavara

(N = 19)
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randomly subsampled sets of 30 samples from each

site using the ‘shuffle’ function of GenAlEx. The

means and standard errors were calculated across 10

replicates.

Individual-level population structure analysis

We used two different Markov chain Monte Carlo

(MCMC) Bayesian clustering models to identify

potential population genetic structure. The first was

STRUCTURE 2.3.4 (Pritchard et al. 2000) for which

we used the admixture model, correlated allele

frequencies, and no location priors (Falush et al.

2003). Burn-in was set to 50,000 iterations, followed

by 50,000 MCMC iterations and replicated 10 times

for each value of the number of genetic clusters

(K) from 1 to 5. We used STRUCTURE Harvester

(Earl and vonHoldt 2012) to determine K (Evanno

et al. 2005). The second analysis was conducted in

GENELAND 4.0.0 (Guillot et al. 2005) which

includes geographical coordinates for each individual.

This inclusion makes it more sensitive to weak genetic

structure than the STRUCTURE analysis because

spatially adjacent individuals are more likely to be in

the same cluster (Guillot et al. 2012). We used the

uncorrelated allele frequency model (Guillot et al.

2005) with 500,000 MCMC repetitions (saving every

100th iteration), and allowed K to vary between 1 and

5, with 5 independent runs. We set spatial uncertainty

of coordinates to 10 km based on estimated daily

movements (Munn 1992). We also used individual

multilocus spatial autocorrelation analysis for each

sex separately (Smouse and Peakall 1999; Peakall

et al. 2003) to investigate potential sex-biased

dispersal.

Individual-level landscape resistance analysis

We conducted landscape resistance analyses at two

scales: (1) across the whole study area including all

individuals (N = 166) and (2) across a subset of the

data (N = 112) focusing on Upper Tambopata and

Candamo. The latter, finer-scale analysis allowed us to

specifically examine if gene flow was restricted by the

foothills of the Andes and this is the main geographic

barrier separating these two areas.

We developed five landscape resistance models to

examine whether topography and vegetation affected

macaw gene flow. The models were based on maps

derived from the Carnegie Airborne Observatory

(http://cao.carnegiescience.edu) using high-resolu-

tion radar and LiDAR (light detection and ranging)

mapping technologies (Asner et al. 2012, 2014). Each

was compiled on a separate raster grid with a 100 m

(1 ha) resolution in ARCMAP 10.2 (ESRI). (1) The

isolation-by-distance model (IBD) was a null model

where each cell was given a value of one to investigate

the effect of distance alone (Cushman et al. 2006). (2)

The elevation model (Elev), based on a digital eleva-

tion model (meters above sea level), investigated the

effect of topography on gene flow. (3) The tree canopy

height (TCH) model considered the distribution of

emergent canopy trees which are used by macaws as

nests. This landscape feature might influence gene

flow through an effect of habitat suitability [e.g., lower

or higher gene flow in areas of preferred habitat (Smith

et al. 2016)]. (4) The above-ground carbon distribution

(ACD) model, representing biomass (Girardin et al.

2010) was used as a proxy for habitat complexity.

Scarlet macaws in tropical rainforest prefer riverside

habitats with gaps in the canopy that contain lower

biomass (Britt et al. 2014). (5) The river distance

model (Rio) was used to determine if the preferred

riverside habitat of scarlet macaws acted as a dispersal

corridor. This model was developed with a 500 m

buffer zone at each side along the river system, with

values of ‘1’ given to the cells of the grid within this

buffer zone and ‘100’ outside of this zone, represent-

ing floodplain versus terra firme areas.

We used CIRCUITSCAPE 4.0.3 to generate land-

scape resistance values between each pair of individ-

uals, taking into account all possible pathways

(McRae and Beier 2007). To test the effect of the

landscape on genetic distance, we used two different

methods: Mantel and partial Mantel tests in a causal

modelling framework (Cushman et al. 2006), and

multiple regression of distance matrices (MRDM;

Legendre et al. 1994). These methods were imple-

mented in the ‘ecodist’ library (Goslee and Urban

2007) for R (R Core Team 2013) with P values based

on 5000 permutations.

Causal modelling began with simpleMantel tests of

IBD and all other resistance models. We then

conducted partial Mantel tests to assess the signifi-

cance of relationships between genetic distance and

landscape resistance, given the spatial distance

between samples (Partial 1). We assessed significance

using one-tailed P-values for simple Mantel tests

Landscape Ecol (2017) 32:445–456 449
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(a = 0.05) and two-tailed P values for partial Mantel

tests (Goslee and Urban 2007). Elevation was an

exception to this, as we predicted resistance would

increase with elevation and thus report a one-tailed

P value for that model. When there was a significant

correlation in the first partial Mantel test, we calcu-

lated the effect of the IBD model on genetic distance

while controlling for the landscape resistance model

(Partial 2). Where Partial 1 was significant and Partial

2 was nonsignificant, we inferred significant effects of

the landscape resistance model on genetic distance,

beyond the effects of geographic distance (Cushman

et al. 2006; Smith et al. 2014). For MRDM, we

analysed the IBD model separately and then together

with each other resistance model. Thus, these models

included one predictor for IBD and a maximum of two

predictor variables for all other models (Smith et al.

2016).

We generated cumulative current maps for every

pair of samples with CIRCUITSCAPE to identify

areas which contribute most to connectivity between

sample sites (McRae et al. 2013). Maps were visual-

ized in QGIS 2.14 (http://www.qgis.org).

Results

Population genetic analyses

Among the 166 scarlet macaws in our data set, the

mean allele number was 15.7 and mean expected

heterozygosity was 0.884 (Table S1). We identified 74

males and 69 females (23 unknown) using the sexing

markers. STRUCTURE and GENELAND indicated a

single genetic cluster and lack of population bound-

aries among all individuals at both a large- and small

scale. Results from STRUCTURE Harvester and

GENELAND are given in Fig. S1 of the supplemen-

tary material. The AMOVA analysis revealed a low

but significant level of genetic differentiation among

the three populations (FST = 0.005, P = 0.001). The

Candamo population was significantly different from

the other two populations (Lower Tambopata

FST = 0.008, P = 0.003; Upper Tambopata

FST = 0.008, P = 0.001), driving the overall signif-

icant differentiation. Upper and Lower Tambopata

populations were not significantly different

(FST = 0.001, P = 0.199).

The replicated AMOVA analysis at equal sample

sizes (N = 30) across the three populations showed

very similar results (meanFST = 0.005, SE = 0.0005,

10 replicates) indicating little or no bias in estimation

due to the sample size variation. The replicated

pairwise population comparisons also showed similar

results to the full analysis for Candamo versus Lower

Tambopata (mean FST = 0.007, SE = 0.0007, 10

replicates), Candamo versus Upper Tambopata (mean

FST = 0.008, SE = 0.001, 10 replicates), and Upper-

versus Lower Tambopata (mean FST = 0.002,

SE = 0.0004, 10 replicates).

No significant patterns of spatial genetic structure

were detected by spatial autocorrelation analysis of

individual-by-individual genetic distance when females

and males were analyzed separately (Fig. S2), thus

there was no evidence of sex-biased dispersal.

Landscape resistance models

There were no significant effects of the landscape

resistance models at the large scale (whole study area).

However, at the small scale, we found a significant

effect of elevation on genetic distance between

Candamo and Upper Tambopata (rM = 0.128,

P = 0.02; Table 2; Fig. 2). Both isolation-by-distance

and elevation (max. 1200 m) were significant explana-

tories of the genetic distance in a simple Mantel test

and in the MRDM analysis (Mantel PIBD = 0.021,

PElev = 0.01; MRDM PIBD = 0.031, PElev = 0.021;

Table 2; Fig. 2). Isolation-by-distance was not signif-

icant when controlling for elevation in the partial

Mantel test (rM = -0.104, P = 0.98; Table 2), indi-

cating that elevation, not geographic distance on its

own, influences genetic distance between individuals.

Discussion

To our knowledge, this is the first study to combine

population genetic analysis with spatially-explicit

habitat information in a landscape genetic study of

parrots. Our study in the Amazon rainforest habitat of

scarlet macaws, where no high mountain ranges exist,

suggested extensive gene flow and high dispersal

ability. Nevertheless, we found evidence for some

restriction of their gene flow in the foothills of the

Andes Mountains indicating that high mountain

450 Landscape Ecol (2017) 32:445–456
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ranges can impose dispersal limitations to macaws.

Given the large and rapid changes occurring in the

Amazon, our results provide a valuable baseline from

which to compare future studies of global change in

this region.

Isolation-by-elevation at the Andean foothills

Both of our landscape genetics analysis methods

(causal modelling and MDRM) indicated significant

isolation-by-elevation between two populations of

macaws separated by only 20 km of mountain ridges

over 1000 m in the Andean foothills. This suggests

that elevation can form a natural dispersal barrier,

influencing gene flow even in large, strong flying

species.

Our results about the genetic differentiation in

Candamo (Table 2) might point towards more

restricted gene flow between the birds in this valley

and the two lowland populations separated by high

(about 1000 m) foothills of the Andes (Fig. 1). A

recent satellite telemetry study in Upper Tambopata

(ten tagged scarlet macaws) estimated their 9-month

home range to be 1730 km2 (J. Boyd and D. J. Bright-

smith, unpublished data). In that study, movements

always occurred to the north-east (away from the

foothills) up to 150 km but they always returned to the

same area or even the same nest hollow to breed. They

flew much further than the distance between Candamo

and Tambopata but none of the tagged macaws were

detected in Candamo, or even flew near to the

foothills.

Table 2 The effect of geographic distance (IBD) and landscape resistances (ACD, Elev, TCH, Rio) on genetic distance in scarlet

macaw (Ara macao) using causal modelling and multiple regression of distance matrices (MRDM)

Scale of analysis Mantel test type Predictor Mantel test MRDM

rM P R2 P

Large scale (N = 166)

three populations

Simple IBD 0.023 0.201 0.001 0.385

Simple ACD 0.022 0.548 0.001 0.833

Simple Elev 0.054 0.088 0.007 0.148

Simple TCH 0.024 0.474 0.001 0.826

Simple Rio -0.023 0.713 0.001 0.667

Partial 1 ACD|IBD 0.004 0.944

Partial 1 Elev|IBD 0.080 0.063

Partial 1 TCH|IBD 0.006 0.914

Partial 1 Rio|IBD -0.029 0.632

Partial 2 IBD|Elev -0.063 0.914

Small scale (N = 112)

two populations

Simple IBD 0.080 0.021 0.006 0.031

Simple ACD 0.064 0.144 0.007 0.280

Simple Elev 0.110 0.010 0.023 0.021

Simple TCH 0.071 0.080 0.007 0.276

Simple Rio -0.009 0.889 0.007 0.263

Partial 1 ACD|IBD -0.031 0.640

Partial 1 Elev|IBD 0.128 0.020

Partial 1 TCH|IBD -0.027 0.681

Partial 1 Rio|IBD -0.033 0.632

Partial 2 IBD|Elev -0.104 0.980

For partial Mantel tests, genetic distance (y) was modeled as a function of x given z (y * x|z). Significant effects are shown in bold.

All regression analyses included IBD either alone or with one other spatial predictor variable

IBD solation by distance, ACD boveground carbon distribution, Elev elevation above sea level, TCH tree canopy height, Rio river

distance

Landscape Ecol (2017) 32:445–456 451

123



Although they fly long distances, the philopatry and

nest fidelity of these macaws suggest that dispersal

rarely occurs over large scales. Furthermore, our

results suggest that movements of birds between the

valley of Candamo and the lowland might be limited

by the high elevation. Despite the significant genetic

differentiation between Candamo and Tambopata, the

low magnitude of FST indicates that dispersal does

occur between these areas. The only obvious connec-

tion between Candamo and the lowland Tambopata is

a small river which cuts through multiple parallel

mountain ridges (Fig. 1). The cumulative current

maps highlight this river as a conductance funnel

(Fig. 2) potentially providing the corridor for gene

flow. Although our river model showed no significant

correlation itself with the genetic structure, its effect

was incorporated into the elevation model as rivers

also represent the lowest elevation in the landscape.

Dispersal models show that birds may evolve to

avoid risky movements even if they are capable of

doing so (Shaw et al. 2014). The dispersal of scarlet

macaws from Candamo might be explained by a

combination of habitats, river system, and elevation

gradients. Other factors like unsuitable habitat, tem-

perature or humidity might also influence gene flow

but data were not available for analysis in the current

study. In future, these data and more detailed LiDAR

maps could be used to explore spatial patterns of gene

flow in finer detail.

Despite parrots and macaws being noted for their

capability of flying long distances over large land-

scapes (Faria et al. 2008), our landscape resistance

models indicate that high elevation might create

barriers for these species. Landscape resistance has

also been implied by the work of Monge et al. (2016)

who attributed the observed genetic differentiation

between two large scarlet macaw populations of Costa

Rica (Table 1) to montane barriers rather than recent

habitat fragmentation. The central cordilleras of Costa

Rica and Panama ranging in elevation from 500 to

3800 m are recognized to separate the two subspecies

of scarlet macaw (Schmidt 2013), further suggesting

that mountains can act as geographic barriers for

macaws.

Recent studies have raised concerns about using

partial Mantel tests in landscape genetics because they

Fig. 2 Cumulative resistance maps of CIRCUITSCAPE mod-

els for scarlet macaws (Ara macao) in the Peruvian Amazon.

Colors indicate the predicted areas of conductance (green) and

resistance (red) among the samples (blue circles). The analysis

was based on samples from Candamo and Upper Tambopata

sites. (Color figure online)
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assume linearity between distance matrices (Legendre

and Fortin 2010) and disregard information about

other factors (e.g., mating and dispersal) influencing

gene flow (Graves et al. 2013). Despite problems with

partial Mantel tests, simple Mantel tests are appropri-

ate for testing isolation by distance (Guillot and

Rousset 2013), so our results of IBD in scarlet macaws

are unlikely to be biased. Furthermore, both causal

modelling and MRDM analyses indicated similar

effects of elevation on gene flow in macaws, giving us

greater confidence in our findings.

Population structure of scarlet macaws

in Tambopata

Previous studies on macaws (Table 1) suggested low

genetic differentiation among populations living in

undisturbed habitat. Our study site consists of two

adjacent protected areas with a total area of more than

13,000 km2 of primary rainforest. The Bayesian

approaches could not detect any population structure

in our samples from Tambopata. We identified 74

males and 69 females (23 unknown) among our

samples, but we did not detect any sex-biased

dispersal. In monogamous species like macaws,

competition for both mates and resources is likely to

affect both sexes equally, leading to predictions of

equal rates of dispersal (Dobson 1982).

Implications for conservation

Understanding landscape effects on gene flow is

important for conservation management (Segelbacher

et al. 2010; Keller et al. 2015), but these patterns are

still unknown for most species. Macaws still inhabit a

large nationally-protected lowland rainforest in Tam-

bopata, but the rapidly growing human population

along the recently built inter-oceanic highway is a

serious conservation issue in the region (Tickell 1993;

Conover 2003; Baraloto et al. 2015). The apparently

natural population of macaws within this area has

allowed us to obtain baseline data that may become

useful for future conservation genetic studies, for

example evaluating macaw response to human

induced habitat fragmentation. The Candamo valley

and its vicinity, which is also a biological hotspot, is of

commercial interest for oil extraction and gold mining

activities (Finer et al. 2008; Asner et al. 2013).

Repeated DNA sampling over the same area could

also be compared to our results in the future, to see if

accelerated habitat degradation could push the species

to cross previously avoided natural barriers like high

mountain ridges.

Conclusion

In our study of scarlet macaws, we found no evidence

for strong population genetic structure across the

lowland of Tambopata (over 80 km). These results

indicate that gene flow is extensive and correlates with

the large home range of these birds. We found

evidence of a single population of scarlet macaws in

Tambopata, over a large protected area. However, our

study also suggests that high elevation might act as a

natural barrier to gene flow, as the Candamo popula-

tion situated behind mountain ridges was genetically

differentiated from the other lowland populations.

Intermountain rainforest valleys similar to Candamo

can host other populations of scarlet macaws over their

distribution range. The Candamo valley also hosts a

large diversity of other species, some with much more

restricted dispersal movements than large macaws.

Our findings provide baseline information about

natural dispersal barriers in parrots that can assist in

understanding the influence of rapid anthropogenic

change on their genetic population structure in the

Amazon Basin.
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