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Abstract

Context Climate change alters the vegetation com-

position and functioning of ecosystems. Measuring the

magnitude, direction, and rate of changes in vegetation

composition induced by climate remains a serious and

unmet challenge. Such information is required for a

predictive capability of how individual ecosystem will

respond to future climates.

Objectives Our objectives were to identify the

relationships between 20 climate variables and 39

ecosystems across the southwestern USA. We sought

to understand the magnitude of relationships between

variation in vegetation composition and bioclimatic

variables as well as the amount of ecosystem area

expected to be affected by future climate changes.

Methods Bioclimatic variables best explaining the

plant species composition of each ecosystem were

identified. The strength of relationships between beta

turnover and bioclimate gradients was calculated, the

spatial concordance of ecosystem and bioclimate con-

figurations was shown, and the area of suitable climate

remaining within the boundaries of contemporary

ecosystems under future climate projections was

measured.

Results Across the southwestern USA, four climate

variables account formost of the climate related variation

in vegetation composition.Twelve ecosystemsare highly

sensitive to climate change. By 2070, two ecosystems

lose about 4000 (15 %) and 7000 (31 %) km2 of

suitable climate area within their current boundaries

(the Western Great Plains Sandhill Steppe and Sonora-

Mojave Creosotebush-White Bursage Desert Scrub

ecosystems, respectively). The climatic areas of riparian

ecosystems are expected to be reduced by half.

Conclusions Results provide specific climate and

vegetation parameters for anticipating how, where and

when ecosystem vegetation transforms with climate

change. Projecting the loss of suitable climate for the

vegetation composition of ecosystems is important for

assessing ecosystem threats from climate change and

for setting priorities for ecosystem conservation and

restoration across the southwestern USA.
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Introduction

Typically, scientific applications relying on climate

change projections focus on average temperatures

(Hare and Meinshausen 2006). While averages help

with understanding generalized climatic changes, they

tell little about how, where and when ecosystem

properties, such as the composition of vegetation,

respond to climate change. Some predictions of biotic

responses to climate rely on envelope models (Pearson

and Dawson 2003). While substantial work and debate

focuses on bioclimate envelope modeling to predict

species distributions (Busby 1991; Pearson and Daw-

son 2003; Elith and Leathwick 2009; Dainese 2012),

few studies explore the issue of compositional

responses of ecosystems to climate change, particu-

larly at the floristic level (Baselga and Araújo 2009;

Pucko et al. 2011; Friggens et al. 2012). Halpin (1997)

showed that when the envelope of climatic conditions

describing the distribution of an ecosystem no longer

exists at a location, the ecosystem contracts and

eventually disappears. Until a clear systematic basis

for providing such information is developed, land-

scape scale ecosystems will remain rather amorphous

entities: challenging to define, threats upon them hard

to assess, and their ecological planning relegated to

simply acknowledging that changes will happen.

Without appropriate information, it will be difficult

to predict specific landscape level outcomes or prepare

adaptive management responses.

We address these issues by identifying relation-

ships between the vegetation composition of ecosys-

tems and bioclimatic variables. Our methods and

results predict: (a) which ecosystems are most

sensitive to changes of climate at the level of

community composition, (b) the compositional direc-

tion of changes in vegetation that is likely to result,

(c) the potential amount of area affected, and

(d) potential magnitude of change. We focus on 39

ecosystems within the Southwest region of the USA

(Fig. 1). Bioclimate is that set of climate variables

which best explain the distribution of a given species

or community, to the extent that climate influences

its occurrence and make-up per se (Table 1). Our

methods identify which bioclimatic variables best

explain vegetation composition at local scales

(*1 km2). This process characterizes the principal

vegetation related climatic properties of defined

ecosystem types.

Subsequently, changes in vegetation composition

along the primary bioclimate gradients of the ecosys-

tems are quantified. We show the spatial expression of

these gradients in relation to ecosystem occurrence.

These relationships are then coupled with climate

projections for the 2030s, 2050s and 2070s (Ramirez

and Jarvis 2008; Donner et al. 2011), revealing the

location, type and pace of projected ecosystem

change. Effects of climate change are also assessed

by measuring the area of suitable climate remaining

within the boundaries of contemporary ecosystems

under future climate projections. The procedure

describes how the patterns of future climate across

an ecosystem’s current area are expected to differ from

that which is suitable for its current composition. It

offers more than a simple boundary shift model, as

changes may occur anywhere within an ecosystem.

This is important because, for instance, landscape

fragmentation metrics can then be derived, yielding a

more thorough understanding of how climate change

is likely to alter spatial patterns of habitat at the patch

scale of land management.

Methods

Our approach relies on observed relationships between

the plant species composition of defined ecosystems

and climate variables (Fig. 2).

We began by identifying the minimum least

correlated set of bioclimatic variables that best explain

the plant species composition of each ecosystem. Beta

turnover (Tuomisto 2010) of the cline occurring across

the bioclimate gradients of these ecosystems was

quantified in order to measure the relationship

between bioclimate and the composition of plant

species across these ecosystems (Whittaker 1967).

Then we identified places on the landscape where the

bioclimate gradient is steep or gradual, indicating

where the magnitude of climate forcing on these

ecosystems is stronger or weaker across the landscape,

given the continuous variation of bioclimate values

over space and time. Lastly, within the boundaries of

the ecosystems having the strongest composition-

bioclimate relationships we calculated the amount of

area projected into the 2030s, 2050s, and 2070s that is

expected to retain the same range of bioclimate values

in the future as the contemporary normals. This

approach enables us to describe the amount of each
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ecosystem’s area where the climate is expected to

change beyond its contemporary range of variation.

Study area

We examined 39 ecosystems spanning the southwest-

ern USA (Fig. 1). Comer et al. (2003) described these

ecosystems and the USGS Gap Analysis Program

(Prior-Magee et al. 2007) as well as NatureServe

(2009) mapped them. The ecosystems correspond to

the ‘‘Group’’ level classification of vegetation types

defined in the U.S. National Vegetation Classification

(Ecological Society of America et al. 2015). Together

the 39 ecosystems cover an area of 1,228,167 km2.

The largest ecosystem is the Western Great Plains

Shortgrass Prairie (157,330 km2), and the smallest is

the North American Warm Desert Lower Montane

Riparian Woodland and Shrubland (2262 km2). We

Fig. 1 Generalized distributions of the 39 ecosystems across

the southwestern USA. Numbers indicate the following

ecosystems, based on the U.S. National Vegetation Classifica-

tion Group level names (Ecological Society of America et al.

2015). 1RockyMountain Cliff, Canyon andMassive Bedrock; 2

Inter-Mountain Basins Active and Stabilized Dune; 3 Colorado

Plateau Mixed Bedrock Canyon and Tableland; 4 Rocky

Mountain Aspen Forest and Woodland; 5 Colorado Plateau

Pinyon-Juniper Woodland; 6 Madrean Lower Montane Pine-

Oak Forest and Woodland; 7 Madrean Pinyon-Juniper Wood-

land; 8 Southern Rocky Mountain Dry-Mesic Montane Mixed

Conifer Forest and Woodland; 9 Southern Rocky Mountain

Ponderosa Pine Woodland; 10 Rocky Mountain Subalpine Dry-

Mesic Spruce-Fir Forest and Woodland; 11 Southern Rocky

Mountain Pinyon-Juniper Woodland; 12 Chihuahuan Creosote-

bush Desert Scrub; 13 Colorado Plateau Blackbrush-Mormon-

tea Shrubland; 14 Inter-Mountain Basins Mixed Salt Desert

Scrub; 15 RockyMountain Lower Montane-Foothill Shrubland;

16 Sonora-Mojave Creosotebush-White Bursage Desert Scrub;

17 Southern Colorado Plateau Sand Shrubland; 18 Western

Great Plains Sandhill Steppe; 19 Apacherian-Chihuahuan

Mesquite Upland Scrub; 20 Chihuahuan Mixed Desert and

Thorn Scrub; 21 Colorado Plateau Pinyon-Juniper Shrubland;

22 Mogollon Chaparral; 23 Rocky Mountain Gambel Oak-

Mixed Montane Shrubland; 24 Sonoran Paloverde-Mixed Cacti

Desert Scrub; 25 Inter-Mountain Basins Juniper Savanna; 26

Southern Rocky Mountain Juniper Woodland and Savanna; 27

Apacherian-Chihuahuan Semi-Desert Grassland and Steppe; 28

Inter-Mountain Basins Montane Sagebrush Steppe; 29 Inter-

Mountain Basins Semi-Desert Shrub-Steppe; 30 Inter-Mountain

Basins Semi-Desert Grassland; 31 Southern Rocky Mountain

Montane-Subalpine Grassland; 32 Western Great Plains Foot-

hill and Piedmont Grassland; 33 Western Great Plains

Shortgrass Prairie; 34 Chihuahuan Loamy Plains Desert

Grassland; 35 Inter-Mountain Basins Greasewood Flat; 36

North American Warm Desert Wash; 37 Rocky Mountain

Lower Montane-Foothill Riparian Woodland and Shrubland; 38

North American Warm Desert Lower Montane Riparian

Woodland and Shrubland; 39 North American Warm Desert

Riparian Woodland and Shrubland. Ecosystem numbers 1, 36,

and 38 are absent from the map, given the coarse map scale and

resolution. Geographic data of ecosystems are from Natur-

eServe (2009)
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selected this study area because of its sensitivity to

habitat alterations from climate change (Seager et al.

2007).

Data types, sources, and preparation

Data used in this study consisted of field plot

observations of plant species composition, bioclimatic

variables and mapped ecosystem distributions. For the

field plots, we used data generated by the USGS

National Gap Analysis Program (Prior-Magee et al.

2007) gathered between 2000 and 2003. These data

consist of plant species names, percent cover by

species, date of observation, geographic coordinates,

and ecosystem type in 10 9 10 or 20 9 20 m field

plots. We standardized the plant species names to a

single synonym using the USDA PLANTS database

(USDA Natural Resources Conservation Service

2010) at the species level (subspecies and varieties

were dropped).

Spatial data for 19 of the 20 bioclimatic variables

was provided by Hijmans and others (2005). These

data represent average (i.e., normal) climate condi-

tions between 1950 and 2000. The data occur at a 30

arc-second horizontal cell size at the ground surface,

or about 1 km2 at a spheroid projection. We also

included vapor pressure deficit (VPD) as a bioclimatic

variable since an elevated VPD increases evapotran-

spiration, raising environmental aridity and plant

desiccation (Lowry and Lowry 1989). Vapor pressure

Table 1 Bioclimatic variables and their explanation. Based on Hijmans and others (2005) with the exception of vapor pressure

deficit, which is based on Lowry and Lowry (1989) and Snyder and Paw (2002)

Bioclimatic variable Explanation

Mean annual temperature The mean of all the monthly mean temperatures

Mean diel temperature range The mean of monthly diel temperature ranges

Isothermality The mean diel range divided by the annual temperature range (9100)

Temperature seasonality The standard deviation of monthly mean temperatures expressed as a percentage of the annual

mean (9100)

Maximum temperature of warmest

month

The highest temperature of any monthly maximum temperature

Minimum temperature of coldest

month

The lowest temperature of any monthly minimum temperature

Temperature annual range Maximum temperature of warmest month–minimum temperature of coldest month

Mean temperature of wettest quarter The mean temperature of wettest quartera of the yearb

Mean temperature of driest quarter The mean temperature of the driest quarter of the year

Mean temperature of warmest

quarter

The mean temperature of the warmest quarter of the year

Mean temperature of coldest quarter The mean temperature of the coldest quarter of the year

Annual precipitation The sum of monthly precipitation across the year

Precipitation of wettest month The total precipitation of the wettest month

Precipitation of driest month The total precipitation of the driest month

Precipitation seasonality The standard deviation of monthly precipitation expressed as a percentage of the annual mean

Precipitation of wettest quarter The total precipitation of the wettest quarter of the year

Precipitation of driest quarter The total precipitation of the driest quarter of the year

Precipitation of warmest quarter The total precipitation of the warmest quarter of the year

Precipitation of coldest quarter The total precipitation of the coldest quarter of the year

Vapor pressure deficit, average

annual

The difference between average annual saturation vapor pressure and actual vapor pressure

a Quarters are to the nearest month
b Years are calendar years
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deficit was calculated according to the methods of

Snyder and Paw (2002) from data provided by

Thornton et al. (2012) spanning 1980–2003. These

data occur at a 1 km2 horizontal cell size at the ground

surface.

We relied on GIS data from Prior-Magee et al.

(2007) and NatureServe (2009) for geographical

occurrences of the 39 ecosystems. These data have a

30 m horizontal ground resolution. Climate variables

at each field plot location were extracted from gridded

bioclimate datasets of Hijmans et al. (2005) as well as

the VPD data derived from Thornton et al. (2012).

In the evaluation of the future amount of ecosystem

area projected to retain the same range of bioclimate

values as the contemporary climate, projected climate

data for the 2030s, 2050s, and 2070s were derived

from the GDFL CM3 model (Donner et al. 2011) RCP

8.5 (Moss et al. 2010) downscaled to a 30 arc-second

horizontal resolution (Ramirez and Jarvis 2008).

Treatment of vegetation field plot data

The field plot records were stratified by ecosystem and

overlaid onto the ecosystem maps. Plots falling

outside the boundary of a mapped ecosystem that

they had been assigned to during field collection were

removed from the analysis. Plots having out-of-range

species cover values ([100 % or \1 %) were also

removed. For each ecosystem, a matrix of the percent

cover for each species in each plot was assembled. A

Fig. 2 Analytical process steps. Input A shows the steps used to derive the dependent variables (vegetation species composition) while

Input B shows the steps used to develop the independent variables (bioclimate)
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multivariate outlier analysis was performed on these

matrices by calculating a Sørenson distance measure

of species and their relative abundance (as percent

cover) by plot (McCune et al. 2002). Plot records

with[2 standard deviations from the mean distance

were excluded. Out of an initial 30,380 field plots,

18,533 (61 %) were ultimately used. The number of

usable plots per ecosystem ranged from 22 to[2000,

with a mean of 475 per ecosystem.

To quantify vegetation composition, the remaining

field plot records of each ecosystem were input into a

nonmetric multidimensional scaling (NMDS) ordina-

tion (Kruskal 1964) using a Sørenson distance mea-

sure, a random starting configuration, and a Monte

Carlo test. Stress values obtained from the actual data

and the Monte Carlo test were compared to evaluate

the stability of the final solution. The orthogonality

among the output axes was compared to establish the

extent to which each represents an independent index

of the compositional similarity in species identity and

population abundance among the field plots (Ap-

pendix 1 in supplementary material).

The NMDS procedure locates each field plot in

multidimensional species space, given its coordinate

value along each of the axes. Among the axes, the

coordinate values indicate the distance and direction

of vegetation composition in one field plot relative to

all other field plots (McCune et al. 2002). We used the

field plot values from three axes as the dependent

variables for evaluating the relationships between

vegetation composition and the bioclimatic variables

within each ecosystem.

Treatment of bioclimate data

Bioclimate values were extracted at each field plot

location. Within each ecosystem, values of the 20

bioclimatic variables (Table 1) from the field plot

localities were examined for skewness and found to be

within normally distributed bounds, though peaked-

ness was evident in some cases. Pearson’s correlation

coefficients (Pearson 1896) were calculated for each

pair of values for the 20 bioclimatic variables per

ecosystem. Many of the variables were correlated to

some extent. Therefore, we identified a minimum,

least correlated set of climate variables that captured

*90 % of the overall climate information present

among the field plot localities within each ecosystem.

To do this, a principal components procedure (Mardia

et al. 1979) was used to reduce the climatic variables to

sets of ‘‘principal components’’ ranked by the amount

of information retained in each set. Within each

principal component, ‘‘loading’’ values describe the

relative importance of each variable with respect to the

total amount of information represented by each

component. Through a process of elimination, vari-

ables were identified in each of the highest-ranking

components which had both the highest loading values

and which were the least correlated with the other

variables (that is, the least correlated highest-ranking

variables within the top components that explain

[90 % of variability). This procedure resulted in a

minimum least correlated set of independent, explana-

tory variables (often four to eight).

Analysis of variance

Each ecosystemwasmodeled separately.Amultivariate

analysis of variance (MANOVA) (Grimm and Yarnold

1995) was used to quantify relationships between the

NMDScompositional indices of the vegetation plot data

and the minimum least correlated set of bioclimatic

variables. Bioclimatic variables with a resulting p value

[0.05 were rejected. The remaining variables were

ranked according to the multivariate Wilks’ lambda (k)
and the approximate F-statistic (Bray and Maxwell

1985). Wilks lambda values were transformed to 1 - k
to indicate the amount of compositional variability

explained. The bioclimatic variables with the most

explanatory power were those having the highest 1 - k
in combination with a significant break in the sequence

of approximate F-statistic values. In those cases where

multiple variables qualified under this procedure, we

examined pairwise correlation values between the

variables. For those variables with correlations[0.5,

the variable having the higher 1 - k valuewas selected.
Where more than one bioclimatic variable was identi-

fied and correlations were\0.5, the set was retained.

Beta turnover across bioclimate gradients

An informative way to characterize biotic

response(s) to an environmental gradient is by the

pattern of species turnover along the gradient. This

turnover is one form of beta diversity (Whittaker 1972)

or beta turnover (Tuomisto 2010). In this application,

we expected the change of vegetation along the

identified bioclimate gradient to reveal a compositional

200 Landscape Ecol (2017) 32:195–207

123



response to the bioclimatic variable(s). This approach

links the magnitude and direction of the compositional

changes in vegetation to the corresponding bioclimatic

variables, whether the gradients occur across geograph-

ical space or time.

The amount of beta turnover was derived using the

methods of Oksanen and Tonteri (1995). The fit of beta

turnover to bioclimatic variable(s) was described

using ordinary least squares regression (Anderson

2008), resulting in the descriptive statistics of: the

mean and range of y (beta turnover) values, slope of

the fitted line, y intercept, range of y values along the

slope, and relative slope. Relative slope is ys/

yr 9 100, where ys is the range of y values along the

fitted slope and yr is the total range of y values

(Appendix 2 in supplementary material). Relative

slope was calculated for comparative purposes since

the bioclimatic variable units are heterogeneous (e.g.,

precipitation in mm, temperature in degrees C, and

indices such as isothermality) so that the absolute

slope values by themselves are not comparable across

bioclimate types. The magnitude of the relative slope

response in each ecosystem was categorized as

strong, moderate, or weak by applying Jenks (1967)

breaks to the relative slope vector (Table 2).

Assumptions and limitations

These methods assume that the vegetation composi-

tion of the ecosystems respond to particular climate

variables, and that these 20 bioclimatic variables

adequately explain most of the vegetation composition

response to climate in general. Additionally, it is

assumed that the relatively large numbers of field

observations per ecosystem adequately represent the

vegetation heterogeneity of the ecosystems studied.

Furthermore, we accepted that: (a) The NMDS

procedure adequately represents the multidimensional

similarity between any given field plot and all other

field plots within a given ecosystem. (b) The PCA

procedure robustly identifies the minimum least

correlated set of bioclimatic variables that explain

about 90 % of the climate information contained in the

set of 20 bioclimatic variables. (c) The MANOVA test

identifies the minimum set of bioclimatic variables

which explain most of the vegetation composition that

can be explained by climate; and (d) the method for

quantifying a beta turnover gradient is robust.

Limitations to our approach include: (a) Other

biophysical processes may also exert control over the

composition of the vegetation, making discovery of

the climate signal difficult or impossible. (b) Interac-

tion among and rates of change in bioclimatic

variables shaping an ecosystem’s vegetation compo-

sition may consist of more fine grained complexity

than our methods are capable of capturing. (c) The

methods used here apply to the range of variation

within a given ecosystem and do not address invasions

of exotic species or altered disturbance regimes.

Results

The vegetation composition in each of the 39 ecosys-

tems responds to distinct bioclimatic variables (Ap-

pendix 3 in supplementary material), though the

magnitude of response varies. Four of the 20 climate

variables explain most of the variability in vegetation

composition among the ecosystems. These are: (a) the

seasonality of precipitation, (b) the seasonality of

temperature, (c) mean annual precipitation and (d) the

amount of precipitation during the warmest quarter.

These variables form the primary climatic predictors

of vegetation composition in 16 ecosystems and

contribute to the predictions in 6 others. They explain

most of the climate related vegetation composition

Table 2 Number and percent of ecosystems responding to bioclimatic variables by relative slope category. Category thresholds are

per Jenks (1967) natural breaks

Beta response category Number of ecosystems Percent of ecosystems (%) Relative slope thresholds

Strong 12 31 [40

Moderate 9 23 27–40

Weak 15 38 \27

Mixed 3 8
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across 752,030 km2 (61 %) of natural vegetation land

cover across the Southwest study area.

Among the 39 ecosystems, beta turnover varied by

95 %. This variability is likely due to the climate niche

widths of the prevalent species and the influence of

other biophysical factors, such as disturbance, com-

petition, herbivory, and soils. Bioclimate related beta

turnover was normalized among the different ecosys-

tems for comparative purposes. A steeper response

slope indicates a stronger bioclimate-composition

relationship in one ecosystem relative to another.

The composition of 12 ecosystems have relatively

strong responses to climate, 9 have moderate

responses, and 15 significant but relatively weak

responses. Three ecosystems showed mixed responses

(Table 2).

The Sonora-Mojave Creosotebush-White Bursage

Desert Scrub ecosystem had the steepest relative slope

(94; Appendix 2 in supplementary material), where

beta turnover increased with temperature seasonality.

The Rocky Mountain Cliff, Canyon and Massive

Bedrock ecosystem and the Rocky Mountain Lower

Montane-Foothill Riparian Woodland and Shrubland

ecosystem also had steep relative slopes (73 and 66;

Fig. 3 Landscape scale bioclimate gradients: a Contours of

precipitation of the wettest month in relation to the Apacherian-

Chihuahuan Semi-Desert Grassland and Steppe ecosystem, in

orange. Contours interval is 4 mm precipitation, scale is

1:250,000. b Contours of minimum temperatures of the coldest

month in relation to the Rocky Mountain Aspen Forest and

Woodland ecosystem, in purple. Contours interval is 1 �C, scale
is 1:250,000. c Contours of precipitation seasonality in relation

to the Colorado Plateau Pinyon-Juniper Shrubland ecosystem, in

dark green. Contours interval is 10 seasonality index points (see

definition, Table 1), scale is 1:350,000. d Contours of mean

temperature of driest quarter in relation to the Rocky Mountain

Subalpine Dry-Mesic Spruce-Fir Forest and Woodland ecosys-

tem, in light green. Contours are at intervals of 1 �C, scale is

1:300,000. e Locations of panels (a–d). Contours derived from

data of Hijmans et al. (2005); ecosystem distributions derived

from data of NatureServe (2009)
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Appendix 2 in supplementary material). These ecosys-

tems have strong relationships with precipitation

during the driest and coldest quarters, respectively.

For both, beta turnover declines with increasing

precipitation. Since these three ecosystems have large

beta turnover, they hold a high potential for changes in

vegetation composition across geographical space

relative to changes in the bioclimatic variables

predicting them.

The geographical areas within ecosystems where

the bioclimate gradients are steeper are more likely to

experience greater changes in vegetation composition

over space and time. To identify and describe places

where such gradients occur, spatial contours of the

explanatory bioclimatic variables were overlaid onto

maps of the ecosystem’s distributions. Ecosystems

having a strong to moderate relationship with biocli-

mate show considerable spatial correspondence

between the ecosystems’ landscape configuration

and bioclimate contours (Fig. 3).

With the composition-bioclimate approach, floris-

tically based climatic boundaries of ecosystems can be

identified, which better resolves ecosystem types. For

example, vegetation of the Southern Rocky Mountain

Dry-Mesic Montane Mixed Conifer Forest and Wood-

land ecosystem is best explained by the minimum

temperatures during the driest quarter. Yet this

relationship is not uniform. One area of this ecosystem

has a relative beta diversity response slope 3.6 times

greater than the other, whereby beta turnover increases

as temperature drops (Appendix 4 in supplementary

material). Although mapped and described as a single

ecosystem (NatureServe 2009), the methods used here

capture a distinct separation (see Sesnie et al. 2012).

We linked 11 southwestern ecosystems having

strong bioclimatic relationships with downscaled

projections of future climates (Ramirez and Jarvis

2008; Donner et al. 2011). This step illustrates how a

better understanding of the relationships between

bioclimate and ecosystem vegetation composition

can address applied problems. The resulting estimates

describe how ecosystem vegetation might change in

future decades (2030s, 2050s, 2070s), given reconfig-

urations of the bioclimate variables required by an

ecosystem’s current vegetation. In doing so, these

results identify where changes in ecosystem vegeta-

tion may occur and their pace (Appendix 5 in

supplementary material).

Projections of future climates indicate that 7 of the

12 ecosystems with strong bioclimatic responses are

expected to experience large changes to their area of

suitable climate (Appendix 5 in supplementary mate-

rial). For example, by the 2070s, the Sonora-Mojave

Creosotebush-White Bursage Desert Scrub ecosystem

is forecast to lose *15 % of its bioclimatic area. The

extent of this ecosystem is large (46,000 km2) and the

percent of loss equates to *7000 km2, roughly the

size of the U.S. state of Connecticut. The Western

Great Plains Sandhill Steppe is also relatively large

and the amount of bioclimate area lost (31 %) equates

to *4000 km2—an area 1.3 times the size of Rhode

Island.

The North AmericanWarm Desert Lower Montane

Riparian Woodland and Shrubland ecosystem is

relatively small (*2000 km2). However, by the

2070s, half of its bioclimatic area is projected to

consist of a different climate, and likely a different

ecosystem type (Appendix 5 in supplementary mate-

rial). Importantly, riparian ecosystems are keystone

habitats, hubs of biological diversity and essential for

sustaining life processes in arid landscapes (Chambers

and Miller 2004). Given the amounts of change in

vegetation composition that is possible over a short

period (*50 years), the consequences for biodiversity

and its stewardship in riparian along with surrounding

ecosystems could be substantial.

Results also show how alterations to an ecosys-

tems’ vegetation composition can occur internally,

even when the climatic conditions that best explain its

composition remain within the overall range of

contemporary values but change geographically. For

example, the Madrean Pinyon-Juniper Woodland

ecosystem has a strong relationship with precipitation

seasonality (relative slope = 42; Appendix 2 in sup-

plementary material). Presently, the distribution of

values for precipitation seasonality span 43–132 units.

By the 2030 s the overall range of these values is

reduced by one-half, yet this reduced range of values

still occupies the contemporary geographic distribu-

tion of the ecosystem (Fig. 4). Although the total

ecosystem area is expected to remain unchanged

through the 2070s, the range of climatic variability

across this 18,927 km2 landscape narrows markedly.

Its vegetation composition is expected to become

more uniform. The implications for this ecosystem,

whether increased vulnerability to disturbances, a
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reduction in habitats for vertebrates, or altered provi-

sioning of ecosystems services, remain unknown.

Discussion

Although other biophysical dynamics influence spe-

cies composition to a greater or lesser degree, the

approach taken in this study isolates the influence of

climate on vegetation composition. The stepwise

process enables testing, calibration, and evaluation

throughout each interval of the modeling sequence.

Our methods revealed a striking relationship

between the Madrean Pinyon-Juniper Woodland

ecosystem and precipitation seasonality (i.e. the range

of variability in the seasonality of precipitation). This

relationship demonstrates three facets of ecosystem

change (Fig. 4). Namely: (a) The magnitude of the

change in the variability of the seasonality metric

itself; (b) That the change is not uniform across the

ecosystem’s geographic occurrence. Instead, the

change exhibits a strong spatial dependency. (c) The

change in the variability of this ecosystem’s primary

bioclimatic variable occurs within the ecosystem’s

current climate space. Hence, the spatial distribution

of the ecosystem’s overall climate envelope remains

unchanged, yet internally the variability of seasonal

precipitation changes dramatically. In aggregate, this

example shows how changes in an ecosystem’s

suitable climate can be more nuanced than simple

shifts in presence-absence. We anticipate that further

analyses will reveal other critical but complex

Fig. 4 Geographical distribution of the Madrean Pinyon-

Juniper Woodland in the southwestern United States (states of

Arizona and New Mexico). This ecosystem has a strong

relationship with the seasonality of precipitation (i.e. annual

variability of precipitation; Appendix 2 in supplementary

material). The location of red and black pixels illustrate the

geographical distribution of this ecosystem’s bioclimate, which

remains unchanged from 2009 to 2070s. Red pixels identify

seasonality of precipitation values of 47–91, while black

indicates all other values. In 2009, pixel values range from 43

to 132, as depicted in the figure (red and black pixels, depending

on their value). By the 2070s, the range of seasonality of

precipitation values are halved to 47–91 (red colored pixels),

mainly from a contraction in the higher values. Therefore, all of

the pixels in the figure are predicted to remain this ecosystem

type in the 2070s (but given their values, they would be colored

red in the figure). The effects of reduced precipitation variability

across this ecosystem’s geographical space, regarding its

resilience to disturbance or other dynamics is unknown. Gray

polygons identify property administered by the U.S. Department

of Defense, U.S. Fish and Wildlife Service, U.S. Forest Service

and the National Park Service. Count represents pixels of 1 km2
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expressions of altered bioclimates. Such knowledge

should lead to a far greater understanding of how

climate change influences large ecosystems. Societal

responses to climate induced changes in ecosystem

services could become more successful as a result.

The Madrean Pinyon-Juniper Woodland ecosystem

exhibited a large change in precipitation seasonality

between the reference period and the 2030s, as well as

between the 2030s and the 2070s. As above, these

changes are strongly geographic. They correspond to

land form in combination with their position relative to

the Gulf of Mexico. We speculate that this spatial

change in the variability of precipitation seasonality is

related to future changes in the monsoonal dynamics

of the region.

To exemplify the application of our methods to

future climates, we relied on the RCP 8.5 climate

scenario from the GFDL CM3 model. Our rationale

for using a single model, and the GFDL CM3 in

particular, is that of the many factors to consider

when deciding on appropriate climate data inputs for

modeling, one must first identify the object of

interest. In this case, the object is biotic responses to

climate (as opposed to, for example, the response of

ocean circulation or cryosphere dynamics to cli-

mate). Biota do not respond to climate per se, but to

particular climatic conditions that limit or facilitate

their establishment or persistence (i.e. bioclimatic

variables). Therefore, it is critical that the climate

data used expresses such limitation or facilitation

thresholds well. However, these characteristics often

occur as extremes located in the tails of the

distribution. While ensemble data serve a useful

purpose in expressing the central tendency among a

suite of general circulation models, the signals that

limit or facilitate biotic occurrence may be damp-

ened or otherwise skewed (e.g., Vavrus et al. 2015)

by an ensemble’s rules of combination. As discussed

by Tebaldi and Knutti (2007), the reliance on

consensus estimates via ensembles carry inherent

challenges, including (a) the choice of metrics and

diagnostics of performance, (b) inter-model depen-

dencies and common biases, (c) compounding of

errors, and (d) the representativeness of the sample

of models with regard to common fundamental

uncertainties. This is not to say that the central

tendency in the suite of models is unimportant.

Instead, our point is that because of these issues, we

chose a single, well-vetted model performing close

to the ensemble central tendency to derive future

projections of bioclimatic variables. A full analysis

describing projections of future vegetation compo-

sition via multiple climatic scenarios is beyond the

scope of this paper. This topic is, however, being

addressed in ongoing work.

By swapping space for time (Ferrier and Guisan

2006; Elith and Leathwick 2009) along the climate-

composition gradient, a first order explanation of

how vegetation composition is likely to change in

response to incremental changes in primary climate

variables is possible. Blois et al. (2013), caution that

at time scales of years or spatial resolutions of

kilometers or less, stochastic processes could limit

the utility of space-for-time substitution. However,

the landscapes in this study cover areas of hundreds

to many thousands of square kilometers, and are

currently experiencing extraordinarily rapid climate

change. Therefore, we expect this approach to be

useful for anticipating changes of habitat composi-

tion over time across large landscapes and at the

resolution of conservation and management areas.

The methods in this study can also provide a

reference framework for addressing the quandary

over managing for the historical compliment of

species in an area versus a changing composition of

species and the direction such changes may take.

Our methods are applicable to a wide range of

other problems. For example, recently the technical

criteria for assessing threats to the persistence of

ecosystems under the IUCN’s Red List of Ecosys-

tems (RLE) (Rodriguez et al. 2011; Keith et al.

2013) was questioned for its adequacy in the face of

climate change (Boitani et al. 2015). Boitani et al.

(2015) argue that the current RLE approach is

inadequate because it lacks criteria for determining

where along the compositional continuum of space

and time an ecosystem ceases to exist. The methods

for quantifying the relationships between ecosystem

composition and gradients of environmental forcings

provide the criteria for improving the RLE by

delineating the bioclimatic boundaries of terrestrial

ecosystems. Additionally, these methods provide a

mechanism for quantifying the sensitivity of vege-

tation composition to the magnitude and rate of

climate change, thereby aiding ecosystem threat

assessment.
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Conclusion

Results from this study reveal several dimensions of

how climate change influences the composition of

terrestrial ecosystems. The methods provide the

specific climate and vegetation parameters required

for anticipating how, where and when ecosystem

vegetation transforms with climate change. This

information enables a ranking of ecosystems by their

sensitivity to altered climates, thereby increasing the

efficacy of resilience planning. Assessing ecosystem

threats and predicting the future vegetation composi-

tion of ecosystems grows ever more important given

the amount of climatic flux the planet is experiencing

and the rates of changes expected (IPCC 2014).
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