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Abstract

Context Environmental heterogeneity is considered

an important mechanism of biodiversity. How envi-

ronmental heterogeneity is characterised by the com-

positional, structural and functional variation of biotic

and abiotic components is a central research theme in

conservation.

Objectives We explore how environmental hetero-

geneity relates to the underlying physical landscape

template and how that relationship changes over space

and time. We examine how, in some areas,

environmental heterogeneity may also be driven by

dynamic ecological processes, and how this relates to

patterns of plant species richness.

Method We use local geographically weighted

regression to spatially partition environmental hetero-

geneity, measured as Landsat spectral variance, into

the portion explained by stable physical landscape

properties (R2) and the portion unexplained (1-R2)

which we term landscape complexity. We explore how

this relationship varies spatially and temporally as a

function of dynamic ecological processes such as

rainfall and season in Kruger National Park, as well as

plant species richness at landscape scales.

Results The significance and direction of relation-

ships varied over space and time and as a function of

rainfall and season. R2 values generally decreased in

higher rainfall summer months and revealed patterns

describing the importance of known stable factors

relative to unknown dynamic factors. Landscape

complexity (1-R2) explained over 70 % of variation

in species richness.

Conclusions Rainfall and seasonality are important

drivers of environmental heterogeneity. The spatial

arrangement and magnitude of model agreement

helped disentangle the relative influence of the

physical landscape template on environmental hetero-

geneity. Given the high correlation with species

richness, landscape complexity provides complemen-

tary guidance to biodiversity research and monitoring

prioritization.
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Introduction

Ecologists have long debated the relationship between

environmental heterogeneity and biodiversity (e.g.,

MacArthur and Pianka 1966; Wiens 2002; Seiferling

et al. 2014). The consensus describes environmental

heterogeneity as being an important driver of biodi-

versity maintenance and ecosystem health. For rapid

assessment in biodiversity monitoring, many studies

have, therefore, focussed on modelling relationships

between landscape heterogeneity and species diversity

(e.g., MacArthur and MacArthur 1961; Tews et al.

2004; Tamme et al. 2010; Zhao et al. 2015). To this

end, environmental heterogeneity is often considered

equivalent to landscape heterogeneity in practice

(Tscharntke et al. 2012). However, such practice

inevitably reduces the complex realism of environ-

mental heterogeneity into discrete patches that may

not physically or functionally occur in reality (Turner

1989; Cushman et al. 2010; Fahrig et al. 2011).

Although such a mosaic approach of discretizing

environmental/landscape heterogeneity has been suc-

cessful, especially in urban and agricultural land-

scapes, it falls short in natural ecosystems where the

classification of these patches discounts important

within-patch heterogeneity (McGarigal et al. 2009).

Environmental gradients are considered as an

alternative to this mosaic approach, one which

arguably better reflects the continuous nature of

environmental heterogeneity (Doebeli and Dieckmann

2003; Guisan and Thuiller 2005). Remote sensing

offers a cost-effective, systematic and repeat-

able method of mapping and monitoring environmen-

tal heterogeneity as a continuous surface (e.g.,

González-Megı́as et al. 2011; Hernández-Stefanoni

et al. 2012; Duro et al. 2014). The spectral response of

satellite imagery is therefore often used to analyse

ecosystem patterns and processes (Gould 2000; Wul-

der et al. 2004). Variations in this spectral response

can originate from corresponding variations in the

underlying properties of the physical landscape as well

as other biological features (Rocchini et al. 2013).

Separating out the different drivers of environmental

heterogeneity from this spectral response however

remains a challenge (Somers et al. 2011; Shi and

Wang 2014).

There is to date no definitive method to quantify

environmental heterogeneity, as such, a robust envi-

ronmental heterogeneity–biodiversity relationship

remains elusive (Allouche et al. 2012; Redon et al.

2014). Recent studies further suggest that the rela-

tionship itself is non-ubiquitous (Bar-Massada and

Wood 2014), varying across scale (Oldeland et al.

2010; Stein et al. 2014), level of ecosystem distur-

bance (Seiferling et al. 2014), species geographic

range (Katayama et al. 2014) and available habitat

area (Fahrig 2013). We expect this is due to the

complexity of environmental heterogeneity and the

contingency of identifying key drivers of this hetero-

geneity using conventional methods (Johnson 2007).

Nevertheless, in the face of increasing concerns of

global biodiversity loss (MEA 2005; Hooper et al.

2012) how environmental heterogeneity is defined and

measured is a key question for today’s conservation

agencies. We define environmental heterogeneity here

as the variation of landscape form (the physical

rendition of composition, structure and function), as

represented by Landsat spectral variation. With the

term landscape complexity we refer to the interacting

processes that are underlying the observed environ-

mental heterogeneity. In this paper we operationalize

landscape complexity by measuring what part of the

environmental heterogeneity is not straightforwardly

explained by spatial and temporal variation in the

biophysical context.

While many studies have sought to develop cost-

effective, systematic and repeatable methods of map-

ping and monitoring biodiversity (e.g., Duro et al.

2007; Reyers andMcGeoch 2007; Lengyel et al. 2008;

Pettorelli et al. 2014), few have explored the spatial

and temporal variability of environmental heterogene-

ity itself. Using traditional global models, inherent

spatial structures are often ignored and important

information about how relationships between

observed heterogeneity and physical landscape prop-

erties might change over space discounted (Guo et al.

2008; Matthews and Yang 2012). For instance, in the

Kruger National Park (KNP) in South Africa, we

would expect to find highly variable relations between

environmental heterogeneity and other spatially expli-

cit drivers, such as geology and soils, topography,
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climate, herbivory and fire. Geographically weighted

regression (GWR) is reportedly able to incorporate

these local spatial relationships into a traditional

regression framework (Brunsdon et al. 2002; Fother-

ingham et al. 2002). In contrast to global regression

techniques, GWR accounts for spatial non-stationarity

by allowing relationships to vary over space. In this

way, if the elicited response varies geographically it

would suggest different processes are interacting

within the study area (Matthews and Yang 2012).

We therefore anticipate GWRs application in KNP to

enable us to visualise the geographical variation of

environmental heterogeneity and identify its key

drivers across the park (Oliveira et al. 2014).

In this paper, we use local GWR models to map the

relationship between Landsat spectral variance and

stable physical landscape properties. We explore how

this relationship changes over space and time and

examine how in some areas heterogeneity patterns

may be driven more noticeably by dynamic ecological

processes. We used spectral variation as a proxy for

environmental heterogeneity which depicts the vari-

ability of a spectral response across different wave-

lengths or bands of a Landsat satellite image (Short

2005). For stable physical landscape properties we

used landscape features that do not change

over *50 years, such as elevation and geology.

Based on our findings, we identify the proportion of

spectral variability in the landscape, as seen from the

multispectral Landsat satellite, explained by

stable landscape properties. Thereafter, we examine

the sensitivity of this relationship to changes in season

and rainfall and explore how mapped model outcomes

change as a result. We propose that, the proportion of

model disagreement (1-R2), represents the level of

landscape complexity, i.e. the influence of dynamic

landscape processes and stochastic disturbance events,

not fully captured by KNPs underlying physical

landscape template. We investigate how landscape

complexity has changed spatially in KNP over time

and highlight areas where the change in this complex-

ity has been consistent, potentially signalling rapid

changes in underlying dynamic ecological processes

that could strongly affect biodiversity. To this end, we

test the degree to which landscape complexity can

explain local plant species richness patterns and

provide insight into its application for protected area

managers.

Methods

Study area

KNP has considerable biophysical diversity and a long

conservation history (du Toit et al. 2003). It is one of the

largest protected areas (PAs) in the world (*2 m ha),

situated in the north-eastern corner of South Africa

(Fig. 1). The park is dominated by gently undulating

topography (150–840 m a.s.l) underlying granite

gneiss, schists, amphibolites, basalt and gabbros

(Schutte 1986). Mountainous areas occur in the east,

along the border of Mozambique (Lebombo Moun-

tains), in the south-west (Malelane Mountains) and in

the north-west (Soutspansberg Mountains) (Schutte

1986). A basalt-granite east–west division is clearly

visible with the more fertile basalts in the east and less

fertile granites in the west (Munyati and Ratshibvumo

2010). Climate is a major ecosystem driver (Pickett

et al. 2003; Venter et al. 2008) with rainfall occurring in

decadal wet and dry cycles across KNP. The long-term

annual mean varies from 350 mm in winter to 950 mm

in summer with a slight dry–wet rainfall gradient

occurring from north to south-west (Gertenbach 1980).

Average temperatures range from 26.4 �C in summer

(December–March) to 17.8 �C inwinter (June–August)

(Zambatis 2006). KNP falls within South Africa’s

dominant savanna biome (Low and Rebelo 1996), an

inherently heterogeneous ecosystem driven by complex

spatial interactions between rainfall, soil, vegetation

patterns and dynamic processes such as herbivory, fire

and floods (Groen 2007).

Data analyses

All analyses were carried out in R version 3.0.2 (R

Core Team 2013), RStudio version 0.98.978 (RStudio

2013) and GRASSGIS version 7.1.svn (GRASS 2014)

in a step-wise manner: (1) Landsat spectral variation,

(2) physical landscape variation, (3) GWRmodels and

our interpretation of model fit in terms of landscape

complexity, (4) Landscape complexity’s relationship

to plant species richness.

Landsat spectral variation

Landsat imagery were available for the Skukuza

region (path 168—row 077, WRS2) from different
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sensors (MSS, TM, ETM?, OLI) since 1972. Six

images, representing late season winter conditions

(July or August months) and summer conditions

(March or April months), were selected for years

signifying long-term mean, below and above average

rainfall periods. Representative years were selected

using a three-year rolling mean of daily rainfall

records from the Skukuza weather station and associ-

ated availability of cloud-free images (Fig. S1). Final

image dates represent winter and summer ‘windows’

into low (1991-07-30; 1993-04-14), average (1984-

08-27; 1987-03-13) and high (1998-08-18; 2000-04-

09) rainfall conditions. Inherent sources of error were

dealt with as follows: digital numbers were converted

into surface reflectance units using the US Geological

Survey’s (USGS) on demand interface for the Earth

Resources Observation and Science’s (EROS) Centre

Science Processing Architecture (ESPA Ordering

Interface 2013); each band (excluding band 6) was

geometrically and radiometrically calibrated to the

standard terrain correction (1T) level (Irish 2000) with

a UTM WSG84 36S projection using GRASS (2014).

Before calculating spectral variation, a correlogram

(Wright 2015) and local Moran’s I measure of spatial

autocorrelation (Hijmans 2015) were calculated for

bands 1–5 and 7, revealing a non-stationary covari-

ance structure, typical of remote sensing data (Wulder

and Boots 2000; Propastin 2009). That is, bands were

found to be significantly collinear (Fig. S2) and

spatially autocorrelated (Table S1). We removed the

first source of error (inter-band collinearity) by

transforming individual bands into principle compo-

nents (PC) using the i.pca function in GRASS (2014)

interfaced through R (R Core Team 2013). Spatial

autocorrelation (i.e. intra-band collinearity) was

addressed through the use of GWR (discussed later).

Once individual bands were transformed into PCs,

the resulting eigenvalues (or loadings; summarised in

Table S2) explained the proportion of variance

accounted for by each PC across the different years.

For example, a high PC1 loading would suggest a large

percentage of the variation in the landscape can be

measured using only the first principle axis (Ringnér

2008). Conversely, a low PC1 loading would suggest

one axis rotation is not enough to account for all the

variability in the landscape and therefore the structure

of the data, and in our case the landscape, would be

more complex. Exploratory results indicate the pro-

portion of variance accounted for by PC1, for exam-

ple, is generally higher in winter and lower rainfall

periods compared to summer and higher rainfall

periods (Fig. S3). This suggests season and rainfall

are potentially important drivers of landscape com-

plexity. To better understand environmental hetero-

geneity (Rocchini and Neteler 2012), we further

Fig. 1 Kruger National Park, situated in the north-eastern

corner of South Africa between latitudes 22�1904000S–
25�3104400S and longitudes 30�5301800E–32�0105900 within the

country’s dominant Savanna Biome, overlaying a gently

undulating topography
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calculated the textural variance, entropy and unifor-

mity (or angular second moment (ASM)) for each PC

(1–6) using r.texture within a three by three pixel

moving-window neighbourhood, as well as Shan-

non’s, Simpson’s and Rényi’s Entropy diversity

indices and Pielou’s Evenness index using r.diversity

[See Rocchini et al. (2013) and the GRASS (2014)

reference manual for details about index formulas].

Physical landscape variation

Environmental heterogeneity depicted by spectral

variation is then regressed by the variability of

stable physical landscape properties. These are under-

lying properties of the landscape template which do

not change over *50 years, namely elevation, slope,

aspect, flow direction, watershed area, potential sur-

face wetness index and soil form, depth and clay

content (Fig. 2).

KNPs slope and aspect were calculated from a 5 m

digital elevation model (DEM) (Van Niekerk 2012)

using r.slope.aspect in GRASS (2014); flow direction,

watershed area (sink) and a surface wetness index (or

topographic convergence index (TCI)) using r.ter-

raflow (GRASS 2014). Soil form, depth and clay

content were extracted from the Mpumalanga Pro-

vince Natural Resources dataset (Wessels et al. 2001).

We selected an uncorrelated subset of explanatory

variables using the variance inflation factor (VIF),

which excludes highly correlated variables through a

stepwise procedure (Naimi 2015). Flow direction,

which was negatively correlated with aspect (-0.63)

and soil clay content, which was positively correlated

with soil form (0.67), both had higher VIF values and

were therefore removed along with watershed area

(VIF = 3.1). After removing these variables, final VIF

scores were satisfactorily all below 1.5 (Fig. S4). We

continued with our analysis using elevation, aspect,

slope, TCI, soil form and soil depth as our explanatory

variables. As with spectral variation, we express their

variability in the landscape in terms of both textural

features measured as variance, entropy and uniformity

(r.texture) as well as the same diversity indices

(r.diversity) of properties (Rocchini et al. 2013),

within a three by three moving window area (GRASS

2014).

Geographically weighted regression (GWR)

and landscape complexity

The relationships between the resulting measures of

variance for spectral and physical landscape properties

were estimated using GWR (Gollini et al. 2015) for

different seasons and rainfall conditions. We included

season and rainfall because they could potentially

affect vegetation structure, the intensity of disturbance

(e.g., fires) and the distribution of large fauna (Chirima

et al. 2012; Smith et al. 2013). Using the R package

GWmodel, we identified an optimal bandwidth for

each model based on the Akaike Information Criterion

(AIC) with an adaptive bisquare bandwidth setting

(Gollini et al. 2015) (Table S3). We compared model

fit of the different variance measures using AIC and

selected the ‘best’ measure to explore relationships

further. Thereafter, we examined how GWR model

results vary across winter and summer months of

representative low (1991–1993), average (1984–1987)

and high (1998–2000) rainfall periods using a multiple

comparison test after Kruskal–Wallis (Giraudoux

2015) as well as an analysis of variance model

(ANOVA). We then calculated contrasts for factor

interactions to explore how seasonal contrasts of GWR

coefficients differ between rainfall groups (de Rosar-

io-Martinez 2015). Resulting local adjusted coeffi-

cients of determination (R2) were mapped to highlight

the spatial variability of model performance against

season and rainfall. Spatial non-stationarity was tested

using Leung’s F3 statistic (Leung et al. 2000).

Regressions were run on a sample (n = 2586) of the

original raster data.

We qualified landscape complexity as the level of

model disagreement (1-R2), representing the rela-

tionship of spectral response to dynamic processes not

fully captured by the underlying stable landscape

template alone. We examined how landscape com-

plexity changed over time by detecting the trend in

1-R2 values from 1984 until 2000 across the surface

of KNP. We expect a change in landscape complexity

to be indicative of changes in the driving ecological

factors behind environmental heterogeneity. Results

are summarised as surface trend maps indicating areas

in the KNP where the degree of change in landscape

complexity fluctuates, and thus possibly biodiversity,

with changing seasonal and rainfall conditions.
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Landscape complexity and plant species richness

The proportion of total variation in spectral response

explained by physical landscape properties is captured

by the R2 from GWR and is a measure of model

agreement. The remaining, unexplained proportion

(1-R2) therefore represents spectral variation that

cannot be explained by physical landscape properties

alone. There are many dynamic landscape properties

that could help explain this remaining variation in the

landscape, for example fire, vegetation dynamics,

herbivore distribution and a human footprint. How-

ever, detailed records of these properties are rarely

available. As an alternative, we interpret 1-R2 as a

measure of landscape complexity, distinguishing the

level of influence of dynamic landscape processes and

stochastic disturbance events, from the underlying

physical landscape template.

We tested this theory by examining the degree to

which landscape complexity explained local patterns

of plant species richness. Woody plant species data

were obtained from the historical surveys of Venter

(1990), recently described by Kiker et al. (2014).

These data contain detailed surveys of woody vege-

tation cover and composition subset to our study area

(n = 692 sites, totalling 115 species). A species

accumulation curve (SAC) was computed (Oksanen

et al. 2015) using the random method to find mean

Fig. 2 Stable physical landscape elements that do not change

over a 50 year period, forming Kruger National Park’s physical

landscape template: a elevation, b slope, c aspect, d watershed

area, e potential surface wetness index, f soil form, g soil depth

and h soil clay content. Profile graphics in the margins illustrate

mean latitudinal and longitudinal values (Perpiñán and Hijmans

2014)
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SAC and the number of species for all sample sites in

our study area. Relationships between resulting

species richness per site and landscape complexity

were assessed using, again, GWR. We summarised

GWR results and examined how parameter estimates

vary with season (winter and summer) and rainfall

(low, average and high conditions).

Results

Spectral and physical landscape variation

Box-and-whisker diagrams illustrate the shape of

variation in spectral response of Landsat PCs across

seasons and a rainfall gradient (Fig. 3). In general,

dispersion of PC values tends to increase with

increasing rainfall in winter months but decreases as

rainfall increases in summer months (Fig. 3a).

Textural measures of randomness (entropy, Fig. 3c)

and its converse, uniformity (Fig. 3d), showed similar

seasonal patterns, i.e. winter entropy increased while

summer entropy decreased and winter uniformity

decreased while summer uniformity increased as

rainfall increased. Diversity clearly increased as

rainfall increased across both winter and summer

months (Kruskal–Wallis v2 = 13792.39, df = 5,

p-value\ 0.0001; Fig. 3e–g). Variability of physical

landscape properties (elevation, slope, aspect, flow

direction, watershed area, potential surface wetness

index and soil form, depth and clay content) are

unchanged by year or season.

Geographically weighted regression (GWR)

and landscape complexity

Models with raw PC values representing spectral

variation (response variables) and raw physical

(a)Raw-PCs (b)Texture-Variance (c)Texture-Entropy (d)Texture-Uniformity

(e)Diversity-Shannon (f)Diversity-Simpson (g) Diversity-Rényi (h)Diversity-Pielou

o

o

o

o

o o
o

o

Fig. 3 Boxplots assessing the location, dispersion, and sym-

metry or skewness of spectral variation, as measured by

different indices, across different seasons and rainfall condi-

tions: a Raw principle components (PC) of Landsat bands 1–5

and 7 (Kruskal–Wallis v2 (K–W v2) = 30081.27, df = 5,

p\ 0.0001); b PC textural variance (K–W v2 = 11420.06,

df = 5, p\ 0.0001; c PC textural entropy (K–W

v2 = 12332.45, df = 5, p\ 0.0001; d PC textural uniformity

(K–W v2 = 12189.02, df = 5, p\ 0.0001; e PC Shannon’s

diversity (K–W v2 = 10276.83, df = 5, p\ 0.0001); f PC

Simpson’s diversity (K–W v2 = 13792.39, df = 5,

p\ 0.0001); g PC Rényi’s diversity (K–W v2 = 11715.88,

df = 5, p\ 0.0001; h PC Pielou’s evenness (K–W

v2 = 1637.187, df = 5, p\ 0.0001). Brackets indicate differ-

ences which are not significant according to the Kruskal–Wallis

rank sum test (Giraudoux 2015). All other differences are

significant
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landscape properties (explanatory variables) were

consistently better able to balance model fit and

complexity than other indices, as indicated by the

notably lower AIC scores (Fig. S5). Therefore, we

only examined the local relationships between the

linear combination of spectral PC values and uncor-

related stable physical landscape properties.

GWR results show that relationships between

spectral variation and KNPs physical landscape tem-

plate changed with season and rainfall and were

spatially diverse (Table S3). Leung et al.’s (2000) F3

test for spatial non-stationarity shows elevation,

surface wetness and soil form estimates vary signif-

icantly over the region for all years (Table 1).

Whereas aspect, slope and soil depth appear constant

in some years but vary significantly in others

(Table 1). The range of R2 values was wide

(0.1–0.7), varying considerably across the landscape

and over time (Fig. 4). The proportion of spectral

variance captured by physical landscape properties, as

described by R2, also varied within and between years

(Fig. 4). A multiple comparison test after Kruskal–

Wallis (Giraudoux 2015) indicated season and

rainfall class both had a significant effect on R2

values (Kruskal–Wallis v2 = 11951.46, df = 5,

p\ 0.0001).

On the surface, GWR results show model fit (R2)

generally increased from low to high rainfall

(b = 0.06, t(36,420) = 34.184, p\ 0.001) and from

winter to summer (b = 0.05, t(36,420) = 28.573,

p\ 0.001). However, when adding an interaction

effect between season and rainfall, this result was

reversed for summer months. That is, R2 values were

significantly lower in higher rainfall summer months

compared to lower rainfall winter months

(b = -0.17, t(36,420) = -73.479, p\ 0.001). A

contrast interaction test (de Rosario-Martinez 2015)

confirmed R2 seasonal contrasts differed significantly

between rainfall groups: i.e. summer R2 low to high

rainfall contrasts were 0.17 less than those in winter

months (b = -0.174373, df = 1, SS = 46.149,

F = 5399.2, p\ 0.0001). Similarly low rainfall R2

winter to summer contrasts were 0.26 less than those

for high rainfall periods (b = -0.259394, df = 2,

SS = 106.16, F = 6210.2, p\ 0.0001).

The spatial trend surface of landscape complexity

from 1984 to 2000 (Fig. 5), revealed areas (in green)

where landscape complexity (1-R2) has increased,

areas (in red) where it has declined or areas (in yellow)

where it has remained relatively unchanged from 1984

to 2000.

Landscape complexity and plant species richness

GWR R2 results mapped over the spatial extent of our

study area (Fig. 4) illustrate the degree to which model

agreement differed spatially across winter and sum-

mer months of representative low (1991–1993), aver-

age (1984–1987) and high (1998–2000) rainfall

periods. We interpret its inverse, 1-R2 (model

disagreement), as the level of complexity in the

landscape. GWR results show a significant proportion

of the variance in plant species richness can be

explained by our measure of landscape complexity (R2

values ranged from 0.70 to 0.78) (Table 2). These

results showed significant improvement over GWRs

of raw physical landscape properties and raw surface

reflectance PC values, which only accounted for 62

and 57 % of the variance in plant species richness

respectively (Table S4). There was a significant

positive correlation between plant species richness

and landscape complexity in the years closest to

sample collection dates *1989 (1987: R2 = 0.74,

Table 1 Significance of non-stationarity in the physical landscape variable’s coefficient estimates the GWRs after Leung et al.

(2000) (see Table S3 in supplementary material for full results)

1991 1984 1998 1993 1987 2000

Aspect 0.6962 0.5250 \0.0001 \0.0001 \0.0001 \0.0001

Elevation \0.0001 \0.0001 \0.0001 \0.0001 \0.0001 \0.0001

Slope 0.0013 0.0843 0.0319 \0.0001 \0.0001 0.0105

Surface wetness (TCI) \0.0001 \0.0001 \0.0001 \0.0001 \0.0001 \0.0001

Soil form 0.0007 \0.0001 \0.0001 \0.0001 \0.0001 0.0032

Soil depth 0.0730 0.0004 0.0479 0.1467 0.0008 \0.0001

2020 Landscape Ecol (2016) 31:2013–2029
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median b = 0.35, F(1691) = 21.36, p\ 0.0001;

1993: R2 = 0.78, median b = 6.43, F(1691) =

18.07, p\ 0.0001). A map of the residuals of plant

species richness for 1993 illustrates the spatial

variability of this relationship (Fig. 6). In contrast, a

lower but still significant negative correlation between

plant species richness and landscape complexity

was found in 1991 (R2 = 0.76, median b = -7.46,

Fig. 4 Geographically weighted regression (GWR) R2 values

for winter and summer months of representative low

(1991–1993), average (1984–1987) and high (1998–2000)

rainfall periods. Maps show the spatial heterogeneity in the

proportion of spectral variance accounted for by physical

landscape properties with season and rainfall (Kruskal–Wallis

v2 = 11951.46, df = 5, p\ 2.2e-16). ANOVA results show

model fit (R2) generally increased from low to high rainfall (1–3;

b = 0.06, t(36,420) = 34.184, p\ 0.001) and from winter to

summer (a to b; b = 0.05, t(36,420) = 28.573, p\ 0.001). R2

values were significantly lower in higher rainfall summer

months (b3) compared to lower rainfall winter months (a1)
(b = -0.17, t(36,420) = -73.479, p\ 0.001). A contrast

interaction test (de Rosario-Martinez 2015) showed R2 seasonal

contrasts differed significantly between rainfall groups: i.e.

summer R2 low (b1) to high rainfall (b3) contrasts were 0.17 less
than those in winter months (a1 and a3) (b = -0.174373,

df = 1, SS = 46.149, F = 5399.2, p\ 0.0001). Similarly low

rainfall R2 winter (a1) to summer (b1) contrasts were 0.26 less

than those for high rainfall periods (a3 and b3)
(b = -0.259394, df = 2, SS = 106.16, F = 6210.2,

p\ 0.0001)
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F(1691) = 4.623, p = 0.0319), which could be

explained by the confounding effects of the severe

drought KNP experienced in 1991/1992 (Zambatis

and Biggs 1995).

Discussion

In their meta-analysis, Stein et al. (2014) found

environmental heterogeneity to be an important driver

Fig. 5 Total accumulated

difference of landscape

complexity (GWR 1-R2)

represented as surface trends

across low (1991–1993),

average (1984–1987) and

high (1998–2000) rainfall

periods. Shades of green

indicate areas that increased

in landscape complexity,

shades of red decreased in

landscape complexity and

shades of yellow remain

unchanged from 1984 to

2000
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of species richness. Remotely sensed spectral hetero-

geneity is recommended by several authors (Duro

et al. 2007; Rocchini et al. 2010; Nagendra et al. 2013;

Pettorelli et al. 2014) as a proxy for environmental

heterogeneity and the consequent rapid assessment of

biodiversity properties. It stands to reason that, a more

diverse spectral response will represent a more diverse

landscape in that spectral heterogeneity will reflect the

associated variation of environmental properties in the

landscape. However, we also expect this relationship

to be dynamic, changing across different and interac-

tive space-time scales. We demonstrated this using

Fotheringham et al.’s (2002) GWR technique with

Landsat surface reflectance and stable physical land-

scape properties. By allowing relationships to vary

over space, we were able to account for spatial non-

stationarity and visualise the resulting patterns (Bruns-

don et al. 1996). Such ability is especially important

for ecological studies where the geographic-structure

of relationships between predictors and response

variables are likely to manifest differently in space.

Windle et al. (2010), for example, have shown GWR

to be superior to other global methods commonly used

in terrestrial ecology, including, generalised linear,

additive, and linear mixed models. However, ecolo-

gists should also be weary of the limitations of GWR,

such as the effects of collinearity highlighted by Finley

(2011) and Czarnota et al. (2015), and the difficulties

of appropriate bandwidth selection described by

Matthews and Yang (2012). Pasher et al. (2013)

further describe these in their approach to improve

estimates of landscape effects on ecological responses.

We dealt with this using principle components anal-

ysis, correlograms, VIFs and an adaptive bandwidth

selection using AICs.

Results showed that the relationship between

spectral heterogeneity and stable physical landscape

properties is sensitive to season and rainfall condition.

Moreover, we showed that textural measures of

entropy increased with rainfall in winter but decreased

with rainfall in summer. While, textural measures of

uniformity (ASM) also showed an inverse pattern of

decreasing uniformity with increasing rainfall in

winter and increasing uniformity with increasing

rainfall in summer. We suggest these results are

representative of both (1) true structural diversity in

the landscape and (2) the limitations of remotely

sensed Landsat data. In the first instance, we expected

structural diversity to increase with rainfall up to a

threshold where vegetation cover, for example, would

reach an asymptote thereby decreasing structural

entropy and increasing structural uniformity, as seen

in Fig. 3. However, in the second we also recognise

that this outcome may be an effect of what is ‘visible’

to the Landsat’s passive sensor. Under dense and

extensive cover conditions, this satellite is less able to

detect under-canopy variability in the landscape.

Prospective studies may wish to explore the use of

active sensors like Lidar in future.

Regionally, spectral diversity increased with

increasing rainfall across both winter and summer

months. Intuitively these results represent the increase

in environmental diversity as water availability

becomes less limiting. This is corroborated by our

Table 2 GWR results of plant species richness modelled as a function of model fit (R2)

Q1 Med Q3 IQR p adj R2 AICc nNN F3 nDF dDF Fp

1991 -39.66 -2.68 32.20 -7.46 0.0319 0.76 5413 18 5.29 246 561 \0.0001

1984 -37.30 -1.34 27.40 -9.90 0.1340 0.71 5517 21 6.40 224 579 \0.0001

1998 -34.11 -3.85 25.78 -8.33 0.8725 0.70 5558 18 2.18 210 558 \0.0001

1993 -9.42 2.45 36.28 26.86 \0.0001 0.78 5433 14 3.70 118 519 \0.0001

1987 -11.45 0.35 15.97 4.52 \0.0001 0.74 5475 18 3.38 251 549 \0.0001

2000 -29.54 6.43 76.91 47.37 0.1805 0.75 5433 18 4.73 172 564 \0.0001

The first (Q1), second (Med) and third (Q3) order quartiles show the local variability of landscape complexity coefficient estimates.

The inter-quartile range (IQR) summarise the range where 50 % of all coefficient estimate values fall. Significance values (p) show

1987 (p\ 0.0001), 1991 (p = 0.0319) and 1993 (p\ 0.0001) are significant. Leung et al.’s (2000) F statistic (F3) tests the

significance (Fp) of the effect of spatial non-stationarity for each year’s coefficients using the numerator (nDF) and denominator

degrees of freedom (dDF)

Model settings: gwr.basic (Kernel function = bisquare; adaptive bandwidth = number of nearest neighbours (nNN); regression

points = same locations as observations; distance metric = Euclidean distance metric) (Gollini et al. 2015)
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findings that the proportion of satellite surface

reflectance variance captured by a single PC axis

rotation, for example, was generally higher in winter

and during lower rainfall periods as compared to

summer and higher rainfall periods. Locally, raw PC

values representing spectral variation and raw phys-

ical landscape properties were consistently better able

to balance model fit and complexity than other textural

or diversity measures. This is consistent with the

findings of Warren et al. (2014), who found spectral

Fig. 6 A map of the

residuals (observed—fitted

plant species richness) for

1993 illustrating the spatial

variability of the

relationship between plant

species richness with

landscape complexity.

Results described in Table 2

show an overall significant

positive correlation varying

spatially between plant

species richness and

landscape complexity

(R2 = 0.78, median

b = 2.45, F(1691) = 18.07,

p\ 0.0001)
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diversity yielded reasonable estimates of plant species

richness using a simple Pearson correlation to measure

linear relationship strength. Our results add a spatial

component which also proved spatial non-stationarity

was statistically significant. For ecological studies this

highlights the importance of using a geographical

approach when analysing environmental data to

capture different responses driven by non-stationary

processes (Leung et al. 2000; Brunsdon et al. 2002;

Matthews and Yang 2012). This was made further

evident by the clear differences in the proportion of

spectral variation captured by relatively stable physical

landscape properties over space and time. Spatially,

the spectral variation explained by stable physical

properties (R2) varied widely across the landscape.

This reiterates that environmental heterogeneity is

driven not only by stationary physical landscape

properties but also non-stationary or dynamic pro-

cesses. These dynamic processes are often difficult to

isolate but their compound influence on the landscape

can be measured as shown by the wide range of R2

values; or its inverse (1-R2) that is landscape

complexity.

Over time, we found that increasing summer

rainfall reduces the explanatory power of stable phys-

ical landscape properties on environmental hetero-

geneity (as measured by Landsat spectral variation).

We postulate that this general reduction in the

explanatory power of models fitted to data from

summer periods, and periods of high rainfall versus

winter and lower rainfall periods, is indicative of

dynamic environmental processes not captured by

physical landscape properties. These dynamic pro-

cesses are driven by season and rainfall and include,

for example fire, vegetation dynamics, herbivore

distribution, and human development. Under higher

rainfall conditions vegetation activity, for instance, is

increased and herbivore density and distribution

patterns will change in response.

We hypothesised that the proportion of spectral

variation unexplained by the underlying physical

landscape template is representative of the level of

complexity in the landscape. Little temporal trend in

landscape complexity between seasons (winter-sum-

mer) and rainfall (low-average-high) conditions could

potentially highlight comparatively stable landscapes

(Fig. 5). Changing ecological drivers in the landscape

could show a more consistent change in landscape

complexity. Geographically these areas tend to

coincided with basalt dominated areas in the east

(Fig. 5), suggesting KNP basalts are generally becom-

ing more complex than their granitic counterparts in

the west. This is consistent with the findings of Colgan

et al. (2012) who showed above-ground biomass

production on basalts was driven largely by herbivore-

fire interactions rather than soil properties. In other

words, basaltic areas appear to be driven more by

dynamic ecological processes and feedbacks.

We tested this theory against plant species richness

data and found a strong, significant relationship

between landscape complexity and species richness,

with areas presenting negative residuals of species

richness potentially associated with higher elevation

and granites (Fig. 6). These findings show that indeed

processes other than physical landscape properties

shape environmental heterogeneity and biodiversity

over space and time. In support of this, Proulx et al.

(2015) also found a variety of climate-biodiversity

relationships. They suggest drivers of biodiversity are

built on complex interactions of environmental,

within-species and between-species variability

(Proulx et al. 2015). We suggest plant species richness

in the KNP shows a stronger relationship with

landscape complexity than physical landscape prop-

erties because of this multiplicity of effects.

However, empirical knowledge of dynamic pro-

cesses is often not available for protected area

managers, and even if accessible, is rarely spatially

explicit or temporally continuous. Nevertheless, such

knowledge remains central to understanding the

functioning of natural systems and their effectual

management as protected areas. Our approach pro-

vides a starting point by mapping the relative impor-

tance of stable physical landscape properties

compared to other unknown dynamic processes for

environmental heterogeneity. We showed how

dynamic processes move across the landscape over

time and suggest that biodiversity monitoring pro-

grammes be designed to capture this variability. For

example, KNP’s annual herbivore counts, done solely

in the dry-season, may be missing important changes

in distribution patterns driven by seasonal changes in

landscape complexity (Martin et al. 2015).

Armed with these landscape complexity maps, we

hope to provide protected area managers with a

blueprint to start disentangling the role of major

ecosystem drivers. For example, are highly complex

and diversifying landscapes largely driven by
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herbivore dynamics, disturbance events or manage-

ment action? Park monitoring and research planning

can be stratified using these ‘blueprints’ to begin

answering these and other questions related to land-

scape complexity.

Cressie et al. (2009) and Lechner et al. (2012) stress

the importance of accounting for uncertainty in the

analysis of complex ecological data. We highlighted

here the importance of accounting for spatial structure

in ecological data analysis but did not assess the

influence of resolution scale on analysis results. In

future studies we hope to examine these results against

different pixel and moving-window sizes. How these

results relate to intra-annual dynamics of land surface

phenology in KNP, is another interesting question for

the future (Garonna et al. 2014). Additional methods

that could also be explored further to investigate

nonlinear species responses in ecology include Pro-

crustes analyses or non-metric multidimensional scal-

ing (Borcard et al. 2011) and recurrence plots-

recurrence quantification analysis (Proulx et al. 2015).

Conclusion

Despite the fact that ecological components and

processes in the environment have an underlying

spatial structure that is locally heterogeneous, ecolog-

ical regression models often employ ‘global’ tech-

niques which assume relationships are constant over

space. Using GWR models that account for spatial

variation and dependencies, we were able to provide

local detail on where and when physical landscape

properties drive environmental heterogeneity and how

this relationship changes spatially with rainfall and

season. We showed that GWR is particularly valuable

for ecological studies where emergent patterns are

often influenced by processes interacting at different

spatial as well as temporal scales (Hewitt et al. 2007).

The spatial arrangement and magnitude of model

disagreement is proposed here as a measure of

landscape complexity. Areas where environmental

heterogeneity is not explained by stable physical

landscape properties are, instead, driven by unknown

complex dynamic processes. The challenge for park

managers is to identify these dynamic drivers with

often limited resources. Over time, maps of landscape

complexity can highlight areas where physical land-

scape properties remain stable drivers of

environmental heterogeneity or where drivers are

dynamic and signify a change in the system regime. In

his review, Parrott (2010) proposes landscape com-

plexity as a key indicator of ecosystem state.

Although, further research is needed on this in the

context of complexity theories, our maps of landscape

complexity and its trend surface may provide insight

into system regime changes. Linking dynamic pro-

cesses, like herbivory, fire and climate, would there-

fore be a logical next step to further elucidate system

functioning. Until then, maps of landscape complexity

can be an effective tool for targeting monitoring and

research priorities to further our understanding of the

drivers of environmental heterogeneity and

biodiversity.
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