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Abstract

Context GPS telemetry collars and their ability to

acquire accurate and consistently frequent locations

have increased the use of step selection functions

(SSFs) and path selection functions (PathSFs) for

studying animal movement and estimating resistance.

However, previously published SSFs and PathSFs

often do not accommodate multiple scales or multi-

scale modeling.

Objectives We present a method that allowsmultiple

scales to be analyzed with SSF and PathSF models.

We also explore the sensitivity of model results and

resistance surfaces to whether SSFs or PathSFs are

used, scale, prediction framework, and GPS collar

sampling interval.

Methods We use 5-min GPS collar data from pumas

(Puma concolor) in southern California to model SSFs

and PathSFs at multiple scales, to predict resistance

using two prediction frameworks (paired and

unpaired), and to explore potential bias from GPS

collar sampling intervals.

Results Regression coefficients were extremely sen-

sitive to scale and pumas exhibited multiple scales of

selection during movement. We found PathSFs pro-

duced stronger regression coefficients, larger resis-

tance values, and superior model performance than

SSFs. We observed more heterogeneous surfaces

when resistance was predicted in a paired framework

compared with an unpaired framework. Lastly, we

observed bias in habitat use and resistance results

when using a GPS collar sampling interval longer than

5 min.
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Conclusions The methods presented provide a novel

way to model multi-scale habitat selection and resis-

tance from movement data. Due to the sensitivity of

resistance surfaces to method, scale, and GPS sched-

ule, care should be used when modeling corridors for

conservation purposes using these methods.

Keywords Puma concolor � Resistance surface �
Connectivity � Corridors � Wildlife � Multi-scale

habitat modeling

Introduction

Given increasing human development and the frag-

mentation of natural habitats, wildlife populations are

becoming ever more isolated. Wildlife corridors can

mitigate this isolation by maintaining the exchange of

individuals and their genes between populations

(Crooks and Sanjayan 2006). Modeling corridors

often requires resistance-to-movement surfaces where

‘resistance’ represents the opposition an organism

may encounter as it moves through a landscape, either

in terms of movement ability, survival or both.

Though resistance is commonly estimated with

static detection points, the use of observed movement

steps or paths is considered more appropriate as the

these data explicitly represent passage through the

landscape (Richard and Armstrong 2010; Zeller et al.

2012). Movement may be defined as the straight-line

steps between consecutive points (Fortin et al. 2005),

or the entire pathway of an individual (Cushman and

Lewis 2010; Elliot et al. 2014). These are referred to as

step selection functions (SSFs) and path selection

functions (PathSFs), respectively. Both methods are

derived from classic resource selection functions

(RSFs) that employ a ‘used’ versus ‘available’ design

to estimate species–habitat relationships (Manly et al.

2002), and are analogous to modeling selection at

Johnson’s third order of habitat selection (selection of

habitat patches within the home range; Johnson 1980).

In SSFs, the ‘used’ data are the landscape variables

measured along each step between consecutive points.

‘Available’ data are obtained by generating random

steps (drawn from the empirical distribution of step

lengths and turning angles) from the start point of each

used step (Fig. 1a). Landscape variables are then

measured along these random steps. In PathSFs, the

entire path is used to calculate the ‘used’ data and that

same path is randomly shifted and rotated from the

used path to generate ‘available’ paths (Fig. 1b). SSFs

and PathSFs are modeled in a conditional (a.k.a. case-

controlled) logistic regression framework where each

used step or path is paired with those that are randomly

generated (Agresti 2002; Fortin et al. 2005). This

framework allows for a realistic comparison between

used and available (Compton et al. 2002; Fortin et al.

2005) and allows for context-dependent modeling

(Zeller et al. 2014). The regression models are then

used to predict the relative probability of movement

across a study area at each grid cell, the inverse of

which is used as the resistance surface. It is important

to note that, though these predictions are made using

the regression coefficients from the conditional logis-

tic regression models, they are applied to the study

area in an unpaired framework (more on this below).

For SSFs, the acquisition interval of the GPS collar

determines the temporal scale of analysis, which, in

turn, is inextricably tied to the spatial scale of analysis

(Thurfjell et al. 2014). For example, at a 1-h acqui-

sition interval, the distribution of random steps will

represent movements only ranging as far as the steps

achieved over that hour-long period. The sampling of

the landscape at this 1-h interval becomes the spatial

scale of the analysis (ignoring grain size), regardless of

whether this matches the strongest scale, or ‘charac-

teristic scale’ (Holland et al. 2004) of response of the

target species. The current SSF framework only allows

for the examination of a single scale and thereby runs

the risk of missing the true scale, or scales, of

response. In turn, this may lead to inaccurate estimates

of selection and resistance (Wheatley and Johnson

2009; Norththrup et al. 2013). This issue also affects

most PathSFs, in that only a single coarse scale is

examined. However, Elliot et al. (2014) shifted the

random paths at varying distances from the used path

to explore various scales and construct multi-scale

models. This is an improvement to the single-scale

PathSF, but it does not allow for examination of scales

that are smaller than the radius of the path, which can

be quite large, and precludes investigating finer spatial

scales to which an individual may be responding.

Given the importance of multi-scale modeling for

habitat selection and resistance, SSFs and PathSFs

would bemuch improved if various scales, from fine to

coarse, could be examined and included in the models.
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Using SSFs and PathSFs to estimate resistance first

involves predicting the relative probability of move-

ment across the study area. In current SSF and PathSF

applications, relative probability of movement has

been predicted across a surface through the following

formula (following Manly et al. 2002):

ŵðxÞ ¼ exp b1x1 þ b2x2 þ b3x3 þ � � � þ bpxp
� �

: ð1Þ

Here, the regression coefficients are those derived

from the conditional logistic regression models, which

are multiplied by the predictor variables (x) as mea-

sured at each pixel in the landscape. Though the

regression coefficients are estimated from assessing

what is along each used step or path and what is

available around each step or path, the predictions are

made in the absence of available data—in an unpaired

framework. This results in each pixel of a given

landscape feature (e.g., forest) having the same

relative predicted probability of movement, regardless

of its surroundings. By incorporating the available

data around each pixel in the landscape, probability of

movement can be estimated in a truly paired context-

dependent framework. This allows for a unique

probability of movement to be estimated for each

pixel in the landscape, where the value of a pixel

reflects the attributes of that pixel as well as the

attributes surrounding that pixel (e.g., a pixel of forest

surrounded by an urban area would likely have a much

Fig. 1 Conceptual

illustration of a used and

available steps for a

traditional, single scale step

selection function, b used

and available paths for a

traditional, single scale path

selection function, c our
proposed multi-scale

method for step and path

selection functions, using a

kernel to estimate different

scales of available habitat

and d illustrates the true path
used by an individual (made

up of 5-min steps) over an

hour-long period and the

pseudopath over that same

time period. The pseudopath

represents the path that one

would obtain with a 60-min

GPS collar fix interval
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different relative probability value than a pixel of

forest surrounded by forest). To determine the utility

of a paired framework for predicting movement and

estimating resistance for wildlife, this approach should

be explored and compared to the unpaired framework.

SSFs and PathSFs have become more accessible

due to the increased use of GPS telemetry collars and

their ability to acquire relatively accurate, consistent,

and frequent locations. However, GPS collar acquisi-

tion intervals can vary widely, from less than 5 min to

6 h and beyond. Fortin et al. (2005) and Coulon et al.

(2008) state that SSFs do not assume an individual

follows the straight line between points, but rather test

whether selection of steps is related to what lies

between these points. Still, predictor variables are

most-often measured on the straight line, or a buffered

area around the line (Thurfjell et al. 2014). Therefore,

SSFs and PathSFs may be subject to bias when the

acquisition interval is too long to accurately reflect

movement for a species. Though no studies to date

have examined the potential bias introduced by

acquisition intervals for SSFs and PathSFs, studies

focused on movement distance and home range size

have found that as sampling intervals increase (1)

paths of individuals become less tortuous and expo-

nentially shorter in length (Mills et al. 2006), (2)

movement rates decrease (Joly 2005), (3) minimum

convex polygon home range estimates become smaller

(Mills et al. 2006; Brown et al. 2012), and (4) areas

utilized by an individual may be underrepresented,

while areas avoided by an individual may be overrep-

resented (Brown et al. 2012). This final finding is of

particular concern for inference from SSFs and

PathSFs, and further research is needed to determine

how sensitive movement models, resistance surfaces

and corridors are to GPS collar acquisition interval.

Our objective is to explore these potential issues of

scale, prediction framework, and GPS collar acquisi-

tion interval when using SSF and PathSFs for mod-

eling movement and resistance. We use GPS collar

data from pumas (Puma concolor) in southern Cali-

fornia acquired at 5-min intervals, to (1) present a

novel SSF/PathSF method that can examine move-

ment at multiple scales, (2) use this new method to

identify the characteristic scale(s) of response of

pumas and create both single and multi-scale models,

(3) predict probability of movement and resistance

across our study area in a both a paired and an unpaired

framework, and (4) investigate whether acquisition

intervals greater than 5 min introduce bias in habitat

selection and resistance results. We also determine the

sensitivity of resistance surfaces to scale, prediction

framework, and acquisition interval. Finally, as an

illustration of how differences in scale, prediction

framework, and acquisition interval may affect con-

servation decisions, we use circuit theory to model

connectivity across a subsection of our study area for

several scales of analysis including multi-scale

models.

Methods

Study area and data collection

The study area, as previously described in Zeller et al.

(2014), was located in the Santa Ana Mountains of

southern California (Fig. 2). Between October 2011

andMarch 2014, ten pumas (six female and four male)

were fitted with Lotek 4400 S GPS collars pro-

grammed to acquire locational fixes every 5 min

(LotekWireless, Inc., Canada). Collar duration ranged

from 9 to 71 days (median = 29). Long-term posi-

tional accuracy of the GPS collars from manufacturer

tests is 5–10 m, though accuracy may decrease with

certain vegetation types and topographical conditions

(Chang personal communication). Two-dimensional

fixes with a positional dilution of precision[5 were

removed to avoid the use of data that may have large

spatial errors, as recommended by Lewis et al. (2007).

The final data set consisted of 75,716 fixes across the

10 individuals (range = 1650–18,464; med-

ian = 7147). Due to the low number of individuals,

sexes were pooled in the analyses.

We used land cover types from the California

wildlife–habitat relationship database as independent

variables in our RSFs. These categorical habitat data

were obtained from the CalVeg geospatial data set

(USDA Forest Service 2007) in vector format at the

1:24,000 scale, which we rasterized at a 30 m

resolution. Though there were 25 mapped land cover

types present in the study area, many types had very

low occurrence (\1 %), therefore, we aggregated

these 25 types into nine classes based on descriptions

from the California Department of Fish and Wildlife

(1988). The aggregated land cover classes and their

percentages of the study area were as follows:

chaparral (45 %), urban (19 %), coastal scrub
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(14 %), annual grassland (6 %), coastal oak wood-

lands (5 %), agriculture (5 %), riparian areas (3 %),

perennial grassland (2 %), and naturally barren or

open areas (1 %) (Fig. 2). There has been little

vegetation change in the study area between the time

the CalVeg data set was produced and the time the

puma data was collected. Though the Santiago Fire

affected portions of the western flank of the Santa Ana

Mountains, the vegetation types remained the same

pre- and post-fire.

Multi-scale SSF and PathSF method

SSFs and PathSFs traditionally use random steps or

paths for estimating ‘available’, thus constraining the

available area to the longest step/path lengths

observed. When we free ourselves from using random

steps and paths, we have more flexibility to explore

multiple scales. Specifically, if we use a density kernel

around the step or path we obtain a census of the

proportion of available land cover types and avoid

issues of selecting a certain number of steps or paths

from the random sample (Norththrup et al. 2013). The

density kernel may be weighted by an appropriate

distribution; in our case, we used an empirically-

derived Pareto distribution as our kernel (as described

in Zeller et al. 2014), representing different distances

traveled over specific time intervals (e.g., 5, 60 min,

etc.). At the 5-min interval, the radius of the Pareto

kernel was small resulting in a small available area

sampled around each step or path (e.g., Fig. 1c). The

radii of the Pareto kernel increased with increasing

time intervals (e.g., Fig. 1c), thereby allowing us to

sample different scales around each step or path. A

more detailed description of our method is provided

below.

I-15

I-5

I-215

Santa Ana

Temecula

Oceanside

Escondido

Land Cover Type

Federal and State Highways

Annual Grassland

Barren/Open Water

Coastal Oak Woodland

Chaparral

Coastal Scrub

Perennial Grassland

Urban

Riparian

0 10 20 30 405
Kilometers

Agriculture

Santa Ana
Mountains

Palomar
Mountains

Fig. 2 Southern California study area showing land cover types used in the analysis
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Used steps

All data analyses were performed using R software (R

Core Team 2013). We first calculated the distance of

each step between consecutive points and identified all

steps that measured 200 m or more; the 200 m distance

threshold was to ensure that steps represented actual

‘movement’ through the landscape rather than local

‘resource use’ (see Zeller et al. 2014).We buffered each

movement step by a 30 m fixed-width buffer to account

for GPS error (Rettie and McLoughlin 1999) and

incorporate the immediate environment around each

step. We calculated our ‘used’ data for the SSFs as the

proportion of land cover types along each buffered step.

Used paths

Becausewe only had 10 individuals, using the entire path

for our path analysis would have resulted in an

insufficiently small sample size. Therefore, we subset

the entire path of each individual into 24-h paths, which

resulted in amore reasonable sample size of n = 315. As

with the steps, we buffered the paths by a 30 m fixed-

width buffer and calculated the proportion of land cover

types within this buffer. This was the ‘used’ data for our

PathSFs. Because inferences about habitat use and

resistance might be affected by the time of day at which

a 24-h path begins, we ran 12 subsets; the first subset

started at midnight, the next subset started at 2 a.m., etc.

We ran a PathSF model (more on this below) for each

subset separately and we averaged the regression

coefficients across all 12 subsets to obtain a final model.

Available areas/scales of analysis

As described above and in Zeller et al. (2014), we

estimated ‘available’ using a Pareto-weighted kernel

around each step or path. To model multiple scales, we

increased the time interval over which the Pareto

distribution parameters were estimated and calculated

available areas for each interval/scale separately. We

estimated the parameters of the Pareto distribution as

follows:

(1) We selected 19 different time intervals over

which to empirically estimate the Pareto kernel.

These intervals consisted of the 5-min time

interval, the 20-min interval, and then every 20

up to 360 min (6 h).

(2) We subset the 5-min data at these different time

periods and calculated the displacement dis-

tance between each point. This provided us with

the distribution of displacement distances for

each time period.

(3) We then fit a generalized Pareto function to the

distribution of displacement distances for each

time interval using the gpd.fit function in the

gPdtest package (Estrada and Alva 2011). We

set the radius of the available area at the 97.5

percentile of the Pareto distribution, or the

maximum observed displacement distance,

whichever was smaller.

Hereafter, we refer to the radius of each Pareto

kernel as the scale of analysis. Our scale reflects the

size or extent of the ecological neighborhood (as

defined by the kernel) around the step/path, not the

spatial grain of the data, which we held constant at

30 m for all analyses. These scales ranged from 532 to

7390 m (Appendix 1). To obtain a kernel around a step

or path for a scale, we distributed points uniformly

along each step or path at a distance determined by the

radii of the Pareto kernel for that scale.We then placed

the Pareto kernel over each point and calculated the

proportion of land cover types weighted by the Pareto

kernel. The available data for each step or path at each

scale was obtained by calculating the mean proportion

of land cover types across all the Pareto kernels

distributed along its length. Note, because the avail-

able areas are weighted by the Pareto distribution, they

more heavily weight areas closer to the used step or

path and the scales should not be thought of as a

uniform buffer around each used step or path.

Statistical analysis

We provide a flow chart summarizing our statistical

analyses procedure in Appendix 2.

For the step and path data we paired each used step

or path with the available area for that same step or

path at a scale and ran conditional logistic regression

models. We specified the conditional logistic regres-

sion models as described in Zeller et al. (2014), using

the differences in the proportion of each land cover

type between each used step or path and its corre-

sponding available area as the predictor variables. In

this specification, the response variable is always 1 and

there is no model intercept (Agresti 2002). Because we
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are using the proportion of each land cover type as

predictor variables, we do not have a single land cover

variable with the categories coded as dummy vari-

ables, but instead have a single predictor variable for

each of our nine land cover types.

We ran simple conditional logistic regression

models at each scale for each land cover type

separately. We also ran multiple conditional logistic

regression models at each scale using the land cover

type with the weakest effect in the simple regressions

as our reference class. Correlation among our predic-

tor variables was relatively low (maximum Pearson

correlation coefficient = -0.48), allowing us to retain

all predictor variables in our models. We attempted to

run conditional logistic mixed effects logistic regres-

sion models, using individual puma as the random

effect, but our models often failed to converge.

Therefore, we did not use the mixed effects framework

and simply used the glm function in R for our

modeling.

To develop the conditional multi-scale logistic

regression models, we identified the characteristic

scale of response from the simple conditional logistic

regression models as the scale with the largest absolute

regression coefficient. We then used the characteristic

scale for each land cover type to construct a multi-

scale, multiple logistic regression model for our step

and path data.

Model performance

For each of our single- and multi-scale multiple logistic

regression models, we performed a 10-fold cross

validation using the methods recommended by Johnson

et al. (2006) and evaluated the predictive performance

of the models using Lin’s (1989) concordance corre-

lation coefficient (CCC) as applied in Zeller et al.

(2014). Because the SSFs and PathSFs had different

sample sizes, we could not use an information criterion

approach for model selection across all step and path

models. Within the SSFs and PathSFs, however, we did

have the same sample sizes and therefore calculated

Akaike’s information criterion (AIC; Burnham and

Anderson 2002) for SSFs and PathSFs separately.

Predicting probability of movement and resistance

As noted in the ‘‘Introduction’’ section, previous SSFs

and PathSFs that have used the have predicted the

relative probability of movement values across an area

of interest in an unpaired framework, using only the

attributes at each pixel. This method does not consider

the attributes of surrounding pixels. In order to predict

probability of movement in the fully paired framework

that was used to develop the models, we first

calculated the proportion of land cover types in a

30-m fixed-width buffer at each pixel in our study area

(which is akin to the ‘used’ data in the regression

models). For a scale of interest, we then placed a

Pareto kernel around each pixel and calculated the

proportion of land cover types within this kernel

(which is akin to the ‘available’ data in the regression

models). We calculated the differences in the propor-

tion of land cover types between each focal pixel and

the surrounding kernel and used these as our predictor

variables. Incorporating the information around each

pixel allowed us to predict a unique probability of

movement for every pixel across the study area using

all the information that went into building the model.

We also predicted the relative probability of move-

ment in the traditional unpaired framework for

comparison.

For our paired and unpaired probability of move-

ment surfaces, we calculated resistance by taking the

inverse of the probability of movement values. We did

not rescale or truncate these values because we did not

want to introduce any unnecessary subjectivity into

the resistance surfaces. We chose to estimate resis-

tance instead of conductance (which would simply be

the raw predicted surface) because resistance surfaces

are one of the most popular ways to estimate

connectivity and model corridors (Zeller et al. 2012).

We estimated paired and unpaired resistance surfaces

at the 532, 2618, 3505, 4296, 5275, and 7390 m scales

as well as for the multi-scale models for steps and

paths.

Acquisition interval bias/pseudo paths

To investigate possible bias introduced by longer

acquisition intervals, we subset the 5-min data so that

it only contained point locations every 60 min. These

data represent the steps/paths one would obtain with

an hourly GPS collar acquisition interval. We refer to

the 5-min data as the true steps/paths and the 60-min

data as our pseudo steps/paths (Fig. 1d). We calcu-

lated used and available for the pseudo steps and paths,

ran simple and multiple conditional logistic

Landscape Ecol (2016) 31:1319–1335 1325
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regressions for SSFs and PathSFs, and predicted

resistance in the paired framework as described above.

We considered the paths from the 5-min data as our

truth and assessed bias by calculating the mean

absolute difference between the regression coeffi-

cients obtained from the models using the 5-min paths

and those using the pseudo paths for each land cover

type at each scale as well as for the multi-scale model.

We then averaged the differences across cover types at

each scale to measure overall bias.

Sensitivity of predicted resistance surfaces

and corridor locations to scale, prediction

framework, and acquisition interval

We visually assessed the resistance surfaces from our

different scales, prediction frameworks, and acquisi-

tion intervals and noted disparities. We also compared

the distribution of resistance values between resis-

tance surfaces.

To get a cursory sense of how differences in

resistance surfaces might translate to differences in

corridors, we performed a connectivity analysis in the

Temecula corridor region within our study area. This

area has received much attention as the last viable link

between the Santa Ana puma population and popula-

tions in the Peninsular Range of southern California

(Ernest et al. 2014; Vickers et al. 2015). Although

there is no standard way to evaluate congruence

among predicted corridors, recent conservation atten-

tion has been paid to identifying locations for road

crossing structures across interstate 15 (I-15), the

major barrier in this linkage. Therefore, we chose

locations where modeled corridors cross I-15 as a

simple but meaningful way to compare model predic-

tions (Cushman et al. 2014). We used CircuitScape

(McRae et al. 2013) to create current density maps

(McRae et al. 2008) between protected areas on either

side of I-15. We then identified the top 20 pixels along

I-15 with the most current flow that might be

considered as locations for road crossing structures.

In this context, ‘current flow’ represents the number of

random walkers that would move through a pixel as

they passed between protected areas. We noted the

location of each of these pixels for each resistance

model as well as differences in these locations

between resistance models. We recognize there are

myriad methods for modeling connectivity across

resistance surfaces (Cushman et al. 2013), but as this

was not the focus of our paper, we only selected the

one method as an illustrative example of how differ-

ences in resistance surfaces may translate into differ-

ences in connectivity.

Results

Characteristic scales of response and step

versus path selection functions

The regression coefficients were sensitive to scale.

Although puma response to most land cover types was

consistently positive or negative across scales, annual

grassland and agriculture resulted in a change of sign

with scale (Fig. 3).

For both SSFs and PathSFs, pumas responded most

strongly to annual grassland, barren, chaparral, coastal

scrub, and perennial grassland at finer scales and to

agriculture and urban at coarser scales (Fig. 3).

Despite these general similarities, the exact charac-

teristic scale between SSFs and PathSFs differed for

every cover type except chaparral (Fig. 3). The land

cover types that exhibited the greatest difference in

characteristic scales between SSFs and PathSFs were

coastal oak woodland and riparian (Fig. 3).

The simple conditional logistic regression models

from the SSF and PathSFs resulted in different

regression coefficients (Fig. 3). These differences

could be pronounced, as evidenced by riparian and

urban land cover types. With the exception of annual

grassland, the PathSFs generally resulted in much

larger (positive or negative) regression coefficients

than the SSFs.

Model performance

Both SSFs and PathSFs performed well across scales,

with the exception of the PathSF model for the 532 m

scale (Fig. 4). Model performance for both SSFs and

PathSFs tended to increase as scale increased and with

the exception of the finest scale, the PathSFs outper-

formed the SSFs (Fig. 4). The best model performance

for the SSFs was achieved at the 6555 m scale (0.976)

and for the PathSFs at the 7390 m scale (0.992).

Interestingly, the multi-scale models did not have the

highest CCC value, though for both SSFs and PathSFs

they were similar to the best model (0.943 and 0.982,

respectively). We also calculated AIC values for the
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models. Because the SSFs and PathSFs had different

sample sizes, we could not compare AIC values

between the two methods, but within SSFs and

PathSFs, AIC values decreased with increasing scale

(Appendix 3). The multi-scale model had the lowest

AIC value for the SSFs and the 6555 m scale had the

lowest AIC value for the PathSFs.

Acquisition interval bias

Our 60-min pseudo data (representing GPS data

collected at an hour-long acquisition interval) resulted

in biased regression coefficients compared with our

5-min data (Fig. 5; Appendix 4). As expected, biases

were higher for the PathSFs than the SSFs (Fig. 5).

Appendix 4 provides the regression coefficients for

each land cover type for the SSFs using the true step

data and using the 60-min pseudo steps. In general, for

land cover types that were preferred, the pseudo steps

crossed these cover types less frequently, resulting in

smaller regression coefficients and sometimes result-

ing in a change in sign from preference to avoidance.

In fact, for the annual grassland and barren cover

types, the true steps show a consistent preference for

these types across scales while the pseudo steps show a

consistent avoidance across scales. The opposite effect

was generally seen for land cover types that were

avoided. For these, the pseudo-steps crossed more of

these cover types than were actually used, resulting in

reduced avoidance, and in the case of coastal scrub,

preference.

Sensitivity of predicted resistance surfaces

and corridors to scale, prediction framework,

and acquisition interval

There were notable differences in the ranges of

resistance values between SSFs and PathSFs, among

scales, and among prediction frameworks (e.g., paired

and unpaired; Fig. 6; Appendices 5, 6). In keeping

with the regression coefficient results above, resis-

tance values derived from PathSFs tended to be higher

than those derived from SSFs (Fig. 6; Appendices 5,

6). Also, resistance values at finer scales were

generally smaller than resistance values at coarser

scales. Increasing resistance with scale can be

explained by the generally increasing strength of

avoidance with scale. As avoidance of a land cover

type increased, the relative predicted probability of

movement decreased. Taking the inverse of these

small values to predict resistance resulted in high

resistance values. Note that increasing selection with

scale does not result in dramatic changes to the

resistance surface since, using the method described

above, the lowest value possible will always be 1.

The maximum resistance values from predicting

resistance in the paired framework tended to be larger

than those obtained from predicting resistance in the

bFig. 3 Regression coefficients for land cover types used in the

simple conditional logistic regression SSF and PathSF models

across the 19 scales of analysis

Fig. 4 Predictive performance, as measured by the concor-

dance correlation coefficient, of multiple conditional logistic

regression SSF and PathSFmodels at all scales and for the multi-

scale model

Fig. 5 Bias in regression coefficients at a 60-min acquisition

interval. Bias was calculated by taking the mean absolute

difference between the regression coefficients obtained from the

multiple SSF and PathSF models using the true 5-min data and

those using the 60-min pseudo data for each land cover type at

each scale and for the multi-scale models. We then averaged the

differences across cover types at each scale
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unpaired framework (Appendix 5). The other

notable difference between the frameworks was that,

since the unpaired framework was not context-depen-

dent, it resulted in the same resistance value for a cover

type regardless of its context. Because urban, com-

prising 19 % of the study area, was the most avoided

land cover type and resulted in the highest resistance

values, the 91st–100th quantiles for the unpaired

surfaces were the same (Appendix 5). We can

visualize the consistency among cover types in the

first columns of Fig. 6 (SSF results) and Appendix 6

(PathSF results). The resistance surfaces from the

paired frameworks are context dependent and rely not

only on what is at each pixel, but what is surrounding

each pixel. For example, when a puma is in a pixel that

is comprised of coastal oak woodland, a land cover

type they prefer, moving from coastal oak woodland to

less optimal habitat will result in an increased

resistance. This is seen in the second columns of

Fig. 6 and Appendix 6, in the southeastern part of the

study area where coastal oak woodland patches have

the lowest resistance but are surrounded by a band of

high resistance. Another example is in urban areas.

Moving into an urban area has a high resistance,

however, once inside an urban area, there is no

difference between the proportion of urban in the used

and available and thus, the resistance is not as high. In

general, the resistance surfaces derived from the

Fig. 6 Resistance surfaces obtained from the SSF models. The

first column contains the resistance surfaces predicted in the

unpaired framework, the second column contains resistance

surfaces predicted in the paired framework, and the last column

contains resistance surfaces predicted with pseudo steps in the

paired framework. The first row contains the resistance surfaces

from the smallest scale model, the middle row the mid-scale

model, and the last row the multi-scale model. Resistance

surfaces for the PathSFs are provided in Appendix 5

Landscape Ecol (2016) 31:1319–1335 1329

123



paired models are characterized by much greater

spatial heterogeneity in resistance and a much greater

range of resistance values (Fig. 6; Appendix 6).

From the CircuitScape current density surfaces, we

identified the top 20 pixels along I-15 that had the most

current, or greatest flow of individuals. These loca-

tions are shown, along with the current surfaces in

Fig. 7 (SSFs) and Appendix 7 (PathSFs). Locations

varied among SSFs and PathSFs and among scales.

Locations were more similar at the same scale across

methods (SSFs vs. PathSFs) and frameworks (un-

paired vs. paired) than within the same method or

framework across scales, indicating scale is a major

factor in connectivity differences.

Using the 60-min pseudo paths in the SSFs and

PathSFs resulted in sometimes markedly different

resistance surfaces and biased the road crossing

locations (last column, Figs. 6, 7; Appendices 6, 7).

For example, resistance surfaces tended to be biased

high, particularly for SSFs. In addition, for the SSF

models, crossing locations for the biased SSFs (based

on the pseudo steps) tended to miss potential crossing

locations in the middle section of I-15 that were picked

up with the models based on true paths. These biased

SSFs also identified crossing locations that were not

present in any of the models that used the true paths

(Fig. 7).

Discussion

We found that pumas have multiple characteristic

scales during movement events. In our population,

pumas exhibited a mostly bi-modal response to scale;

Fig. 7 SSF CircuitScape current density surfaces (log10

transformed) and road pixels with the highest current densities.

The vertical line represents interstate-15, the black dots

represent the top 20 pixels along I-15 with the highest current

density. The first column contains current maps resulting from

predicting resistance in the unpaired framework, the second

column contains maps predicted in the paired framework, and

the last column contains maps predicted with 60-min pseudo

steps in the paired framework. The first row contains the current

maps from the smallest scale model, the middle row the mid-

scale model, and the last row the multi-scale model. Current

density maps for the PathSFs are provided in Appendix 6
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characteristic scales were at a coarse scale for urban

and agriculture, and at a fine scale for the remaining

cover types, highlighting the importance of modeling

movement at multiple spatial scales. We found

regression coefficients to be extremely sensitive to

scale. For example, for the PathSFs, regression

coefficients ranged from -10 to -30 for the urban

cover type, and -4 to -15 for the chaparral cover

type. Regression coefficients also were prone to sign

changes for some cover types, indicating different

conclusions may be reached regarding habitat prefer-

ence or avoidance with different scales. We found that

regression coefficients from the PathSF models were

generally greater than those from the SSF models and

that characteristic scales differed between the SSFs

and the PathSFs, indicating that choice of method may

influence inference about movement and resistance

(more on this below).

With the exception of the finest scale, SSF and

PathSF models performed well across all scales (CCC

[0.8) and PathSF models outperformed SSF models.

Though the multi-scale models performed extremely

well, they did not outperform some of the coarser,

single-scale models.

Resistance surfaces differed between SSFs and

PathSFs, with the PathSFs having higher resistance

values than the SSFs. This was undoubtedly due to the

greater avoidance of some cover types in the PathSFs

compared with the SSFs.

Resistance surfaces also differed across scales. The

finest scale produced the lowest range of resistance

values, especially for the SSFs, and resistance gener-

ally increased with scale. This is again a reflection of

the coefficients becoming more negative for certain

cover types as scale increased. Increase in selection or

avoidance with scale may be attributed to the fact that

more of the landscape is sampled at larger scales. For

example, when smaller scales are used, the available

areas are more similar to the used areas and the models

do not have much power to discern between selection

and avoidance, resulting in weak regression coeffi-

cients. As scales broaden, the available areas represent

a wider pool of conditions, enabling the model to more

powerfully reflect differences in selection choices

made by individuals.

The greatest conceptual difference in resistance

surfaces was seen between predicting resistance in the

unpaired versus the paired framework. In the unpaired

resistance surfaces, it is evident that each cover type

had a single resistance value regardless of its land-

scape context, whereas in the paired framework, each

pixel had a unique value depending on its landscape

context. This created more heterogeneous surfaces

(more on this below). We found these differences

among SSFs and PathSFs, scale, and prediction

framework carried through to estimates of connectiv-

ity and road crossing locations.

Lastly, we found that regression coefficients, resis-

tance surfaces, and corridors were sensitive to GPS

collar acquisition interval. There was a consistent 3–4-

fold difference in regression coefficients between the

true 5-min steps/paths and the 60-min steps/paths. For

some land cover types, using a longer acquisition

interval resulted in a change of sign in the regression

coefficient. Not surprisingly, CircuitScape current

maps and road crossing locations were different

between models that used the true paths versus those

that used the pseudo paths. Therefore, a mismatch

between GPS collar acquisition interval and species

vagility may ultimately bias corridor conservation

planning when using SSFs and PathSFs.

There is ample literature demonstrating that organ-

isms select habitat at multiple spatial scales (see

review by McGarigal et al. accepted). These multi-

scale relationships have traditionally been modeled

using RSFs based on point, or detection, data (e.g.,

DeCesare et al. 2012; Martin and Fahrig 2012; Zeller

et al. 2014), not movement data. We believe this is due

to the fact that methodological limitations with SSFs

and PathSFs have constrained the exploration of

scaling relationships and multi-scale models. How-

ever, there has been some exploration of scales with

PathSFs. After Cushman et al. (2010) presented the

first PathSF methodology which, involves shifting and

rotating random paths to sample available habitat

(Fig. 1b). Reding et al. (2013) was the first to

incorporate more than one scale. Their paper on

bobcats used buffers of two sizes around both the used

and available paths in order to compare selection at

these scales and combine the two scales into a single

model. Elliot et al. (2014) used the original Cushman

et al. (2010) method but changed the extent to which

paths were shifted in order to explore multiple scales

and construct multi-scale models. However, the Elliot

et al. (2014) method does not allow for examination of

fine scales. Here, we offer an improvement to SSF and

PathSF methods for modeling habitat selection during

movement at multiple scales and with multi-scale
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models. Our method is easily reproducible and can

accommodate any number of biologically justified

scales.

With our method, we found that individuals were

not always operating at a single scale during move-

ment and that multi-scale responses may be present.

For some land cover types, we obtained stronger

responses at coarser spatial and temporal scales. This

is similar to Elliot et al. (2014) who found that lions in

southern Africa select preferred vegetation types at

fine spatial scales, and avoided anthropogenic risk,

such as urban areas, at broad spatial scales. For our

pumas, the coarse-scale response to urban and agri-

cultural areas may be due to knowledge of the

landscape including the location of large areas of

human development. We used data from pumas that

had established home ranges; however, results may

vary with data from pumas that are dispersing in areas

previously unknown to them. For dispersing individ-

uals, it would not be surprising to find that habitat

selection during movement occurs at much finer

scales, since an individual may be reacting only to

what is in their immediate perceptual range, not prior

knowledge. Further research is needed to determine if

characteristic scales for pumas differ between resident

and dispersing individuals.

When estimating resistance, detection data is the

most often-used data type, mainly due to the fact that it

is relatively easy to acquire compared with movement

data (Zeller et al. 2012). However, using step or path

data to estimate resistance is conceptually more

appealing since it explicitly represents movement.

When step data is available, path data is typically

available as well since it is simply a series of steps and

one is left to select one approach over the other.

Cushman et al. (2010) promoted PathSFs as being

superior to SSFs given the fact that spatial and

temporal autocorrelation of observations can be

avoided, while maintaining the biologically important

spatial patterns of movement. Given the larger

regression coefficients and better model performance

of PathSFs compared to SSFs, our results also support

the use of PathSFs over SSFs. The differences in

regression coefficients and resistance surfaces

between SSFs and PathSFs may reflect the different

types of movement these two approaches represent.

We used a distance threshold for our step data so that

the steps in our SSF explicitly represented movement

events. Conversely, our paths represent all the

behaviors in which an individual was engaged

throughout the course of a day. Though the paths, as

a trajectory of movement over a time period, are a

representation of movement, they capture both the

directed movement an individual may take when

traveling between resource use patches as well as the

slow, more tortuous movement an individual may take

while acquiring resources. For estimating resistance, it

may be argued that, as an individual moves about the

landscape, they may be making directed movement as

well as acquiring resources, again indicating that

PathSFs may be the method of choice.

To our knowledge, this was the first study to

conduct a PathSF for pumas and only the third to

conduct an SSF. Dickson et al. (2005) and Dickson

and Beier (2007) used an SSF approach to estimate

habitat selection during movement for pumas in our

same study area. Their steps were at 15-min intervals

and they used a compositional analysis to rank cover

types (from most to least preferred) as riparian, scrub,

chaparral, grassland, woodland, and urban. With the

exception of scrub and chaparral, these results agree

with what we found in our SSFs. Differences may be

due to different sample sizes, or the fact that compo-

sitional analyses cannot be conducted in the condi-

tional logistic regression framework used herein. As

noted in Dickson et al. (2005), previous research using

point data found pumas avoid grasslands, apparently

due to lack of stalking cover. However, during

movement pumas may prefer grassland for increased

mobility. Similarly, we found pumas to prefer natu-

rally barren areas during movement. These results

highlight the importance of accounting for behavioral

state in modeling habitat selection since inferences

based on movement can be different from those based

on resource use (Squires et al. 2013; Elliot et al. 2014;

Zeller et al. 2014). As this paper was aimed at testing

various considerations for running SSF and PathSF

models, we wanted to simplify the models and results

by using only land cover classes as predictor variables.

Future analyses for pumas in this study area could be

improved by using other geospatial layers known to

affect puma habitat selection including slope, topo-

graphic ruggedness, and roads (Burdett et al. 2010;

Kertson et al. 2011; Wilmers et al. 2013).

The conditional logistic regression models allow

for a biologically relevant comparison between used

and available (Compton et al. 2002; Fortin et al. 2005)

and the potential for using a context-dependent
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modeling approach (Zeller et al. 2014). For these

reasons, extending the conditional framework to

predicting the relative probability of movement and

resistance is attractive. In previous studies, conditional

logistic regression has been used to estimate the

regression coefficients for the independent variables in

a model, however these regression coefficients are

then used in an unpaired framework to predict the

relative probability of movement across a study area.

We incorporated the available area around each pixel

in the study area in our predicted surfaces for a truly

paired approach to modeling resistance. In such a

surface, resistance was estimated from each location

on the landscape, putting the individual in the context

of their surroundings. These surfaces are clearly

applicable for individual-based modeling where indi-

viduals are making choices as they move through the

landscape. However, using the paired approach needs

further exploration. These surfaces may pose prob-

lems for modeling connectivity in certain landscapes

because they may not adequately account for the

absolute fitness costs of making any particular deci-

sion. For example, in the paired resistance surfaces the

difficulty of entering an urban area (a strongly avoided

land cover type) from an adjacent, preferred habitat

reflects not only the relative fitness tradeoffs of

moving into the urban area (i.e., the relative cost of

moving into the urban area is high compared to

moving away from the urban area), but also perhaps

the ‘‘absolute’’ fitness costs of making that decision

(i.e., moving through urban land cover confers a high

fitness cost). However, once an individual moves

inside the urban area, the context-dependent resistance

is low because the relative cost of moving to another

cell of urban is relatively low since the tradeoffs are all

the same, even though the absolute fitness costs of

moving through any cell of urban is still very high. The

paired surface also produced concerning rings of high

resistance around urban areas which, for moving into

an urban area makes biological sense, but does not

make biological sense for moving out of an urban area.

In general, the paired resistance surfaces capture the

relative fitness costs of making context-dependent

decisions, whereas the unpaired surfaces capture the

absolute fitness costs of making any decision. Given

these issues, the utility of these surfaces used singly or

in combination for corridor modeling is an area ripe

for further research.

GPS collar acquisition intervals are often selected

by weighing the desire to collect fixes at regularly

short intervals against the desire for a long-lasting

collar. We found, for studying movement in the

context of SSFs and PathSFs, that collecting fixes at

short intervals was critical in reducing bias in regres-

sion coefficients and resistance estimates. In previous

SSFs, acquisition intervals have ranged from 1 min

(Potts et al. 2014) to 1 day (Richard and Armstrong

2010) for birds, 1 h (van Beest et al. 2012) to 6 h

(Coulon et al. 2008) for ungulates, and 30 min

(Squires et al. 2013) to 4 h (Roever et al. 2010) for

carnivore species. More research is needed to deter-

mine the appropriate intervals for studying movement

for a species, but in general the optimal interval will be

short (no more than a few minutes) for highly vagile

species that do not travel on straight paths. Indeed, it is

possible that an interval\5 min would be better for

pumas than the 5-min data used in this paper. Thurfjell

et al. (2014) recommended performing pilot studies to

determine the appropriate acquisition interval and

highlighted the relative ease with which this may be

done given remote options for downloading data and

programming the GPS collars. Employing SSFs and

PathSFs as we have done here, by calculating predictor

variables along the step or path, should be done with

great caution if it is suspected that the acquisition

interval is too infrequent to capture true movement

paths. Investigating the use of Brownian bridge

models between points (Thurfjell et al. 2014) may

alleviate bias, but at the cost of diluting specific

species–habitat relationships along true movement

paths.

The method we present for conducting SSFs and

PathSFs is promising for modeling multi-scale

species–habitat relationships during movement. It is

also promising for estimating resistance, since using

movement data in the form of steps or paths (vs. static

point data) may be the most appropriate way to build

resistance surfaces. However, many questions remain.

First, like previous research teams, we have assumed

that the inverse of the predicted relative probability of

presence from RSFs translates directly to resistance,

but there is no empirical evidence that this is the case.

Second, more inquiry is needed to determine whether

predicting resistance in the paired framework is

superior to the unpaired framework, or whether some

hybrid of these two resistance surfaces, representing a
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combination of relative and absolute fitness costs, is

more appropriate. Related to these two points, meth-

ods are needed to compare amongst resistance

surfaces derived via different data types and methods

(Beier et al. 2008). Cushman et al. (2014) provide a

robust method to compare the ability of resistance

surfaces to predict actual crossing locations of indi-

viduals, however, methods are needed to assess the

performance of entire resistance surfaces (not just road

crossing locations). Third, more research is warranted

to determine the appropriate GPS collar acquisition

interval for species so as to reduce bias. Finally, more

research is needed to determine how species respond

to landscape features at different scales during

movement.

We hope the results provided herein will be useful

for further inquiry into how wildlife respond to

landscape features during movement events. We

provide a novel method for modeling movement at

multiple scales within SSFs and PathSFs. Given our

results, when there is a choice, we recommend PathSF

models be used over SSF models. Due to the

sensitivity of movement models and resulting resis-

tance surfaces to scale, prediction framework and GPS

collar schedule, much care should be used when

modeling corridors for conservation purposes using

these methods.
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