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Abstract

Context Organisms commonly respond to their

environment across a range of scales, however many

habitat selection studies still conduct selection anal-

yses using a single-scale framework. The adoption of

multi-scale modeling frameworks in habitat selection

studies can improve the effectiveness of these studies

and provide greater insights into scale-dependent

relationships between species and specific habitat

components.

Objectives Our study assessed multi-scale nest/roost

habitat selection of the federally ‘‘Threatened’’ Mex-

ican spotted owl (Strix occidentalis lucida) in northern

Arizona, USA in an effort to provide improved

conservation and management strategies for this

subspecies.

Methods We conducted multi-scale habitat model-

ing to assess habitat selection byMexican spotted owls

using survey data collected by the USFS. Each

selected covariate was included in multi-scale models

at their ‘‘characteristic scale’’ and we used an all-

subsets approach and model selection framework to

assess habitat selection.

Results The ‘‘characteristic scale’’ identified for

each covariate varied considerably among covariates

and results from multi-scale models indicated that

percent canopy cover and slope were the most

important covariates with respect to habitat selection

by Mexican spotted owls. Multi-scale models consis-

tently outperformed their analogous single-scale

counterparts with respect to the proportion of deviance

explained and model predictive performance.

Conclusions Efficacy of future habitat selection

studies will benefit by taking a multi-scale approach.

In addition to potentially providing increased explana-

tory power and predictive capacity, multi-scale habitat

models enhance our understanding of the scales at

which species respond to their environment, which is

critical knowledge required to implement effective

conservation and management strategies.

Keywords Multi-scale modeling � Habitat � Scale �
All-subsets � Scaling � Spotted owl � Habitat �
Selection � Habitat preference

Introduction

Robust habitat selection models are a critical compo-

nent to developing effective conservation and man-

agement plans for threatened/endangered species.
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These models are commonly used: (1) to infer the

relationship between selected habitat covariates and

use by a given species, (2) to develop predictive maps

of species occurrence and/or relative abundance, and/

or (3) to guide management actions and decisions

relative to the species of interest. Regardless of the

types of and/or statistical algorithms employed, in

order for these models to be effective and to allow for

robust inference they must include as full a suite of the

covariates relevant to habitat selection by the species

as is possible (Williams et al. 2012; Pliscoff et al.

2014). In addition, each covariate should be included

in the habitat selection models at relevant spatial

scale(s) for the species of interest (Wiens 1989; Graf

et al. 2005).

The concept that species respond to their environ-

ment across a range of spatial scales, both within and

among specific habitat components, has long been

appreciated in ecology, though the implementation of

this concept into habitat selection studies has lagged

considerably (Wiens 1989; Levin 1992). For example,

in a review of the literature on multi-scale habitat

modeling published between 2009 and 2014, McGari-

gal et al. (2016) found that scale optimization (i.e.,

‘‘where all of the covariates are evaluated simultane-

ously across a continuous range of scales such that the

best scale for each variable is identified conditioned on

the other covariates’’), which is critical to assess scale

dependence, was conducted in less than 5 % of all

habitat modeling papers and less than 25 % of papers

that address ‘‘multi-scale’’ habitat analysis broadly

defined. Commonly, all covariates are measured at the

same spatial scale, which frequently is determined

arbitrarily by researchers or justified based on expert

biological knowledge of the species (Wheatley and

Johnson 2009; Ashrafi et al. 2013; Dudus et al. 2014;

Small et al. 2015). However, selecting a single-scale at

which all covariates are measured is likely an over-

simplification of how species respond to their envi-

ronment and can reduce the effectiveness of the

models via a reduction in the proportional variance

explained and/or diminished predictive capacity of the

models (DeCesare et al. 2012; Sanchez et al. 2013).

Additionally, the estimated effect size and relative

variable importance of covariates can vary depending

on the selected scale of analysis for all covariates in

habitat selection studies (Thogmartin and Knutson

2007; Feist et al. 2010; Martin and Fahrig 2012). In

order to reduce investigator-driven bias in results and

to improve model performance, researchers should

consider the use of multi-scale models in place of

single-scale models when assessing habitat selection.

In this study we assessed multi-scale nest/roost

habitat selection of the federally ‘‘Threatened’’ Mex-

ican spotted owl (Strix occidentalis lucida) in northern

Arizona, USA in an effort to provide improved

conservation and management strategies for this

subspecies. The Mexican spotted owl (hereafter

‘‘MSO’’) is one of three subspecies of spotted owl in

North America and ranges from the southwestern

United States to central Mexico. This subspecies is

typically associated with mature, late-seral forests,

though it also inhabits rocky canyon slopes that occur

in some portions of its range (U.S. Fish and Wildlife

Service 2012). While the MSO has the largest range of

the three spotted owl subspecies, its range is highly

fragmented due to the patchy distribution of habitat

suitable for survival and reproduction (Urban and

Keitt 2001; Barrowclough et al. 2006). This sub-

species was listed by the U.S Fish andWildlife Service

as ‘‘Threatened’’ under the Endangered Species Act in

1993 primarily due to extensive habitat loss resulting

from timber-management activities and increasingly

extreme wildfire activity (U.S. Fish and Wildlife

Service 2012). Since listing the owl as threatened,

several studies have focused on determining MSO

distributions and habitat requirements (Grubb et al.

1997; May et al. 2004; Ganey et al. 2013) in addition

to assessing timber management and disturbance

impacts on MSO populations (Ganey et al. 1999;

Prather et al. 2008); however, to our knowledge none

have done so in a true multi-scale framework.

We used MSO survey data collected by the U.S.

Forest Service (USFS) between 1990 and 1993

throughout the Coconino and Apache-Sitgreaves

National Forests combined with a suite of relevant

environmental covariates to assess multi-scale habitat

selection of this subspecies throughout these two

National Forests. In addition, we use this as a case

study to compare results obtained from multi-scale

models to those obtained from single-scale models,

primarily with respect to: (1) parameter estimates, (2)

variable importance, (3) variance decomposition, and

(4) model predictive performance. Results from this

study will directly aid MSO conservation and man-

agement strategies, while concurrently serving as a

case study to assess the value of employing a multi-

scale framework in habitat selection studies.
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Methods

Study area

All data were collected in the Coconino and Apache-

Sitgreaves National Forests in central/north-central

Arizona, USA (Fig. 1). The extent of these two

National Forests encompass a wide diversity of

vegetation communities ranging from Chihuahuan

and Sonoran desert scrub at the lower elevations to

alpine tundra on the highest peaks (Brown 1982). Data

collection for this study occurred in the higher

elevations where the majority of MSO are known to

exist in these two National Forests, in areas typified by

high plateaus dotted with isolated volcanic mountains

dissected by deep canyons. These middle-to-upper

elevation plateaus are dominated by extensive forests

of ponderosa pine (Pinus ponderosa), often containing

an understory of Gambel oak (Quercus gambelii). At

higher elevations, or in cold air drainages, mixed-

conifer forests containing Douglas fir (Pseudotsuga

menziesii) and white fir (Abies concolor) commonly

dominate. Subalpine spruce-fir forests occur at the

highest elevations in this study area, while areas just

below the ponderosa pine belt are dominated by

pinyon-juniper woodlands (Brown 1982).

Owl locations

We used MSO survey data collected throughout the

study area by the USFS during April–August (approx-

imate nesting season throughout the study area) from

1990 to 1993 for all analyses in this study. USFS

survey crews located MSO by imitating their vocal-

izations during nocturnal surveys and then listening

for a response (Forsman 1983). Most surveys were

conducted by stopping to call and listen for owls at

calling stations spaced every 0.3–0.8 km along forest

roads in a non-systematic fashion across the study

area. Crews remained at these calling stations for

15 min or until an MSO responded. In roadless areas

crews conducted surveys by hiking ridgetops or

canyon bottoms and calling every 30–40 s. Surveys

were concentrated in forests and canyonlands after

initial efforts to locate owls outside of such areas

failed. All surveys were conducted on calm nights and

most locations were surveyed multiple times, espe-

cially in locations where MSO were encountered.

Utah

Arizona

Coconino NF

Apache-Sitgreaves NF

0 100 20050
Km

Fig. 1 Map of the study area
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Survey crews mapped nocturnal MSO locations

based on a compass bearing and estimated distance to

the calling owl. Crews also revisited areas by day to

locate roosting/nesting owls when possible. Crews

located roosting MSO by calling during the day in

areas where they were detected at night and tracking

them until they were visually located in a nesting or

roosting location. We excluded nocturnal locations

from this current study due to the positional uncer-

tainty associated with non-visual triangulation and

given that MSO may be attracted in from relatively

long distances at night by vocalization surveys. The

remaining dataset was comprised entirely of nest

(n = 140) and roost (n = 68) locations. Preliminary

analyses indicated no significant differences between

nest and roost data, which was consistent with our

expectations given that many roosts during this period

were likely locations of individuals roosting in close

proximity to nests. Consequently, we combined these

two datasets into a single nest/roost dataset (n = 208)

for use in this study.

Pseudo-absence locations

Because survey locations where MSO were not

encountered during surveys were not reliably recorded

(i.e., this a presence-only dataset), we generated an

equal number of random pseudo-absence points to be

employed in logistic regression models following a

standardized set of procedures. Specifically, for each

nest/roost data point we extracted both the elevation

(using a 30 m resolution elevation layer; LANDFIRE

2001) and the distance from the closest road (using a

USFS roads data layer). We then buffered the range of

observed elevations by 10 % of the difference

between the minimum (1822 m) and maximum

(2805 m) observed elevations to define the mask of

available elevation cells throughout the study area.

Next, we calculated the frequency of owl locations in

each 100 m interval distance-from-road bin for the

observed data, and we randomly sampled an equal

number of pseudo-absence points in each distance bin

from the elevation mask. The resulting dataset com-

prised the pseudo-absence locations dataset.

Habitat covariates

We developed a set of habitat covariates and spatial

data layers considered important to habitat selection

by MSO from reviewing existing literature and from

discussions with MSO experts. These included a set of

four topographic variables, five landscape composi-

tion variables, and three climatic covariates. Topo-

graphic covariates were derived from the LANDFIRE

digital elevation model, and included: (1) elevation

(m), (2) slope (as a percentage), (3) topographic

roughness index (calculated as the absolute value of

the curvature index in Jenness 2013), and (4) topo-

graphic position index (Jenness et al. 2013). Land-

scape composition variables included: (1) percent

cover of ponderosa pine, and (2) percent cover of

mixed-conifer [both of these first two variables were

derived from a 30 m resolution raster in which each

USFS-delineated forest stand within the study area

was classified to one of five cover classes (ponderosa

pine, mixed-conifer, spruce-fir, pinyon-juniper, and

other) according to a majority rule based on a 2001

LANDFIRE Existing Vegetation Type layer (LAND-

FIRE 2001)], (3) forest edge density (the number of

forest-nonforest edge cells per unit area derived from

the aforementioned forest stand cover layer), (4) forest

edge proximity (distance to the nearest forest-non-

forest edge; also derived from the forest stand cover

layer), and (5) percent canopy cover calculated from a

set of forest structural 30 m resolution rasters (see

description in Dickson et al. 2014) which the project

study area was nested within. Climate covariates

included: (1) total monsoon-season (defined as May–

August) precipitation, (2) cumulative annual degree-

days (using a 10 �C threshold), and (3) solar radiation

index (Fu and Rich 2002), all derived using 30-year

normal (1981–2010) 800 m resolution PRISM climate

data (PRISM Climate Group 2014) resampled using

bilinear interpolation to 30 m. All habitat variables

were mapped at 30 m resolution across the study area,

which represented the finest resolution in the source

data. Importantly, we held the spatial grain of the

analysis constant at 30 m in the multi-scale analyses

described below.

Habitat selection modeling

We employed standard logistic regression to develop a

Resource Selection Function (RSF) of MSO nest/roost

habitat selection within the study area. This is

somewhat analogous to Johnson’s (1980) second-

order habitat selection (i.e., home range selection

within the population range or study area), although

1212 Landscape Ecol (2016) 31:1209–1225

123



we used nest/roost sites instead of home ranges or

random points within home ranges as the observations

in the analysis. Prior to running regression analyses on

the full set of covariates, we first conducted a

univariate scaling analysis to empirically identify

and select the characteristic scale and the functional

form (i.e., standard logistic or quadratic logistic)

combination for each covariate to be used in multi-

scale models. Specifically, for each covariate we

calculated the Gaussian kernel density value (i.e., the

Gaussian weighted mean as a function of Euclidean

distance) across a range of bandwidths extending from

100 to 5000 m at intervals of 100 m for each use and

pseudo-absence location. We then employed each of

these covariates in a single covariate logistic regres-

sion model using standard logistic and quadratic

logistic functional forms independently, and we

retained the scale and functional form combination

with the lowest Akaike’s Information Criterion cor-

rected for small sample size (AICc) value among all

candidates. We also conducted these aforementioned

scaling analyses separately using uniform and Gaus-

sian kernel density forms, as we also were interested in

comparing results between these two commonly

employed kernel density forms. Prior to running

multiple logistic regression analyses, we calculated

Pearson’s correlations among all covariates to assess

potential multicollinearity. In instances of high pair-

wise correlation between covariates (i.e., |r| C 0.7),

we retained the covariate with the greater deviance

explained and removed the other covariate from

subsequent analyses. We calculated variance inflation

factor (VIF) for all remaining covariates and con-

firmed that none of the retained covariates had a

VIF C 10.

We used a custom spatial autocovariate approach to

reduce the influence of residual spatial autocorrelation

on results. Briefly, for each analysis, we ran the global

model of retained covariates following the multi-

collinearity analyses and included an exponential

spatial autocovariate term. We defined the autoco-

variate term as the kernel density of use points around

the focal point based on an exponential distance decay

function, in which we estimated the exponent of the

decay function and the beta for the autocovariate term

in the global model. We then forced this fitted

autocovariate into each model in the all-subsets

routine (detailed in the following section). Results

from Moran’s I analyses indicated considerable

reduction in residual spatial autocorrelation when

including the estimated autocovariate term (Fig. 2).

Next, we conducted an all-subsets logistic regres-

sion analysis employing all remaining covariates and

compared results using an information-theoretic

framework. We limited the maximum number of

covariates in logistic regression models to eight to

ensure a minimum sample-to-variable ratio of 25:1.

We then used AICc and Akaike’s model weights (x) to
rank the candidate models and select the model(s) that

best separated MSO use locations from pseudo-

absence locations. We considered models \2 AICc

units from the best supported model to be jointly

supported (Burnham and Anderson 2002). If no single

model comprised[90 % of the weight of the entire

candidate model set, we used model averaging to

derive parameter estimates from the top models that

accounted for[90 % of the cumulative model weights

(Burnham and Anderson 2002). We conducted anal-

ogous routines for all single-scale models (across all

bandwidths extending from 100 m to 5000 m at

intervals of 100 m) to compare with results from

multi-scale models.

Single-scale vs. multi-scale models

We compared results from single- and multi-scale

models across several criteria, including: (1) covariate

Fig. 2 Assessment of the effectiveness of the spatial autoco-

variate (SAC) approach we employed in reducing spatial

autocorrelation of residuals. Shown are the Moran’s I analysis

results from the model-averaged multi-scale uniform kernel

model as a representative example
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effect size, (2) variable importance, (3) variance

decomposition, (4) model explanatory power, and

(5) model predictive performance. We define ‘‘single-

scale models’’ in this context as models where all

covariates are measured at the same scale.We used the

difference in deviance between models with and

without each covariate individually to compare rela-

tive effect sizes of covariates across scales. We

estimated variable importance values for each covari-

ate by summing model weights across all models

containing that covariate. We used variance decom-

position (using the ‘‘varpart’’ function in the ‘‘vegan’’

package in R; Oksanen et al. 2013) to assess the

amount of variance explained independently and

jointly by each of the three covariate groups (i.e.,

topographic, landscape composition, and climate). We

used model-averaged proportion of deviance

explained to evaluate model explanatory power.

We used a presence-only model validation method

(Gregr and Trites 2008) to evaluate and compare

model predictive performance. Briefly, this method

calculates the (weighted) skewness of the distribution

of model-derived predicted relative probability of

occurrence values for a given presence-only dataset,

whereby the more predictive the model is the higher

the proportion of presence points that are at located at

the higher end of the relative probability of occurrence

values. Thus, the more left-skewed the distribution

(i.e., the higher the proportion of the presence points

that are located at the high end of the relative

probability of occurrence values) the more predictive

the model is in terms of accurately predicting use

locations. To account for inter-model variability in the

distribution of pseudo-absence relative probability of

occurrence values across the defined study extent, the

count of presence points in each relative probability of

occurrence bin is weighted by the proportion of total

pseudo-absence points that are in the associated bin

and then the skewness is calculated on this weighted

distribution of counts. We used this weighted skew-

ness method to assess model predictive performance

using both a cross-validation and independent valida-

tion dataset approach. For the cross-validation

approach, we conducted a five-fold cross validation

for each model at each scale. We built models for each

fold using a randomly selected 4/5ths of the data and

used the remaining 1/5th of the data as the presence-

only dataset for calculating the weighted skewness.

We then averaged the calculated weighted skewness

across the five-folds as the cross-validated weighted

skewness value for the given model and scale. For the

independent dataset approach, we built models at each

scale using the entirety of the data and calculated

weighted skewness on an independent MSO presence-

only nest location dataset collected within the

Coconino NF (USFWS unpubl. data).

We conducted all analyses in the R computing

environment (R Development Core Team 2014).

Results

Results obtained from analyses employing uniform

kernel densities were consistent with and comparable

to those using Gaussian kernel densities; thus, for

purposes of clarity we focus primarily on the uniform

kernel results, unless otherwise specified.

The optimized scale identified for each covariate in

the univariate scaling analyses varied considerably

among covariates (Table 1); slope, topographic posi-

tion index, percent mixed-conifer, and forest edge

density were all most strongly related to MSO nest/

roost selection at relatively fine scales (i.e., B500 m),

whereas the remaining four covariates (i.e., percent

canopy cover, percent ponderosa pine cover, mon-

soon-season precipitation, and cumulative degree-

days) were all most strongly related at much coarser

scales (i.e., [2500 m). In addition, quadratic func-

tional forms explained a greater proportion of the

deviance in the data than linear functional forms for all

of the topographic and climate covariates.

Absolute and relative effect size (as measured by

deviance difference) of individual covariates varied

substantially among scales in the single-scale models

(Fig. 3). Most showed either a monotonic decay or a

concave unimodal relationship between absolute

effect size and increasing spatial scale. In general,

landscape composition covariates and slope peaked at

relatively fine spatial scales and decayed steeply

thereafter, whereas other topographic and climate

covariates displayed more of a unimodal relationship

with peaks at coarser spatial scales than landscape

composition covariates. As a consequence, relative

effect sizes among covariates varied across scales, in

some instances changing the rank ordering of covari-

ates with respect to effect size. Thus, conclusions

regarding the absolute and relative effects of individ-

ual covariates varied dramatically with the choice of
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scale in the single-scale models and differed from the

multi-scale model. Importantly, the scale with the

greatest effect size for individual covariates in the

single-scale models was largely inconsistent with the

optimized scale identified for that covariate (Fig. 3).

For example, the optimized scale for canopy cover

was 2700 m and its effect size in the multi-scale

model was roughly 8.6. Its effect size in the single-

scale models was less than that of the multi-scale

model across all scales (\8.0), but was greatest at the

finest scale evaluated (100 m uniform kernel). Thus,

based on the single-scale modeling approach we

would conclude that canopy cover had its greatest

effect on MSO nest/roost site occurrence at 100 m,

whereas in the multi-scale modeling approach we

would conclude that canopy cover has a greater effect

at 2700 m.

Variable importance of individual covariates dis-

played a similar pattern with respect to spatial scale as

was observed with effect size (Fig. 4). In general,

variable importance of individual covariates varied

dramatically across scales in the single-scale models,

in many cases changing the status of variables from

relatively important (e.g.,[0.8) to unimportant (e.g.,

\0.3). In addition, variable importance of individual

covariates in the multi-scale model often differed

dramatically from that of the single-scale models. For

some covariates (canopy cover, slope, and monsoon-

season precipitation) variable importance was greatest

in the multi-scale model, for other covariates (mixed-

conifer and degree-days) variable importance was

consistently greater across all scales in the single-scale

models, and for other covariates (ponderosa pine, edge

density, and topographic position) variable impor-

tance was greater in the single-scale models at some

scales but not at others. Thus, as with effect size,

conclusions regarding the absolute and relative impor-

tance of individual covariates varied dramatically with

the choice of scale in the single-scale models and

differed from the multi-scale model.

The multi-scale models explained a greater pro-

portion of total deviance in the data than any single-

scale model for the corresponding kernel form

(Fig. 5). In addition, the multi-scale uniform and

Gaussian models consistently outperformed their

single-scale counterparts with respect to predictive

performance across all single-scales assessed, with

exception to the 500 m-scale uniform kernel model

evaluated against an independent dataset (Fig. 6). In

general, predictive performance of the single-scale

models was best in the 300–1000 m neighborhood

scale and declined substantially beyond this range.

Interestingly, despite the generally superior perfor-

mance of the multi-scale model over the single-scale

models, the best single-scale model (i.e., the 400 m

radius scale model, as determined by proportional

deviance explained) was not that different from the

multi-scale model with respect to model-averaged

parameter estimates (or odds ratios) and variable

importance (Table 2).

The suite of top multi-scale nest/roost models (i.e.,

the top-ranked models that, combined, accounted for

Table 1 Habitat covariates and the univariate optimized uniform and Gaussian kernel scale for each used in the multi-scale models

assessing Mexican spotted owl nest/roost habitat selection

Covariate Class Data source Top uniform

scale (m)

Top Gaussian

scale (m)

Slope (Q) Topographic LANDFIRE (2001) 400 200

Topographic position index

(TopPos) (Q)

Topographic LANDFIRE (2001) 500 300

Canopy cover (CanCov) Composition Dickson et al. (2014) 2700 1500

Ponderosa pine (PondPine) Composition USFS Stand Map with LANDFIRE (2001) 5000 5000

Mixed-conifer (MixCon) Composition USFS Stand Map with LANDFIRE (2001) 500 300

Forest edge density (Edge) Composition USFS Stand Map 400 200

Monsoon-season precipitation

(MonPre) (Q)

Climate PRISM Climate Group (2014) 3300 5000

Cumulative degree-days (DegDays) (Q) Climate PRISM Climate Group (2014) 5000 5000

Q a quadratic fit was the best for a given covariate
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[90 % of the cumulative model weights) all con-

tained percent canopy cover and slope with a subset of

other covariates (Table 3). MSO nest/roost selection

was positively related to percent canopy cover and

showed a broad concave unimodal relationship with

slope. Model-averaged variance decomposition anal-

yses indicated that the marginal and conditional

effects of topographic covariates accounted for most

of the total variance explained in the multi-scale

models, with the remainder approximately equally

distributed between landscape composition and cli-

mate covariates (Fig. 7).

CanCov (2,700 m)

PondPine (5,000 m)

Edge (400 m)
MixCon (500 m)

DegDays (5,000 m)

TopPos (500 m)
MonPre (3,300 m)

(a)

(b)

(c)

Fig. 3 Deviance difference between models with and without

each given covariate across all uniform kernel, single-scale

models. The horizontal lines show the deviance difference for

each covariate from the optimized, uniform kernel, multi-scale

model for comparison (and the optimized scale for each

covariate is shown in parentheses). A larger deviance difference

indicates greater explanatory power of that covariate across all

models that covariate is in

CanCov (2,700 m)

PondPine (5,000 m)

Edge (400 m)
MixCon (500 m)

Slope (400 m)

TopPos (500 m)

DegDays (5,000 m)

MonPre (3,300 m)

(a)

(b)

Fig. 4 Variable importance values for all covariates across all

uniform kernel, single-scale models. The horizontal lines

display variable importance values for each covariate from the

optimized, uniform kernel, multi-scale model for comparison

(and the optimized scale for the covariate is shown in

parentheses)
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Discussion

Multi-scale MSO nest/roost habitat selection

Results from the multi-scale habitat selection model-

ing indicate that MSO nest/roost selection was most

strongly related to slope and percent canopy cover,

and to a lesser extent topographic position, monsoon-

season precipitation, and ponderosa pine cover. The

strong (and positive) relationship with percent canopy

cover is consistent with other studies assessing nest-

site selection by MSO (Seamans and Gutiérrez 1995;

Grubb et al. 1997; May et al. 2004; Ganey et al. 2013)

as well as for the other two North American spotted

owl subspecies (Northern spotted owl: Forsman and

Giese 1997; Hershey et al. 1998; Loehle et al. 2015;

California spotted owl: Bias and Gutierrez 1992;

Blakesley et al. 2005), and it has been suggested that

these owls select areas with high canopy cover

because these locations provide moderate microcli-

mates and refuge from predators (Barrows 1981;

Carey 1985; Gutiérrez 1985; Ganey et al. 1999). The

strong relationship with slope and, to a lesser extent,

topographic position also is consistent with previous

studies (Ganey and Balda 1989; May et al. 2004), and

is likely primarily indicative of the extensive use by

MSO of relatively steep, narrow, forested canyons

throughout the study area, which is readily apparent in

predicted surfaces generated from the multi-scale

models (e.g., Fig. 8). These narrow canyons likely

provide relatively cool, moist microclimates, with

high structural habitat diversity (most notably multi-

Fig. 5 Model-averaged proportion of deviance explained from

all single-scale uniform and Gaussian kernel models.Horizontal

lines show the deviance explained by the optimized multi-scaled

models for both functional forms. A larger deviance difference

indicates greater explanatory power across all models at a given

scale

Fig. 6 Predictive performance, as measured by a weighted

skewness metric (Gregr and Trites 2008), from all single-scale

uniform and Gaussian kernel models using both a cross-

validation (a) and an independent dataset approach (b).
Horizontal lines show weighted skewness for the optimized

multi-scaled models for both functional forms. Note that a

greater negative weighted skewness value indicates better

predictive performance
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layered canopies). Though we were unable to assess

habitat selection associated with canopy-layering in

this study (due to a lack of data sources to estimate this

study area wide), the importance of canopy layering

for MSO (Seamans and Gutiérrez 1995; Hathcock and

Haarmann 2008) and other spotted owl subspecies

(Northern spotted owl: Mills et al. 1993; Everett et al.

1997; McComb et al. 2002; California spotted owl:

LaHaye et al. 1997; Moen and Gutiérrez 1997) has

been well-documented, and has been attributed to

increased prey availability, protection from potential

predators, and moderated microclimates. The use of

these forested canyonsmay also be an indirect result of

previous management activities (May et al. 2004)

combined with historic fire patterns in these landscape

settings (Beier and Maschinski 2003). Specifically,

due to reduced timber harvest and firewood gathering

in areas of steep terrain (U.S. Fish and Wildlife

Service 2012) combined with a reduced fire frequency

in canyons (Beier and Maschinski 2003), these areas

may retain larger and more suitable trees for nesting.

Of particular note was the low effect size and

variable importance of percent mixed conifer in our

study given that MSO have been documented primar-

ily nesting in mixed conifer settings in forested

landscapes in the southwestern U.S. (Ganey and Balda

1989; Seamans and Gutiérrez 1995; May and

Gutiérrez 2002). One potential explanation to this

seemingly contradictory finding may be the extensive

use of pine-oak cover by Mexican spotted owls in the

study landscape (Ganey et al. 1999;May andGutiérrez

2002; May et al. 2004), which may have provided a

suitable alternative to mixed conifer. Though poorly

mapped throughout the entire extent of our study area,

ponderosa pine—Gambel oak (Quercus gambelii)

cover is widespread and abundant throughout the

study area, and has a number of attributes that are

consistent with preferred nesting and roosting habitat

by MSO. Notably, these pine-oak stands are typically

characterized by high canopy cover, with a multi-

layered canopy, and with relatively high prey densities

(Ward and Block 1995). Additionally, MSO nest

extensively in Gambel oak cavities, and owls have

been observed nesting in the same cavity for up to

7 years, which may be preferred over other available

nest settings (e.g., platform nests) due to the cool and

sheltered environment it provides for the incubating

female and nestlings (May et al. 2004). Another

potential/partial explanation for the apparent limited

importance of mixed conifer cover in nest/roost

habitat selection in this study relates to the study

design during the initial data collection phase.

Table 2 Model-averaged interquartile range odds ratios, 95 % confidence intervals, and variable importance for the top uniform

kernel, single-scale (i.e., 400 m radius) model and the uniform-kernel, multi-scale model

Covariate Single-scale model (400 m) Multi-scale model

Odds ratio (95 % CI) Importance Odds ratio (95 % CI) Importance

Intercept 1.631e-07 (4.295e-15 to 6.197e04) 1.00 1.721e-04 (3.705e-18 to 7.994e09) 1.00

CanCov 4.136 (1.567–10.918) 0.97 4.856 (1.811–13.019) 1.00

MixCon 1.755 (0.706–4.369) 0.48 1.098 (0.593–2.031) 0.27

PondPine 4.963 (1.015–24.266) 0.88 2.537 (0.996–6.460) 0.72

Edge 0.860 (0.411–1.799) 0.29 0.832 (0.420–1.649) 0.30

Slope 160.508 (11.507–2.238e05) 1.00 343.778 (29.052–406.806) 1.00

Slope2 0.195 (0.031–1.215) 1.00 0.090 (173.778–461.106) 1.00

TopPos 247.630 (1.197 to 5.121e04) 0.83 122.025 (0.682–218.429) 0.79

TopPos2 0.007 (3.51e-05 to 1.256) 0.83 0.001 (7.662e-07 to 2.368) 0.79

MonPre 0.042 (9.274e-05 to 19.407) 0.66 0.002 (1.757e-06 to 2.062) 0.90

MonPre2 10.152 (0.038–2.697e03) 0.66 150.401 (0.240–9.427e04) 0.90

DegDays 63.474 (0.456–8.842e03) 0.45 13.629 (0.0754–2.461e03) 0.20

DegDays2 0.011 (6.473e–05 to 1.810) 0.45 0.060 (2.742e-04 to 13.338) 0.20

SAC 11.876 (5.637–25.019) 1.00 13.673 (5.948–31.434) 1.00

Covariates are defined in Table 1 (SAC = spatial autocovariate, see text for details)
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Specifically, most of the owl surveys were conducted

at sites where management activities were proposed,

which was largely within ponderosa pine stands at the

time, thus surveys in mixed conifer stands were likely

underrepresented in this dataset. Unfortunately we did

not have adequate documentation identifying the full

suite of sites sampled, both where MSO were recorded

and sites where they were not, thus we cannot estimate

the potential bias introduced by this sampling scheme.

Finally, based on a visual inspection of the LAND-

FIRE raster which was used as the basis for the input

land cover layer for these analyses, it was apparent that

mixed conifer cover in the study area was considerably

underestimated, which could have also contributed to

a downward-biased variable importance for mixed

conifer in the analyses.

The optimized scale identified for each covariate to

enter multi-scale models varied considerably among

covariates in this study, as discussed below. In

addition to providing for robust multi-scale models,

results from the scaling analysis component of the

multi-scale modeling allowed us to gain improved

insight regarding the scales at which MSO responded

to different components of the landscape. The two

topographic covariates (i.e., slope and topographic

position index) entered at relatively fine scales, which,

Table 3 The top-ranked uniform kernel, multi-scale logistic regression models assessing foraging habitat selection by Mexican

spotted owls

Model D2 AICc DAICc wgtAICc

CanCov ? PondPine ? Slope* ? MonPre* ? TopPos* ? SAC 0.64 225.34 0.00 0.22

Edge ? CanCov ? PondPine ? Slope* ? MonPre* ? TopPos* ? SAC 0.64 227.28 1.94 0.08

MixCon ? CanCov ? PondPine ? Slope* ? MonPre* ? TopPos* ? SAC 0.64 227.29 1.94 0.08

CanCov ? Slope* ? MonPre* ? TopPos* ? SAC 0.64 227.49 2.15 0.08

CanCov ? PondPine ? Slope* ? MonPre* ? SAC 0.63 228.21 2.86 0.05

CanCov ? Slope* ? MonPre* ? TopPos* ? DegDays* ? SAC 0.64 229.06 3.71 0.04

CanCov ? PondPine ? Slope* ? MonPre* ? TopPos* ? DegDays* ? SAC 0.65 229.06 3.72 0.04

Edge ? MixCon ? CanCov ? PondPine ? Slope* ? MonPre* ? TopPos* ? SAC 0.65 229.18 3.84 0.03

MixCon ? CanCov ? Slope* ? MonPre* ? TopPos* ? SAC 0.64 229.56 4.22 0.03

Edge ? CanCov ? Slope* ? MonPre* ? TopPos* ?SAC 0.64 229.58 4.24 0.03

MixCon ? CanCov ? PondPine ? Slope* ? MonPre* ? SAC 0.63 229.83 4.48 0.02

CanCov ? Slope* ? MonPre* ? SAC 0.63 229.85 4.50 0.02

CanCov ? PondPine ? Slope* ? TopPos* ? SAC 0.63 229.97 4.63 0.02

Edge ? CanCov ? PondPine ? Slope* ? MonPre* ? SAC 0.63 230.13 4.78 0.02

Edge ? CanCov ? PondPine ? Slope* ? TopPos* ? SAC 0.63 230.19 4.85 0.02

Edge ? CanCov ? Slope* ? MonPre* ? TopPos* ? DegDays* ? SAC 0.64 230.92 5.58 0.01

Edge ? CanCov ? PondPine ? Slope* ? MonPre* ? TopPos* ? DegDays* ? SAC 0.65 230.92 5.58 0.01

MixCon ? CanCov ? PondPine ? Slope* ? MonPre* ? TopPos* ? DegDays* ? SAC 0.65 231.06 5.72 0.01

MixCon ? CanCov ? Slope* ? MonPre* ? TopPos* ? DegDays* ? SAC 0.64 231.17 5.82 0.01

CanCov ? Slope* ? MonPre* ? DegDays* ? SAC 0.63 231.60 6.25 0.01

Edge ? MixCon ? CanCov ? Slope* ? MonPre* ? TopPos* ? SAC 0.64 231.66 6.32 0.01

Edge ? MixCon ? CanCov ? PondPine ? Slope* ? MonPre* ? SAC 0.63 231.67 6.32 0.01

Edge ? CanCov ? Slope* ? MonPre* ? SAC 0.63 231.92 6.57 0.01

MixCon ? CanCov ? Slope* ? MonPre* ? SAC 0.63 231.92 6.58 0.01

MixCon ? CanCov ? PondPine ? Slope* ? TopPos* ? SAC 0.63 231.99 6.64 0.01

CanCov ? PondPine ? Slope* ? MonPre* ? DegDays* ? SAC 0.63 232.01 6.66 0.01

Edge ? MixCon ? CanCov ? PondPine ? Slope* ? TopPos* ? SAC 0.63 232.29 6.94 0.01

* Covariates where the linear ? quadratic terms were used. Covariates are defined in Table 1 (SAC = spatial autocovariate, see text

for details) and D2 is the proportion of deviance explained by the model. Models were ranked using change in Akaike’s information

criterion corrected for small sample size (DAICc) and Akaike’s model weights (wgtAICc)
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as discussed previously, is likely the result of the

extensive use of relatively steep, narrow, forested

canyons throughout the study area for nesting by

MSO. The two climate covariates (i.e., monsoon-

season precipitation and cumulative degree-days)

entered at much coarser scales, which was to be

expected given that these two metrics vary at

relatively coarse resolutions. Interestingly, of the four

landscape composition covariates used in the multi-

scale models, percent mixed-conifer cover and forest

edge density entered at relatively fine scales (though

both with low variable importance values) whereas

percent canopy cover and percent ponderosa pine

cover entered at considerably coarser scales. This

suggests that percent mixed-conifer cover and forest

edge density are more relevant to conditions in the

immediate vicinity of the nest/roost (e.g., microcli-

mate and exposure to potential predators), whereas

percent canopy cover and percent ponderosa pine

cover are more relevant to conditions in the broader

landscape surrounding the nest (e.g., foraging habitat

suitability).

Results from the variance decomposition analysis

indicated that topographic covariates contributed the

greatest amount of variation explained in the data,

whereas the variance explained by landscape compo-

sition and climate variables was considerably reduced

in comparison. As it is difficult to hypothesize a robust

mechanistic relationship between MSO nest/roost

selection and these topographic covariates, this finding

is likely the result of these topographic covariates

acting largely as a proxy for microhabitat and/or

microclimate conditions (as discussed previously).

The relatively minor effect of climate was somewhat

surprising as this species is hypothesized to be

negatively affected by high temperatures (Barrows

1981; Ganey 2004); however, the climate rasters that

we employed were constructed at an 800 m resolution,

which likely were at too coarse of a resolution to

adequately assess selection for these climatic

covariates.

Lastly, results from models using Gaussian kernels

and those using uniform kernels did not vary substan-

tially in our study, which was counter to our expec-

tations. It makes intuitive ecological sense that

organisms are most strongly affected by habitat

conditions within their immediate vicinity and that

this effect likely decays with increasing distance from

the organism, thus we expected that measuring habitat

covariates using a functional form that emulates such a

pattern would outcompete a standard uniform kernel.

Though we did not find a difference in this study, we

strongly encourage researchers in future habitat

selection studies to include non-uniform kernels to

more broadly assess the effect of kernel form on

modeling efficacy.

Single-scale vs. multi-scale MSO nest/roost

habitat models

While several previous studies assessed MSO habitat

use and habitat selection at multiple scales (Grubb

et al. 1997; Peery et al. 1999; May and Gutiérrez 2002;

Ganey et al. 2013), our study was the first to do so in a

multi-scale framework that allowed covariates to enter

models at different spatial scales. Multi-scale models

outcompeted all single-scale models in our study with

respect to explanatory power and all but one single-

scale model with respect to predictive performance.

This is consistent with our current understanding of

MSO biology throughout their range, whereby they

appear to select nest sites that provide moderate

microclimates at the nest and the immediate vicinity,

while at the same time locating the nest such that it is

in relative close proximity to high quality foraging

habitat. Our findings are consistent with a growing

body of habitat selection studies across a range of

species supporting the superiority of multi-scale

models over their single-scale counterparts (Boscolo

0.23 0.02
0.00

0.11

0.000.08

0.02

TOPOGRAPHIC CLIMATE

COMPOSITION

(0.03-0.22) (0.02-0.03)

(0.02-0.03)

(0.01-0.06)

(0.01-0.03)(0.03-0.11)

(0.05-0.10)

Fig. 7 Model-averaged variance decomposition results from

the uniform kernel models, showing proportions of variance

explained by different suites of covariates. Proportions shown in

larger font are results from the multi-scale model whereas those

in the smaller font and in parentheses are the range of results

across all single-scale models
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and Metzger 2009; Kuhn et al. 2011; Sanchez et al.

2013, but see Martin and Fahrig 2012 for an

exception).

Results from single-scale MSO nest/roost models

varied considerably as a function of scale. For

example, the greatest effect size obtained for seven

of the eight covariates occurred at scales B1 km and

tended to monotonically decay, in some cases quite

precipitously, with increasing spatial scale thereafter.

The ordering of covariates also changed in terms of

relative effect size and variable importance across the

scales that we assessed. Thus, inferences made

regarding the MSO nest/roost habitat selection could

change considerably depending upon the selected

scale of analysis in a single-scale modeling approach.

Employing a scale-optimized, multi-scale model

Fig. 8 Predicted nest/roost habitat suitability surface for a

subarea of the entire study area using model-averaged a multi-

scale, uniform kernel, b 500 m-radius uniform kernel, c 1 km-

radius uniform kernel, and d 2 km-radius uniform kernel. Filled

circles on the surfaces indicate MSO nest/roost locations from a

separate dataset provided by USFWS that was not used to build

the habitat models
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provided for a more objective and ecologically robust

method of selecting the scale at which each covariate

would enter the analysis, thus reducing the amount of

researcher bias potentially injected into the results.

Management and conservation implications

Our results provide an empirical assessment of multi-

scale nest/roost habitat selection for MSO throughout

a substantial and important portion of their current

range. These results can be used to help guide

extensive management efforts that are currently

underway in the region aimed at restoring ponderosa

pine stands to pre-settlement conditions following a

century of fire suppression and other land uses such as

livestock grazing. Largely the result of this fire

suppression and human land use, much of the current

landscape exists as unnaturally dense stands of

ponderosa pine that has dramatically increased the

threat and incidence of extensive high mortality

wildfires (Covington et al. 1994; Allen et al. 2002;

Brown et al. 2004). The threat of these high mortality

wildfires is high in many MSO Protected Activity

Centers (PACs), as thinning efforts have been limited

in these areas due to perceived conflicts with the

closed-canopy nesting requirements of spotted owls

and increased regulatory restrictions in these locations

(U.S. Fish andWildlife Service 2012). However, more

recently managers have appreciated that a lack of

active management (e.g., thinning) within PACs may

have a negative impact on the long-term persistence of

MSO habitat due to the increasing likelihood of stand-

replacing crown fires (Prather et al. 2008; U.S. Fish

and Wildlife Service 2012). An MSO-specific relative

probability of occurrence map generated throughout

the study area from this current modeling effort will

allow for more effective treatment prescriptions aimed

at MSO conservation and management.

Consistent with previous studies, MSO nest/roost

sites were positively correlated with canopy cover

(Seamans and Gutiérrez 1995; Grubb et al. 1997;

Ganey et al. 1999, 2000; May et al. 2004), indicating a

need to retain areas with abundant canopy cover to

provide adequate nest/roost habitat in the study area.

While much of the current landscape exists as dense

canopied ponderosa pine cover, the majority of these

areas are characterized by unnaturally high density of

small-diameter trees. As suggested previously (e.g., in

Prather et al. 2008), conducting low intensity thinning

in these areas would allow for increased tree growth

(Mast 2003), providing large trees and snags used by

MSO for nesting and roosting while at the same time

reducing the threat of high severity crown fires. Due to

the consistent finding across numerous studies of the

considerable importance of canopy cover in nest site

selection by MSO, experimental work assessing

potential threshold effects of canopy reduction with

respect to MSO nesting habitat suitability would be

extremely valuable for land managers.

Scope, limitations, and future directions

Our findings must be interpreted with regard to several

major considerations. First, our data were collected in

a considerably human-altered landscape, as noted

above. Thus, the degree to which our habitat selection

estimates (e.g., covariate beta estimates) reflect those

exhibited under the historic, pre-settlement landscape

setting in which this species evolved is unknown.

Second, the habitat data we used were entirely GIS-

based, as we didn’t have comprehensive field-col-

lected habitat data for both use and pseudo-absence

locations. MSO are known to cue in on specific

microhabitat features (e.g., trees with mistletoe infec-

tions, snags, trees with existing cavities) and forest

structural conditions (e.g., multi-layered canopies) in

close proximity to nest trees that were not available in

our GIS layers. The extent to which the inclusion of

these data would have impacted the results is

unknown. Third, the amount of canopy cover within

100 m of the nest/roost for the best single-scale model

or within 2700 m of the nest/roost for the multi-scale

model was one of the strongest predictors of nest/roost

habitat for MSO in this study, though the effect of the

spatial configuration of canopy cover, especially at

fine scales, on habitat use/selection is unknown. Based

on preliminary analyses we conducted for a small

subset area of our study area, it appears that fine-scale

canopy configuration may be an important predictor of

habitat use by this species. We are currently in the

process of constructing a fine-scale canopy raster for

the entire extent of our study area using a supervised

remote-sensing classification scheme, which we plan

to employ to assess the effect of selected canopy

configuration metrics on MSO habitat use and selec-

tion. Lastly, it is plausible that our assessment of scale

dependency was influenced by the varying texture and

quality of the input data. In particular, the cover type
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map was derived from LANDFIRE (2001) and in

general had a relatively coarse texture, whereas the

canopy cover map was derived by Dickson et al.

(2014) and had a relatively fine texture. Given the

disparity in textures and accuracy among data sources

we opted not to include a suite of potentially important

vegetation configuration metrics in the analysis, other

than forest-nonforest edge density and proximity

which we deemed suitable as derived from the

LANDFIRE-based cover type map. In addition, we

also used Gaussian kernel smoothing over

100–5000 m bandwidths for all of the independent

variables which should be relatively insensitive to

variations in fine-grained texture of the input layers.

Thus, by carefully selecting predominantly landscape

composition metrics and using kernel smoothing over

relatively coarse scales, we deemed our results

relatively robust to variations in texture and accuracy

of the input data sources.
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