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Abstract

Context The scale of environmental relationships is

often inferred through the use of species distribution

models. Yet such models are frequently developed at

two distinct scales. Coarse-scale models typically use

information-poor (e.g., presence-only) data to predict

relative distributions across geographic ranges,

whereas fine-scale models often use richer information

(e.g., presence–absence data) to predict distributions

at local to landscape scales.

Objectives We unite presence–absence and pres-

ence-only data to predict occurrence of species, what

we refer to as integrated distribution models. We

determine if integrated models improve predictions of

species distributions and identification of characteris-

tic spatial scales of environmental relationships

relative to presence–absence modeling and ensemble

modeling that averages predictions from separate

presence-only and presence–absence models.

Methods We apply recent advances in integrated

distribution models to predict Sherman’s fox squirrel

(Sciurus niger shermani) distribution in north-central

Florida. Presence-only data were collected through a

citizen-science program across its geographic range,

while presence–absence data were collected using

camera trapping surveys across 40 landscapes.

Results Integrated models estimated environmental

relationships with greater precision and identified

larger characteristic scales for environmental relation-

ships than using presence–absence data alone. In

addition, integrated models tended to have greater

predictive performance, which was more robust to the

amount of presence–absence and presence-only data

used in modeling, than presence–absence and ensem-

ble models.

Conclusions Integrated distribution models hold

much potential for improving our understanding of

environmental relationships, the scales at which

environmental relationships operate, and providing

more accurate predictions of species distributions.

Many avenues exist for further advancement of these

modeling approaches.
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Introduction

Understanding species distributions is essential to

ecology, evolution, and conservation biology (Guisan

and Thuiller 2005; Elith and Leathwick 2009). Species

distributions models (SDMs) are often used to address

ecological and conservation issues, such as quantify-

ing habitat/environmental relationships, evaluating

potential management actions, predicting the effects

of land-use and climate change, and identifying

priority areas for conservation planning (Loiselle

et al. 2003; Evans et al. 2010; Lawler et al. 2010). In

addition, these models have been frequently used for

understanding the characteristic scales of environmen-

tal relationships (i.e., ‘scales of effects’; Urban et al.

1987; Smith et al. 2011; Jackson and Fahrig 2015) and

the multi-level effects of landscapes on organisms

(Fletcher and Hutto 2008; Thornton et al. 2011).

However, the usefulness of such models is limited by

the data used in model building, which often contain

relatively limited information and sample bias (Norris

2004; Phillips et al. 2009; McCarthy et al. 2012).

Models of species distributions varywidely in spatial

scale. Franklin (2009) categorizes species distribution

models based on two contrasting spatial extents and

how species data tend to vary with extent (cf. Wiens

1989). While there are exceptions to this categorization

of distribution models (e.g., Albright et al. 2010), this

tendency for data type to covary with spatial extent is

common (e.g., Jones et al. 2010). One general category

of models occurs at large extents, typically at the

geographic range of species. In these situations, pres-

ence-only data are frequently used (Brotons et al. 2004;

Elith et al. 2006), which often come from museum

specimens or through citizen science programs (Dick-

inson et al. 2010). Such data are useful because of the

large spatial extent, but they often suffer from sample

selection bias (Phillips et al. 2009; Fourcade et al. 2014),

such as presence records being more likely in areas that

are easily accessible. This bias can limit the ability of

using such data to identify environmental relationships

(Kadmon et al. 2004) and make accurate predictions to

new areas or times (Brotons et al. 2004). In addition,

because absences are not available, only measures of

relative suitability/probability can typically be modeled

(but see Dorazio 2012; Royle et al. 2012).

In contrast, a second general category of models

come from planned surveys typically collected at

extents smaller than the geographic range, where

interest lies in understanding local to landscape-scale

distributions (Franklin 2009). In this category of

models, presence–absence data (or more appropriately

‘detection–nondetection’ data; presence–absence

hereafter) are frequently used (Rota et al. 2011;

Lawson et al. 2014). These data are useful in that they

typically haveminimal sample selection bias regarding

occurrence because at any survey location, presence or

absence can be quantified (Dorazio 2014). This

category of models contains richer information regard-

ing the prevalence of species andmay potentially allow

less biased quantification of environmental relation-

ships (Fithian et al. 2015); however, this category of

models frequently suffers from small amounts of data

and geographic extent. Consequently, such models

may be limited in identifying the characteristic spatial

scale of environmental relationships in situations

where samples do not cover enough large-scale

variation in landscape conditions (Oneill et al. 1996).

Given the strengths and limitations of both presence-

only and presence–absence data, models that leverage

both types of information may be valuable for quanti-

fying environmental relationships and the scale of such

relationships, as well as predicting species distributions

across regions. Recent advances in species distribution

modeling have focused on how to integrate these

different sources of data to make more reliable predic-

tions (Dorazio 2014; Keil et al. 2014; Fithian et al.

2015). We refer to this general group of models as

integrated distribution models, borrowing this term

from recent developments in population ecology where

integrated population models link multiple data sources

to estimate population dynamics (Schaub et al. 2007;

Abadi et al. 2010). These approaches simultaneously

use different sources of data to develop statistical

models of species distribution. These advances are in

contrast to increasingly used ensemble modeling con-

sensus techniques (Araujo and New 2007; Marmion

et al. 2009), which focus on summarizing predictions

(e.g., average predictions) from separate models.

Advances in integrated distribution models have

focused on two issues. First, models have integrated

coarse-grain data, such as atlas data, with fine-grain

data to downscale predictions of models (Keil et al.

2014). This approach is akin to a multi-level model

(sensu Cushman and McGarigal 2002), in the sense

that predictions at fine-grains are conditioned on

predictions at coarse grains. One potential benefit of
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such models is that multi-level processes could be

captured, yet these models could be limited when mis-

matches occur in data (e.g., where atlas data suggest

absence in a region where fine-scale data provides

presence information). In addition, most distribution

modeling data derive from point locations rather than

coarse-grain grids, such that the spatial grain of

different data sets (presence-only, presence–absence)

are comparable (i.e., response data are single-level,

rather than multi-level) while the spatial extents might

vary considerably. A more general approach to inte-

grate presence-only and presence–absence data has

recently been independently described by Dorazio

(2014) and Fithian et al. (2015). This approach is

driven by viewing species distributions as spatial point

processes (see below), and integrates presence-only

datawith planned surveys that include either presence–

absence or detection–nondetection data (i.e., data that

include imperfect detection). Here we focus on this

latter approach. These models emphasize accounting

for sample selection bias and leveraging planned

surveys to improve presence-only modeling. While

these models have been developed, our understanding

of benefits and limitations of these models in real-

world applications is still limited, with only one

empirical example on Eucalpytus in Australia (Fithian

et al. 2015). Furthermore, it is unclear if such models

will provide insights to the characteristic scaling of

environmental relationships (Thompson and McGari-

gal 2002; Holland et al. 2004; Jackson and Fahrig

2015). Yet given that such data integration may offer

the potential to capture greater large-scale variability

of the environment, integrated distribution models

could provide better insight to the spatial scales of

environmental relationships.

Here, we apply and compare recent statistical

advances in integrated modeling of species distribu-

tion data to test if, and the extent to which, the

inclusion of broad-scale presence-only data can

improve modeling efforts, in terms of model predic-

tions, estimation of environmental relationships, and

the identification of the characteristic scales of envi-

ronmental relationships. We first review recent mod-

eling frameworks regarding unified models of species

distribution data and how such frameworks can be

applied to understand environmental relationships.

We then apply this framework for interpreting the

distribution of Sherman’s fox squirrels (Sciurus niger

shermani) in north-central Florida. We contrast

inferences from integrated distribution models with

more conventional methods for species distribution,

including conventional presence–absence models and

ensemble models (Araujo and New 2007; Marmion

et al. 2009), using a multi-scale analysis (Holland et al.

2004). We conclude by discussing the current limita-

tions of integrated distribution models and potential

extensions to improve such modeling efforts.

Methods

Uniting presence-only and presence–absence data

To integrate presence-only and presence–absence data,

it is useful to view species distributions as being derived

from inhomogeneous point processes (Warton and

Shepherd 2010; Renner et al. 2015). Indeed, many

species distribution modeling algorithms, such as

MAXENT (Phillips et al. 2006), can be derived as

spatial point process models (Renner andWarton 2013;

Renner et al. 2015). Given that the application of such

models to species distributions is recent, we briefly

review and describe the relationship of inhomogeneous

point processes to species distributions and its relevance

for integrated distribution modeling based on recent

model developments (Renner and Warton 2013;

Dorazio 2014; Fithian et al. 2015; Renner et al. 2015).

See Dorazio (2014) and Fithian et al. (2015) for

derivation of these types of models and more details.

Point processes and thinned point processes

In spatial statistics, there has been a long history of

viewing locations of species occurrence as point

processes (Thompson 1955; Getis and Franklin

1987). In this context the focus is on species location,

s, within a specified study region D. Point process

models (PPM) focus on understanding the intensity

(*density) of species, k, in a bounded area or region

across D. A point process is ‘inhomogeneous’ when

intensity varies across D. This variation can be

captured by spatially-explicit covariates by modeling

intensity based on a log-linear relationship:

log kðsÞ ¼ aþ bxðsÞ ð1Þ

Consequently, PPMs are similar to generalized linear

models (GLMs), but the focus is on spatial locations of

point occurrences rather than focus being on the point

occurrences themselves (Renner et al. 2015).
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Thinned point process models are an extension of

PPMs that acknowledge that observed point locations

are a sample of all locations, and possibly a highly

biased sample. For example, presence-only sampling

is often biased near roads and such bias can influence

predictions of models (Phillips et al. 2009). Fithian

et al. (2015) extend the PPM to account for sample

selection bias by adjusting the regression model to

include covariates that help explain sampling bias:

log kðsÞ ¼ aþ bxðsÞ þ cþ dzðsÞ ð2Þ

where z is a bias covariate, such as distance from road

(see also Warton et al. 2013). Note that such bias

adjustment may only be identifiable when z(s) is not

highly correlated with x(s). The log-likelihood of the

inhomogeneous point process model that accounts for

sample bias is then (Fithian et al. 2015):

Lpoða; b; d; cÞ ¼
X

ðaþ bxi þ cþ dziÞ

�
Z

D

expðaþ bxi þ cþ dziÞds ð3Þ

where each observation i of a species is associated

with a location si and the covariates at that location

(xi = x(si) and zi = z(si)). The first component of this

likelihood focuses on the information from the pres-

ence locations whereas the second component focuses

on the covariate values across the region. The integral

in this latter component cannot be directly estimated

and is therefore approximated, typically from select-

ing background data points (sometimes called pseudo-

absences). Background points are frequently used in

presence-only modeling (Elith et al. 2006). See

Warton and Shepherd (2010) and Renner et al.

(2015) for interesting discussions on how PPMs help

clarify the role of background points and the number

background points that should be included in analyses

of presence-only data. In general, Renner et al. (2015)

emphasize that more background points should be

used to estimate point processes than what is typically

done in species distribution modeling (see below).

Joint likelihoods for integrating distribution data

Given the above point process model, a natural

extension is to unite a presence-only point process

model with a similar point process model based on

presence–absence survey data. Joint analysis is

commonly used in statistics and is increasingly used

in population ecology, where likelihoods are devel-

oped for two (or more) independent data sets and a

joint likelihood is formulated as the product of the two

likelihoods (Schaub et al. 2007; Abadi et al. 2010).

Because data from presence–absence and presence-

only data are collected independently, the data can be

analyzed together based on this joint likelihood. Joint

analysis is thought to decrease bias and increase

precision of estimates than modeling each data set in

isolation (Dorazio 2014).

To appropriately link a presence-only PPM with

planned survey data based on presence–absence

information, Fithian et al. (2015) suggest that a model

formulation for presence–absence data by relating

counts at sample locations, Ai (where |Ai| is the area of

Ai) to a point process:

Ni � PoisðjAijkðsiÞÞ ¼ PoisðjAij expðaþ bxiÞÞ ð4Þ

The probability of occurrence can be derived based on

using a complementary log–log link function:

PrðNi[ 0Þ ¼ 1� expð� expðaþ bxiþ log jAijÞÞ
ð5Þ

See Royle and Dorazio (2008, pp. 150–151) for further

discussion regarding the use of the complementary

log–log link function for relating abundance to

occupancy. Taken together, the log-likelihood of the

presence–absence data can be described as (Fithian

et al. 2015):

Lpaða; bÞ ¼
X

�yi logð1� expð� expðaþ bxiÞÞ

þð1� yiÞ expðaþ bxiÞ ð6Þ

The joint log-likelihood is then the sum of these two

log-likelihoods (Eqs. 3, 6). This modeling approach

can be implemented with the multispeciesPP

package in R (Fithian et al. 2015). To demonstrate the

utility of this approach, we used presence-only and

presence–absence (i.e., detection–nondetection; see

below) data collected on Sherman’s fox squirrels.

Study species and study area

Fox squirrels (S. niger) are a common, widely-

distributed tree squirrel native to North America and

found east of the RockyMountains (Koprowski 1994).

Of the 10 subspecies of fox squirrel, four subspecies
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occur in Florida. Our analysis focuses on Sherman’s

fox squirrel, which primarily occurs in central and

north Florida, but also ranges into southern Georgia.

Sherman’s fox squirrels are sparsely distributed and in

low densities and are listed as a State Species of

Special Concern by Florida’s Endangered and Threat-

ened Species Rule (Loeb and Moncrief 1993). Sher-

man’s fox squirrels and are known to use most major

vegetative communities throughout their range; how-

ever, they are most commonly associated with inland

pine-dominated vegetation found throughout most of

peninsular Florida (Moore 1956, 1957).

We conducted our surveys within the core range of

Sherman’s fox squirrels in central and northern Florida

on public and private lands. The vegetative commu-

nities at our sites were highly variable, and included

open grasslands, pine-dominated forests, hardwood-

dominated forests, mixed pine–hardwoods, bottom-

land forest, and clear cuts. The canopy trees varied

between sites, but the dominant pine trees included

longleaf (Pinus palustris), slash (P. elliottii) and

loblolly (P. taeda) pines, and the dominant oaks were

turkey (Quercus laevis), live (Q. virginiana), laurel

(Q. laurifolia), and water (Q. nigra) oaks. The sites

varied in their vegetation management practices,

which included cattle grazing, mowing, prescribed

burning, and no active management. Nearly all sites

where pines outnumbered hardwoods were managed

for timber.

Presence-only data

We developed and promoted a publically available

web-based tool (webpage) to generate presence-only

locations of Sherman’s fox squirrel throughout their

geographic range in Florida. The web-based tool

recorded georeferenced locations (latitude and longi-

tude in decimal degrees) using a Google map appli-

cation to record sightings in the database. For this

analysis, we extracted data from the website from

August 20 2011 until May 1 2012 to coincide with the

peak activity in fox squirrel activity typically related

to mast availability (Weigl et al. 1989). We also subset

these data further for the time period January–May

2012 to reflect only the time period of camera-trapping

(see below). Results from this subset of data were

similar, in terms of environmental relationships and

metrics of predictive performance (Unpublished

results).

We reviewed each presence-only data point from

the online survey. We quarantined location points

which appeared to erroneous due to user error of

mapping software (i.e. locations in the middle of a

water body). To increase the validity of these suspi-

cious occurrence data, we attempted to verify the

locations and receive more specific location informa-

tion from the participant that submitted the data. We

removed all erroneous points which could not be

verified. This resulted in 2785 presence-only points

used for modeling (871 points from January to May

2012; Fig. 1).

Presence–absence data

We conducted intensive field surveys for Sherman’s

fox squirrels using passive camera traps. We sampled

across the study region using a hierarchal approach.

We selected 40, 7.65 km2 landscapes across the study

region using a stratified random design to capture

major vegetative communities used by fox squir-

rels (Fig. 1).We sampled 10 landscapes in upland pine

habitats, 10 in mesic flatwoods habitats and the

remaining 20 without regard to a vegetative commu-

nity. Within each landscape we random placed five

5.3 ha survey grids within each landscape. Each grid

consisted of 9 sampling points in a 3 9 3-grid

arrangement with 115 m spacing. For this analysis,

we randomly selected a subset of points (n = 252

across the 40 landscapes) to use in models to reduce

potential impacts of spatial autocorrelation influenc-

ing results (see ‘‘Discussion’’ section). Between

January and June 2012 (a period of high activity for

fox squirrels in Florida; Moore 1957), each sampling

point was surveyed for 7 consecutive nights with a

passive digital camera (Bushnell Trophy Cam model

119436c, Bushnell Outdoor Products, Overland Park,

KS) baited with pecans (Carya illinoinensis) and

cracked corn (Zea mays) placed at the base of a tree

1.5 m from the camera. When no photo of a fox

squirrel was taken during the 7-night period, it was

considered an absence (see below).

Analysis

To illustrate the approach and potential utility of

integrated models, we contrasted conventional GLM

models for presence–absence (detection–nondetec-

tion) data with integrated models and ensemble
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models that averaged predictions from separate pres-

ence-only and presence–absence models to make

consensus predictions. In this comparison, integrated

models use more data than conventional models,

though such data contain less information (and

possibly include sample selection bias; see below),

while ensemble models use the same data used in

integrated models, yet models are developed sepa-

rately for presence–absence and presence-only data.

We considered three covariates for modeling the

distribution of fox squirrels: canopy cover, distance

from edge, and distance from roads. For canopy cover,

we used circular buffers of different size radii (100 m,

500 m, 1 km, 2 km, 3 km, 4 km, and 5 km) to deter-

mine the characteristic scale of the environmental

relationship of fox squirrel occurrence (Thornton and

Fletcher 2014), and considered non-linear relationships

with canopy cover via inclusion of quadratic terms. The

scales we consider reflect area less than the average

home range of fox squirrels (*25 haon average) and up

to approximately twice the average dispersal distance of

fox squirrels (Kantola and Humphrey 1990). Canopy

cover (percent tree cover) was taken from the 2011

National Land Cover Database and was re-scaled using

a moving-window analysis. We did not adjust for

overlapping landscapes being used in these buffers

(sensu Holland et al. 2004) because we found no

significant evidence for spatial autocorrelation in the

residuals of models (Fig. S1; Zuckerberg et al. 2012).

Wedid not consider buffers of different sizes in the same

model to reduce multi-collinearity in model fitting.

Because fox squirrels can concentrate their activities

near habitat edges (Koprowski 1994),we considered the

natural log of distance to edge of different vegetative

communities using land-cover classes defined by the

Florida Natural Areas Inventory (2010). We also

considered distance to roads as a covariate (z(s) in

Eq. 3 above) in integrated models to account for

potential presence-only sample bias (Kadmon et al.

2004; McCarthy et al. 2012). While other factors may

also influence fox squirrel distributions, these covariates

were selected to illustrate the different ways in which

covariates can be relevant for integrated models and the

identification of characteristic scales of species–envi-

ronment relationships.

The presence–absence GLM was based on a

complementary log–log link function (see Eq. 6); note

that a conventional logistic regression using a logit

link function provided identical results. For the

presence-only component of the integrated model,

we selected background points based on a regular

2 9 2 km grid across the study area (Renner et al.

2015), which resulted in 13,713 points. Presence-only

models were also used to create a consensus ensemble

(Marmion et al. 2009), which were the same as the

integrated model but with the presence–absence data

removed (Eq. 3). Ensemble predictions were derived

using a weighted average of model predictions (based

on the area under the curve (AUC) statistic for each

model) from the separate presence-only and presence–

absence models (Marmion et al. 2009). Note that

presence–absence and integrated models used here

ignore the problem of imperfect detection. Currently,

imperfect detection for occupancy has yet to be

accounted for in integrated distribution models (see

‘‘Discussion’’ section). Nonetheless, based on an

occupancy model using the camera-trapping data

(MacKenzie et al. 2002), the estimated probability of

detecting fox squirrels at a sample point at least one

night of the seven night sample, given that the species

occurred at the point, was 0.82.

To determine the characteristic scales of environ-

mental relationships, we used a model selection

approach to identify the most parsimonious scale for

interpreting the relationship of fox squirrel distribu-

tion with canopy cover separately for the presence–

absence GLM and the integrated GLM. In this

assessment, we contrasted models using Akaike’s

information criterion (AIC) that varied in the spatial

scale of canopy cover (allowing for non-linearity in

canopy cover relationships) while forcing distance

from edge into the model and distance to roads in the

integrated GLM to account for sample selection bias.

We then took the selected model and further attempted

to reduce model complexity by contrasting the model

with a model that only included distance from edge

and an intercept-only model. To determine effects on

environmental relationships, we contrasted estimated

b values, associated SEs, and predicted partial

relationships.

To determine predictive performance, we used

block validation (Wenger and Olden 2012). To do so,

we split our presence–absence data into fourfolds at

the scale of landscapes (7.65 km2) rather than points.

Presence-only data were only used in model training

(building) and were not used for validation. Block

validation is helpful because creating folds at the

sample unit (point) level results in validation data that
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can be more correlated with training data due to closer

geographic proximity. We then assessed model pre-

dictions using two threshold independent measures—

the AUC and a cross-validated log-likelihood (LL;

Lawson et al. 2014). AUC is based on rank differences

and is not impacted by predicted prevalence, whereas

cross-validated log-likelihoods are measures of fit to

the new data and incorporate predicted prevalence into

assessments. We also used two threshold-dependent

measures—the true skill statistic (TSS) and the kappa

statistic (Fielding and Bell 1997; Liu et al. 2011). For

TSS and kappa, we set a threshold cutoff based on

maximizing the sum of the specificity and sensitivity

(Liu et al. 2013).

Finally, we determined how the amount of presence–

absence and presence-only data could alter the potential

benefits of integrated models. To do so, we performed a

similar block validation scheme as that described above;

however, we altered model training in two ways. First,

we sequentially reduced the amount of presence–absence

data by reducing the number of landscapes used inmodel

training from 30 (three of four folds above) down to 5

landscapes, using 10 landscapes for validation. For each

sequential reduction, we calculated AUC, LL, TSS, and

kappa based on integrated distribution models versus

GLM on presence–absence data. We expected that

GLMs would decline in predictive performance as the

amount of training data declined, whereas integrated

models to retain similar predictive performance. Second,

we reduced the amount of presence-only data used in

model training while keeping the amount of presence–

absence data constant. In this scenario, we randomly

removed 5–95 % of the original presence-only data. We

expected that integrated models would decline in

performance as the amount of presence-only data

declined.

Results

The most parsimonious GLM model describing pres-

ence–absence data included a non-linear relationship of

canopy cover at the 1-km scale and no significant

relationship with distance from edge based on model

selection criteria and parameter estimates (bedge =
0.99 ± 0.85 SE, P = 0.247; Table S1; Figs. 2, 3). For

integrated models, the most parsimonious model iden-

tified a non-linear relationship of canopy cover at the

4-km scale and a positive, significant relationship with

distance from edge (bedge = 0.19 ± 0.02, P\ 0.0001;

Table S2; Figs. 2, 3). For the integrated model, there

was strong evidence for road-based sampling bias in

presence-only locations identified through this model

(droad = -1.15 ± 0.04; z = -23.10, P\ 0.0001). As

expected, data for the integratedmodel spanned a larger

environmental gradient than for the presence–absence

GLM (Fig. S2). For example, the range of percent

canopy cover at the 4 km scale for the presence–

absence data was 0–82 %, while for the integrated data

it was 0–100 %. In general, estimates from the

integrated model were weaker (in terms of smaller b
parameters) but also had greater precision (smaller

SEs), such that the coefficient of variation of parameter

estimates from integrated models was smaller and there

was less uncertainty in partial relationships (Fig. 3).

Based on block validation, the most parsimonious

integrated model tended to predict fox squirrel distri-

bution better than the GLMmodel that used presence–

absence data alone or an ensemble model that

averaged predictions from separate presence–absence

and presence-only models, based on measures of AUC

(presence–absence = 0.74; ensemble = 0.76, inte-

grated = 0.79), TSS (presence–absence = 0.51;

ensemble = 0.53, integrated = 0.57), and kappa

(presence–absence = 0.31; ensemble = 0.32, inte-

grated = 0.41). For cross-validated log-likelihoods,

performance was similar for presence–absence and

integrated models and slightly less for ensemble

models (presence–absence = -25.2; ensem-

ble = -26.6, integrated = -25.3). In addition, pre-

dictions from the integrated models were less sensitive

to the amount of presence–absence data used in model

building, whereas predictive accuracy from the GLM

and the ensemble model decreased as the amount of

presence–absence data decreased in model building,

particularly when less than 11 landscapes were used in

model training (Fig. 4a–d). The integrated model also

showed little sensitivity to the amount of presence-

only data used in model building (Fig. 4e–h).

Discussion

Accurately predicting species distributions is essential

for many ecological and conservation problems, yet the

data used for buildingpredictedmodels are often limited

(Pearce andBoyce 2006).We found that by uniting both

broad-scale presence-only data with finer-scale
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presence–absence data, we identified a larger charac-

teristic scale for the relationship of fox squirrel distri-

butionwith canopy cover. In addition,metrics regarding

predictive performance were generally greater. While

eachmetric showedmodest improvements (Fig. 4), this

pattern is notable for two reasons: (1) the presence–

absence data were used for model evaluation, such that

presence–absencemodels could be expected to perform

better due to similar sampling methods, and (2) benefits

were more robust to sample size. Importantly, these

benefits tended to be greater than from using common

post hoc approaches of ensemble techniques (Araujo

and New 2007; Marmion et al. 2009).

The value of uniting data in distribution models

The integrated distribution modeling framework we

used was recently developed independently by

Fig. 1 Study area in Florida, USA, where presence–absence

and presence-only data collection occurred for Sherman’s fox

squirrels. Presence-only (citizen science) locations shown as

small, grey dots. Landscapes for presence–absence sampling

(camera trapping) shown in red. Major roads included as grey

lines. (Color figure online)
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Dorazio (2014) and Fithian et al. (2015). In both

situations, the rationale for integrating data was to

improve presence-only modeling. Presence-only mod-

eling is commonly used, in a large part because of

widely available data and because such data are

frequently available across broad scales. However,

presence-only data have limited information content

(e.g., prevalence of the species is unknown) and such

data often suffer from sample selection bias, where

presence locations are frequently collected near roads

or other easily accessible areas (Kadmon et al. 2004;

Loiselle et al. 2008; Phillips et al. 2009). By integrat-

ing presence–absence information, this bias poten-

tially can be ameliorated, even with relatively little

amounts of presence–absence data. In addition, inte-

grating presence–absence data provides information

on species prevalence that is not available with

presence-only data (Hastie and Fithian 2013), which

can be helpful when the goal is to model the

probability of occurrence.

While presence–absence data can improve pres-

ence-only modeling efforts, we argue the corollary

that integration of presence-only data can improve

presence–absence modeling efforts. There are at least

three reasons why integration of presence-only data

may prove helpful for presence–absence modeling

efforts. First, presence–absence data are often more

limited in amount, which can lead to greater uncer-

tainty in environmental relationships. For fox

squirrels, there was greater uncertainty in predicted

environmental relationships when using presence–

absence data than when using an integrated distribu-

tion model and significant relationships with distance

Fig. 3 Predicted environmental relationships of Sherman fox

squirrels with a percent canopy cover at the 1-km scale,

b percent canopy cover at a 4-km scale; and c distance to edge

based on a generalized linear model (GLM) with presence–

absence data only (red/dashed line) and integrated distribution

model (blue). (Color figure online)
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Fig. 2 Model selection indicates a larger characteristic scaling

relationship of fox squirrel distribution with canopy cover using

an integrated distributionmodel. Shown are changes in Akaike’s

information criterion (AIC) as a function of the scale (radius) at

which canopy cover is quantified for conventional (presence–

absence) GLMs and integrated GLMs. In both sets of models,

non-linear relationships with canopy cover were considered (via

a quadratic term) and distance from edge was included
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from edge were only revealed with the integrated

model (Fig. 3). Given the widespread influence of

edge effects in shaping distributions across landscapes

(Ries et al. 2004), this pattern illustrates how

important landscape effects can potentially be better

revealed through data integration. Second, presence-

only data are often available across broader extents

than presence–absence data. When there is interest in
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Fig. 4 Effects of (a–d) the amount of presence–absence data

(number of landscapes) and (e–h) amount of presence-only data

used in distribution modeling on measures of predictive

performance for presence–absence models, ensemble models,

and integrated distribution models. Shown are results based on

(a, e) AUC and the True Skill Statistic; other metrics (r and

kappa) showed similar patterns
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extrapolating predictions of presence–absence models

into new areas (Miller et al. 2004), integrating

presence-only information that may be available

across a broader region may improvemodeling efforts.

Third, integrating presence-only data may provide

more information regarding wider environmental

gradients than those sampled with presence–absence

information, particularly for large-scale gradients and

conditions not captured in planned surveys (Smith

et al. 2011). Such integration could improve the ability

of presence–absence modeling to capture potential

non-linearities of environmental relationships and

ultimately environmental spaces of niches (Austin

2002; Soberon 2007).

Furthermore, this example illustrates how charac-

teristic scales identified in species-environment rela-

tionships can be sensitive to the data used and

highlights that by increasing the spatial extent con-

sidered, larger characteristic scales may emerge. Such

issues may help explain variability observed in

characteristic scales identified in species in different

regions (Jackson and Fahrig 2015). Given the long-

standing and widespread interest in understanding the

importance of spatial scale in ecology and evolution

(Wiens 1989; Horne and Schneider 1995; Fletcher

et al. 2013; Jackson and Fahrig 2014), models that

leverage different sources of data across scales may

prove useful in many situations.

Current limitations and future extensions

Integrating multiple data sources into models of

species distribution is a new perspective for distribu-

tion modeling and many advancements should occur.

While the integrated distribution model improved

predictions, there were some limitations of this

modeling approach that could be improved.

First, the model we used only included simple non-

linearities in environmental relationships that were

accounted for by adding polynomial terms. Many

other SDMs can capture highly non-linear relation-

ships (e.g., Elith and Graham 2009). Fithian et al.

(2015) argue that Eq. 3 could be extended to include

non-linear basis functions and models could be

extended to include splines, akin to generalized

additive models. In addition, Renner et al. (2015)

show how point process models can be implemented

with MAXENT, an algorithm that allows for highly

non-linear relationships to be estimated. Yet further

developments are needed for formally integrating

MAXENT with planned survey data.

Second, this approach ignored the problem of

imperfect detection due to observation errors.

Imperfect detection is common (Kellner and Swihart

2014), particularly in animal populations, and

heterogeneity in imperfect detection can influence

the predictive performance of models (Rota et al.

2011; Lahoz-Monfort et al. 2014). Dorazio (2014)

formulated an integrated distribution model that

linked presence-only data with abundance data using

an N-mixture model formulation (Royle 2004; Kery

et al. 2005), but analogous formulations that focus

on occupancy, rather than abundance, have yet to be

developed.

Third, this modeling approach does not formally

account for spatial autocorrelation. While we found

no significant autocorrelation in the residuals of

models, there was a non-significant tendency for

autocorrelation in the integrated model (Fig. S1).

Renner et al. (2015) review some point process

models that acknowledge the potential for spatial

autocorrelation, which could be extended into an

integrated distribution modeling framework. In

addition, it may be feasible to extend this approach

to other common regression-based approaches for

dealing with spatial dependence (Beale et al. 2010;

de Knegt et al. 2010).

Fourth, these frameworks could be extended to

better accommodate some aspects of multi-scale

environmental relationships. While the approach by

Keil et al. (2014) naturally accounts for multi-level

effects (e.g., different effects at the patch or landscape

scale), the approach we used here did not accommo-

date covariates influencing distributions at different

grains or levels for the independent data sets (Fletcher

and Hutto 2008). The framework we used assumed

that environmental covariates relevant to presence-

only locations are the same as for presence–absence

and occur at the same scales for the two data sources.

Yet it would be possible to link differential covariate

effects operating across regions (e.g., watersheds) that

could influence distribution based on both presence–

absence and presence-only data. Nonetheless, inte-

grated models easily accommodate data arising from

different spatial extents, which can help improve

extrapolation and transferring model predictions

across space (Miller et al. 2004; Wenger and Olden

2012).
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Conclusions

Integrating multiple data sources into models of

species distribution is a new frontier for distribution

modeling and provides a means to reliably tackle some

current limitations in our understanding of character-

istic scales (Smith et al. 2011; Jackson and Fahrig

2015; Miguet et al. in press). Here we provide an

example of integrating presence–absence and pres-

ence-only data, but other types of formal data

integration could occur (e.g., information on breeding,

dispersal, etc.). By integrating multiple sources of

information into the modeling process, greater insights

into environmental relationships and more accurate

predictions can occur. Consequently, we expect such

models will provide a powerful approach for address-

ing problems of species distributions and ongoing

landscape change.
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