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Abstract

Context Identifying the drivers shaping biological

assemblages in fragmented tropical landscapes is

critical for designing effective conservation strategies.

It is still unclear, however, whether tropical biodiver-

sity is more strongly affected by forest loss, by its

spatial configuration or by matrix composition across

different spatial scales.

Objectives Assessing the relative influence of forest

patch and landscape attributes on dung beetle assem-

blages in the fragmented Lacandona rainforest,

Mexico.

Methods Using a multimodel inference approach we

tested the relative impact of forest patch size and

landscape forest cover (measures of forest amount at the

patch and landscape scales, respectively), patch shape

and isolation (forest configuration indices at the patch

scale), forest fragmentation (forest configuration index

at the landscape scale), and matrix composition on the

diversity, abundance and biomass of dung beetles.

Results Patch size, landscape forest cover andmatrix

composition were the best predictors of dung beetle

assemblages. Species richness, beetle abundance, and

biomass decreased in smaller patches surrounded by a

lower percentage of forest cover, and in landscapes

dominated by open-area matrices. Community even-

ness also increased under these conditions due to the

loss of rare species.

Conclusions Forest loss at the patch and landscape

levels and matrix composition show a larger impact on

dung beetles than forest spatial configuration. To preserve

dung beetle assemblages, and their key functional roles in

the ecosystem, conservation initiatives should prioritize a

reduction in deforestation and an increase in the hetero-

geneity of the matrix surrounding forest remnants.

Keywords Biodiversity conservation � Forest
fragmentation � Human-dominated landscapes �
Lacandona rainforest � Land-use change �
Scarabaeinae

Introduction

The rapid loss and degradation of forests throughout

the tropics has led to the expansion of fragmented
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landscapes in which the long-term persistence of

biodiversity may be endangered (Melo et al. 2013).

Although forest loss is known to have negative

impacts on global biodiversity (Fahrig 2003, 2013),

the spatial arrangement or configuration of the

remaining forest (e.g., forest patch isolation, degree

of fragmentation) in such emerging landscapes can

also have significant impacts on biological assem-

blages (Gardner et al. 2008; Thornton et al. 2011;

Didham et al. 2012; Newbold et al. 2014; Hanski

2015; Perović et al. 2015). Both the amount of forest in

the landscape and the composition of the matrix

surrounding the remaining forest patches determine

the composition of the landscape—a spatial charac-

teristic with great effects on biodiversity (e.g., Fahrig

et al. 2011; Perović et al. 2015). Matrix composition,

for example, can affect species’ persistence in frag-

mented landscapes, by determining the severity of

edge effects, as well as the levels of connectivity and

resource availability in the landscape (Dunning et al.

1992; Franklin and Lindenmayer 2009; Perfecto et al.

2009; Fahrig et al. 2011; Tscharntke et al. 2012). Yet it

is still unclear whether tropical biodiversity is more

strongly affected by forest loss, by the spatial config-

uration of the remaining forest, or by matrix compo-

sition. This information is urgently needed to improve

conservation strategies, particularly considering unre-

solved issues about the design of protected areas

(Murphy 1989), the role of habitat corridors (Brodie

et al. 2015) and the effects of different matrix types

(Franklin and Lindenmayer 2009).

While landscape composition is clearly a charac-

teristic that needs to be assessed at the landscape scale,

forest loss and forest configuration can be measured at

different spatial scales, and consequently, their effects

may be scale-dependent. In particular, forest loss can

be measured at the patch scale (i.e., forest patch size;

MacArthur and Wilson 1967; Hanski 1999) and at the

landscape scale (i.e., landscape forest cover; Fahrig

2003). Forest configuration can also bemeasured at the

patch (e.g., patch shape and isolation) and landscape

scales (e.g., degree of fragmentation; Cushman et al.

2008; McGarigal et al. 2012). It is unclear, however,

which is the scale within which forest loss and

configuration has the strongest effect on biodiversity

(but see Smith et al. 2011; Thornton et al. 2011;

Arroyo-Rodrı́guez et al. 2013; Fahrig 2013; Ordóñez-

Gómez et al. 2015). To address this challenge, multi-

scale analyses are needed. Also, because most studies

in fragmented landscapes have been carried out in

temperate regions (reviewed by McGarigal and Cush-

man 2002; Fahrig 2003), additional studies in the

tropics are urgently needed. Furthermore, because

most of the available multi-scale studies in fragmented

tropical forests have focused on vertebrates (e.g.,

Thornton et al. 2011; Arroyo-Rodrı́guez et al. 2013;

Garmendia et al. 2013; Carrara et al. 2015), broaden-

ing our focus by studying taxa with different habitat

and spatial requirements may increase our ability to

reach more general conclusions on these contentious

and yet unresolved issues. Focusing on insects may be

particularly relevant, as they are highly susceptible to

forest spatial changes, with important implications for

ecosystem functioning (Didham et al. 1996; Perović

et al. 2015).

Dung beetles (Coleoptera: Scarabaeinae) are a

diverse and abundant group of insects that perform

many important ecological functions in tropical

forests (Nichols et al. 2008). Since they are relatively

short-lived, have large populations, and are sensitive

to environmental alterations, dung beetles can respond

quickly to forest changes (Nichols et al. 2007; Larsen

et al. 2008; Rös et al. 2012). Dung beetle assemblages

in fragmented landscapes have been shown to be

affected by forest patch size (Klein 1989; Andresen

2003), landscape forest cover (Rös et al. 2012), edges

(Spector and Ayzama 2003), patch isolation (Arellano

et al. 2008a; Escobar et al. 2008), matrix type (Klein

1989; Quintero and Roslin 2005), and other spatial

variables, such as altitude and slope (Silva and

Hernández 2014). Most of these studies evaluate the

effects of one or a few attributes at one spatial scale

(but see Silva and Hernández 2014), thus limiting the

control of potential confounding factors (Ewers and

Didham 2006).

Understanding the relative influence of patch and

landscape level spatial attributes on dung beetle

assemblages is particularly needed for the Lacandona

rainforest, Mexico—a biodiversity hotspot that has

lost approximately 60 % of the original forest cover

(Mora 2008). In this region, only two published studies

have assessed dung beetle assemblages, showing that

diversity and composition are similar in continuous

forest, forest patches, and rustic cocoa plantations,

while cattle pastures and rubber tree plantations show

a significantly lower species richness, dominated by a

few open-area species (Navarrete and Halffter 2008;

Barragán et al. 2011). Yet, it is still unclear which
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patch and landscape spatial attributes affect dung

beetles in this region, and what their relative roles in

shaping these assemblages are.

The main objective of this study was to determine

the relative effects of forest loss versus forest config-

uration at two spatial scales (patch and landscape), as

well as the relative effects of landscape configuration

versus landscape composition, in a Neotropical frag-

mented landscape, using dung beetles as the focal

taxon. In particular, we addressed the following

questions: (i) Does forest loss have a stronger effect

on dung beetle assemblages than forest spatial

configuration, and are the relative effects of these

drivers consistent across spatial scales (patch and

landscape)? and (ii) at the landscape scale, does

landscape composition (landscape forest cover and

matrix composition) have higher explanatory power

than landscape configuration (degree of fragmenta-

tion)? Due to findings of previous studies (Fahrig

2003; Nichols et al. 2007; Smith et al. 2011; Fahrig

2013; Carrara et al. 2015), we expected that the

amount of forest (i.e., forest patch size and/or land-

scape forest cover) would be more important than its

spatial configuration (i.e., patch shape, patch isolation,

and/or degree of fragmentation) in shaping dung

beetle assemblages. We also expected that dung beetle

assemblages might be more strongly related to patch

than to landscape attributes because they are known to

be affected by variables such as canopy openness, soil

temperature, and resource availability (Halffter and

Matthews 1966; Navarrete and Halffter 2008), which

are associated with patch size and shape (Murcia

1995). Finally, we expected that dung beetle assem-

blages would be greatly affected by landscape com-

position and less by landscape configuration, in

accordance with studies showing a negative effect of

open areas (i.e., cattle pastures and annual crops) in the

matrix (Quintero and Roslin 2005; Halffter et al. 2007;

Navarrete and Halffter 2008; Rös et al. 2012).

Methods

Study area

We conducted this study in the Lacandona rainforest

located in the Mexican state of Chiapas (Fig. 1). With

an extent of 13,000 km2, it represents one of the largest

areas of tropical rainforest in Mexico, and a priority

area for biodiversity conservation in Mesoamerica

(Ceballos et al. 1998). We conducted the study in two

adjacent lowlands areas (100–200 m a.s.l.) with

Fig. 1 Study area in southeastern Mexico. The location of the 21 forest patches sampled in the Marqués de Comillas region (numbers

1–21), and 3 reference areas within the continuous forest (C1–C3) of the Montes Azules Biosphere reserve is indicated
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similar soil and weather conditions. These areas, the

continuous forest of the Montes Azules Biosphere

Reserve and the fragmented forest of the Marqués de

Comillas Region, are separated by the Lacantún River

(Fig. 1). Deforestation outside the Montes Azules

Biosphere Reserve, and particularly within the Mar-

qués de Comillas Region, has resulted in heteroge-

neous landscapes composed of a mosaic of land-cover

types (old-growth forest patches, secondary forests,

agricultural lands, cattle pastures and human settle-

ments). The Marqués de Comillas Region still main-

tains its original fauna, although smaller forest patches

show compositional and structural alterations of

animal assemblages (e.g., Arroyo-Rodrı́guez et al.

2013; Garmendia et al. 2013; San-José et al. 2014).

Annual precipitation averages 2500–3500 mm, and

average monthly temperatures are 24–26 �C.

Experimental design and explanatory variables

We adopted a patch–landscape approach (sensu

McGarigal and Cushman 2002), i.e., response vari-

ables were evaluated within forest patches and land-

scape variables were measured within a 100 ha

landscape (564 m radius from the center of each

patch). We selected this landscape size because

medium and large herbivorous mammals, which

provide the main food resource for dung beetles,

respond strongly to forest changes at this scale in the

region (Arroyo-Rodrı́guez et al. 2013; Garmendia

et al. 2013). Also, this landscape size is large enough

to encompass several populations of the dung beetle

species (Halffter and Halffter 1989; Arellano et al.

2008b), as well as large variation in the explanatory

variables (Appendix Table A1 in supplementary

material), which is needed to make accurate land-

scape-scale inferences (Eigenbrod et al. 2011). We

sampled 24 sites: 21 forest patches embedded in their

100 ha landscapes in the Marqués de Comillas Region

and 3 continuous forest sites (100 ha each) in the

Montes Azules Biosphere Reserve (Fig. 1). Forest

patches ranged from 3 to 92 ha, and distance between

any two patches was at least 2 km. The continuous

forest sites were separated by at least 4 km, and

located C1 km from the forest-river edge.

Using recent SPOT 5 satellite images (March 2011)

and the SPRING program (Câmara et al. 1996) we

first made a supervised classification considering six

land-cover types: mature forests, secondary forests,

tree crops (i.e., palm and rubber plantations), annual

crops (i.e., corn, chili and bean plantations), cattle

pastures, and human settlements. Overall, classifica-

tion accuracy was 77 %. We then used the GIS

GRASS program (GRASS 2011) to characterize the

patch and landscape attributes. To assess forest loss at

the patch and landscape levels we measured patch size

and percentage forest cover, respectively. To assess

forest configuration we measured patch shape and

isolation at the patch level, and degree of fragmen-

tation at the landscape level. Although patch size at

the landscape scale (e.g. mean patch size) is consid-

ered a measure of landscape configuration (McGarigal

et al. 2012), at the patch scale it is more easily viewed

as a measure of the amount of forest. Finally, to assess

landscape composition we used the above measure of

percentage of forest cover, and also measured the

percentage of open-areas (i.e. cattle pastures and

annual crops) in the matrix.

Patch shape was estimated with the shape index

proposed by Patton (1975): SI ¼ P=
ffiffiffiffiffiffi

Ap
p

, where P and

A are the patch perimeter and area, respectively. The

higher the SI values, the higher the shape complexity

(perfect circle, SI = 1.0). Patch isolation was mea-

sured as the mean nearest-neighbor distance from all

patches in the landscape to the focal patch. The degree

of fragmentation was evaluated with the splitting

index (S) proposed by Jaeger (2000):

S = A2
t =

Pn
i¼1 A

2
i , where At is the area covered by

forest in the landscape and Ai is the area of the forest

patch i. This index represents the ‘effective number of

forest patches’, and being independent of total forest

cover in the landscape, it is a measure of fragmentation

per se (sensu Fahrig 2003).

Dung beetle sampling and response variables

Beetles were collected using baited pitfall traps (1 L

plastic containers buried level with the soil surface).

Human dung is known to be an excellent bait to

accurately sample dung beetle communities, but due

to its short supply and the large amounts necessary for

extensive studies, a mixture of pig and human dung

(with at least 10 % of the latter) has recently been

proposed as a very good alternative (Marsh et al.

2013). Thus, traps were baited with 25 g of a mixture

of human and pig excrement (7:3) and they were kept

active during 48 h. Beetles were sampled once at each
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site during the rainy season (July–September 2012),

which is the period of greatest activity. Four traps,

50 m apart, were placed along transects. Following

Schoereder et al. (2004), sampling effort was propor-

tional to the area sampled. In forest patches we used

one transect for every 20 ha; in continuous forest we

used five transects per site. Transects were located

C50 m from patches’ edges, and multiple transects in

one site were separated by C150 m. A total of 196

pitfall traps were used in this study. All collected

individuals were identified to species and counted. Up

to 20 individuals per species were oven-dried until

constant weight was reached, and then weighed.

We used the coverage estimator recommended by

Chao and Jost (2012) to estimate the accuracy of

inventories:

Ĉn ¼ 1� f1

n

n� 1ð Þf1
n� 1ð Þf1 þ 2f2

� �

where f1 and f2 are the number of species with one

individual and with two individuals in the sample,

respectively, and n is the number of individuals.

Sample coverage was very high in all sites ([92 % of

the species recorded; Appendix Table A2 in supple-

mentary material), indicating that our sampling effort

was adequate to estimate diversity metrics within each

site. However, to avoid any potential bias in our results

due to differences in sample coverage among sites (see

Chao and Jost 2012), we considered not only the

observed values of species richness, but also the

expected values based on coverage-based extrapola-

tions performed with the entropart package (Marcon

and Hérault 2014) for R 3.0.1 (R Core Team 2014).

We determined species diversity metrics using Hill

numbers (i.e., numbers equivalent, sensu Jost 2006)

with the entropart package (Marcon and Hérault

2014). We used Hill numbers of order 0 (0D, species

richness), 1 (1D, exponential of Shannon’s entropy),

and 2 (2D, inverse Simpson concentration). 0D is not

sensitive to species abundances and thus gives dispro-

portionate weight to rare species (Jost 2006).
1D weighs each species according to its abundance in

the community; hence it can be interpreted as the

number of ‘common’ or ‘typical’ species in the

community (Jost 2006). Finally, 2D can be interpreted

as the number of ‘very abundant’ or ‘dominant’ species

in the community (Jost 2006). The detailed formulas

for the Hill numbers can be found elsewhere (Jost

2006).

To assess changes in community structure we

considered dung beetle abundance, total biomass, and

the evenness factor (EF) proposed by Jost (2010). EF

represents the proportion of dominant species in the

community and it is derived from Hill numbers

(EF = 2D/0D; Jost 2010). EF ranges between 1 (when

the community is perfectly even) and nearly

1/0D (when the community is dominated by one

species, i.e., 2D = virtually 1; Jost 2010). Beetle

abundance and biomass were averaged per transect.

Data analyses

We used generalized linear models to assess the

effects of spatial attributes on each response variable.

We fixed a Gaussian error distribution for continuous

response variables (i.e., 1D, 2D, evenness factor, mean

abundance, and mean biomass) after verifying for

normality (Shapiro–Wilk test). 0D (count-dependent

variable) was assessed by fixing a Poisson error

distribution. To assess collinearity among predictor

variables we estimated their variance inflation factors

(VIF) using the car package for R version 3.0.1.

A VIF[ 4 indicates possible collinearity, and a

VIF[ 10 indicates severe collinearity (Neter et al.

1996).We found severe collinearity between factors at

the patch and the landscape scale, particularly between

patch size and landscape forest cover (r = 0.95,

p\ 0.001; VIF = 10.2; Appendix Table A3 in sup-

plementary material). Thus, we decided to carry out

separate models for the two spatial scales. We used an

information-theoretic approach and multimodel infer-

ence to assess the relative effect of each predictor on

each response variable (Burnham and Anderson

2002). For each response variable we constructed 8

models, representing all combinations of explanatory

variables. For each model we computed the Akaike’s

information criterion corrected for small samples

(AICc). To correct for overdispersion associated to

count data, 0D was assessed with qAICc instead of

AICc values (Calcagno and Mazancourt 2010).

Models with a difference in [q]AICc\ 2 when

compared to the best model (i.e., the one with lowest

[q]AICc value) were considered to have similar

plausibility (Burnham and Anderson 2002). To obtain

model-averaged parameter estimates we used Akaike

weights (wi). The set of models for whichRwiwas 0.95

represents a set that has 95 % probability of containing

the true best model (Burnham and Anderson 2002). A

Landscape Ecol (2016) 31:843–854 847
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given spatial attribute was considered an important

explanatory variable for a given response variable if:

(i) it showed a high sum of Akaike weights (i.e.,

considering each candidate model in which it

appeared); and (ii) the model-averaged unconditional

variance was lower than the model-averaged param-

eter estimate. All models were built using the package

glmulti for R version 3.0.1 (Calcagno and Mazancourt

2010). As a post hoc analysis, we constructed rank-

abundance curves to see differences in species’

dominance, rarity and community evenness among

study sites, and thus better interpret our results.

Results

We collected 9418 individuals belonging to 43 species

(Appendix Table A4 in supplementary material). In

the Montes Azules Biosphere Reserve we collected 39

species, including three (7 %) unique species (Can-

thon angustatus, Eurysternus angustulus and Sulco-

phanaeus chryseicollis). Copris laeviceps (42 % of

sampled individuals in the reserve), Eurysternus

caribaeus (17 %) and Uroxys microcularis (7 %)

were the most representative species in the reserve

(Fig. 2). In the Marqués de Comillas Region we

collected 40 species, including 3 unique species. As in

the continuous forest, Copris laeviceps and

Eurysternus caribaeus also dominated in the Marqués

de Comillas Region. Other species dominating dung

beetle assemblages in patches were: Ateuchus chry-

sopyge, Bdelyropsis bowditchi, Dichotomius ampli-

collis, Deltochilum gibbosum, Deltochilum

pseudoparile, and Uroxys micros (Fig. 2, Table A4

in supplementary material).

Associations between species diversity (0D, 1D, and
2D) and explanatory variables were quite similar when

diversity metrics were calculated using the observed

number of species per site, and when they were based

on the expected number of species per site. Hence,

only the results based on observed values are

described here (results for analyses based on expected

values are shown in Appendix Figure A1 in supple-

mentary material). Overall, the explanatory variables

that best predicted changes in dung beetle assemblages

were those associated with forest loss at both spatial

scales, i.e., patch size and landscape forest cover

(Fig. 3, Appendix Tables A5 and A6 in supplementary

material). In particular, considering the response

variables for which complete models showed the

highest percentage of explained deviance, we found

that patch size and landscape forest cover were the

main attributes positively affecting 0D (69 and 76 %

of explained deviance at the patch and landscape

scales, respectively; Fig. 3a), mean abundance (28 and

38 %; Fig. 3e) and mean biomass (36 and 36 %;

Fig. 2 Relative abundance of dung beetle species in fragments

(F) and continuous forest sites (CF) in the Lacandona rainforest,

Mexico. Fragments were ordered from the smallest (F1) to the

largest (F21) and then pooled in groups of three (triplets)

according to their size; the three continuous forest sites were

also pooled into a triplet. Each curve represents the dung beetle

assemblage in a triplet. The dashed line indicates the number of

species representing \5 % of individuals sampled in each

triplet. The identity of dominant species within each triplet is

also indicated: Ach Ateuchus chrysopyge; Bbo Bdelyropsis

bowditchi; Cfe Canthon femoralis; Cla Copris laeviceps; Dam

Dichotomius amplicollis; Dgi Deltochilum gibbosum; Dps

Deltochilum pseudoparile; Eca Eurysternus caribaeus; Umi

Uroxys micros; Umic Uroxys microcularis
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Fig. 3f) of dung beetles. Because 1D and 2D remained

almost constant across the forest amount gradient at

both spatial scales (Fig. 3b, c), the positive

relationships between 0D and the amount of forest

were associated to high numbers of rare species. In

other words, the number of rare species increased in

(f)(e)

(a) (b)

(c) (d)

Fig. 3 Predictor variables

included in the DAICc\ 2

set of models (black bars)

and 95 % set of models

(gray bars) for species

diversity (Hill numbers of

order 0, 1, and 2), evenness,

mean abundance and mean

biomass of dung beetle

assemblages in the

Lacandona rainforest,

Mexico. The importance of

each variable is shown by

the sum of Akaike weights

(Rwi, panels in the left side).

Panels in the right side

indicate the values of model-

averaged parameter

estimates (b) and
unconditional variance of

information-theory-based

model selection and

multimodel inference. We

tested separately the impact

of forest patch spatial

attributes (patch size [PS],

shape [SI] and isolation [PI])

and landscape spatial

attributes (landscape forest

cover [FC], fragmentation

level [S], and the percentage

of the matrix covered by

open areas [OA]). The sign

(±) of parameter estimates

represents a positive or

negative effect of the

predictor on the response

variable. The goodness-of-

fit of each complete model

(i.e., the percentage of

deviance explained by each

complete model) is also

indicated, in parenthesis
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larger patches and in patches imbedded in landscapes

with higher forest cover, which in turn reduced

community evenness in these patches (Fig. 3d,

Appendix Tables A5 and A6 in supplementary mate-

rial). This was supported by the fact that the number of

species representing\5 % of individuals was notably

higher in larger patches and in continuous forest areas

(Fig. 2).

The percentage of open-area matrix in the land-

scape was negatively related to 0D (Fig. 3a), mean

abundance (Fig. 3e) and mean biomass (Fig. 3f), but

positively related to 2D (Fig. 3c) and community

evenness (Fig. 3d, Appendix Table A6 in supplemen-

tary material). The number of dominant species (2D)

tended to be positively related to landscape fragmen-

tation (Fig. 3c), and as a consequence, there was also a

tendency for community evenness to increase in

landscapes with higher degree of fragmentation

(Fig. 3d). Patches with more complex shapes showed

lower 0D (Fig. 3a), and more isolated patches showed

increased mean abundance (Fig. 3e). However,

because fragment shape and isolation were each

related to only one response variable (Appendix

Table A5 in supplementary material), we conclude

that they had lower impact on dung beetle assem-

blages, compared to the other predictors.

Discussion

This study contributes to improving our understanding

on the main drivers of dung beetle diversity in

fragmented tropical landscapes. Two main findings

deserve special attention: (i) forest amount at the patch

(patch size) and landscape scales (landscape forest

cover) showed a stronger impact on dung beetles than

forest configuration at the patch (patch shape, patch

isolation) and landscape scales (degree of landscape

fragmentation); and (ii) landscape composition (per-

centage of forest cover and percentage of the matrix

covered by cattle pastures and annual crops) had

higher explanatory value than landscape configuration

(degree of fragmentation). Therefore, our results

support the idea that species’ persistence and distri-

bution in fragmented landscapes are more strongly

affected by attributes related to forest loss across

spatial scales and by landscape composition, than by

those related to patch and landscape configuration

(e.g., Fahrig 2003; Ethier and Fahrig 2011; Smith et al.

2011).

The importance of forest loss

Patch isolation and degree of landscape fragmentation

were weakly related to dung beetle assemblages,

whereas both forest patch size and landscape forest

cover were strongly and positively related to species

richness, mean abundance, and mean biomass of dung

beetles. Further, the loss of rare species increased

community evenness in smaller patches surrounded by

a lower percentage of forest cover. Other studies have

also found that species richness, abundance (Estrada

et al. 1998; Arellano et al. 2008a; Escobar et al. 2008),

and biomass (Larsen et al. 2008) of dung beetles are

positively related to the amount of remaining forest.

This could be related to the fact that larger forests can

sustain greater environmental heterogeneity and

resources, thus supporting more species (Tscharntke

et al. 2002;Navarrete andHalffter 2008). Furthermore,

larger forest remnants can maintain a higher number of

forest-specialists (Halffter and Halffter 1989). Finally,

larger fragments also have a higher richness of mid-

and large-sized mammal species (Garmendia et al.

2013), whose biomass has been related to increased

dung beetle richness (Culot et al. 2013).

The size of forest remnants is also related to edge

effects. Negative edge effects are expected to be

weaker in larger patches as they show a higher

proportion of core area unaffected by edge (Murcia

1995; Ewers and Didham 2002). Patches with more

complex shapes also have stronger edge effects

(Murcia 1995). Although we did not measure edge

effects directly, our results agree with the idea that edge

effects have negative impacts on biodiversity, as we

found decreased species richness in smaller patches and

in thosewithmore complex shapes. Forest edges usually

show lower plant biomass, diversity, and stratification,

which in turn contributes to lower relative humidity and

higher temperature compared to the forest interior

(Laurance et al. 2002). These environmental changes

can contribute to dung desiccation, negatively affecting

the survival of dung beetle larvae (Klein 1989). In fact,

many forest-interior species respond negatively to forest

edges, with studies reporting declines in species

richness, abundance and total biomass (Spector and

Ayzama 2003; Barnes et al. 2014).
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The importance of the matrix

As we expected, and consistent with previous studies

on dung beetles in several Neotropical landscapes

(Quintero and Roslin 2005; Halffter et al. 2007;

Navarrete and Halffter 2008; Dı́az et al. 2010; Rös

et al. 2012), the matrix surrounding forest patches had

a significant effect on dung beetle assemblages. When

open areas (i.e., cattle pastures and annual crops)

composed a larger proportion of the matrix, species

richness, mean abundance, and mean biomass

decreased. Yet, due to the increase in the number of

dominant species (2D), the abundances of species

became more evenly distributed in landscapes with

open-area dominated matrices. In particular, we found

that rare species were lost (e.g., Phanaeus sallei,

Uroxys platypyga, and Megathoposoma candezei),

whereas disturbance-adapted species (e.g., Copris

laeviceps and Deltochilum pseudoparile) were dom-

inant in landscapes with a matrix dominated by open

habitat.

The composition of the matrix is also related to the

severity of edge effects (Murcia 1995). Open areas

represent important barriers to dung beetle dispersal in

fragmented tropical landscapes (Dı́az et al. 2010),

most probably because of the microclimatic differ-

ences between open and forest-interior areas (Klein

1989). As the structural complexity of the vegetation

in the surrounding matrix increases (e.g., through

secondary succession), the barrier effect for dung

beetles drastically diminishes (Quintero and Roslin

2005). Also, according to the ‘landscape insurance

hypothesis’ (sensu Tscharntke et al. 2012), landscapes

with a homogeneous matrix, such as those dominated

by open areas (e.g. pastures, annual crops), support a

lower number of species than landscapes with hetero-

geneous matrices because they provide lower resi-

lience and stability of ecological processes in human-

modified landscapes (also see Perović et al. 2015). In

fact, the availability of complementary and/or supple-

mentary resources present in the matrix is higher in

landscapes with heterogeneous matrices (Dunning

et al. 1992).

Ecological and conservation implications

We found that, in contrast to other taxonomic groups

in the region (e.g., primates: Arroyo-Rodrı́guez et al.

2013; birds: Carrara et al. 2015; mid- and large-sized

terrestrial mammals: Garmendia et al. 2013; small

rodents: San-José et al. 2014; trees: Hernández-

Ruedas et al. 2014), dung beetles appear to be much

more sensitive to forest spatial changes. This finding

supports the use of Scarabaeinae subfamily as a good

indicator of habitat modifications, both at the patch

and landscape levels (Larsen et al. 2008; Nichols and

Gardner 2011; Rös et al. 2012). This result also

stresses the importance of including multiple taxa

when trying to generalize on the effects of fragmen-

tation-related drivers of biodiversity patterns.

Deforestation in theMarqués de Comillas Region is

relatively recent (*40 years), but it has suffered the

highest rates of forest loss in the Mesoamerican

Biological Corridor (Mora 2008). Thus, if current

trends of deforestation and defaunation continue in the

region, the abundance, diversity and biomass of this

group of insects, and consequently their functional

roles in the ecosystem (e.g., nutrient cycling, soil

conditioning, parasite/pest suppression, secondary

seed dispersal, and seed-bank dynamics; Andresen

and Feer 2005; Nichols et al. 2008; Santos-Heredia

and Andresen 2014) will be severely threatened.

Studies that have measured the effects of habitat

modification on the ecological functions performed by

dung beetle assemblages have indeed found strong

negative effects (e.g., Braga et al. 2013). Therefore,

management and conservation strategies focused on

protecting dung beetle assemblages can be expected to

have positive effects for ecosystem functioning in

natural habitats and for ecosystem services in anthro-

pogenic habitats (Losey and Vaughan 2006). In this

sense, we found that forest loss and the increment of

open areas in the matrix represented the highest threats

to the conservation of dung beetle assemblages. Thus,

conservation initiatives should be focused on protect-

ing the largest remaining forest patches, increasing the

area of smaller forest patches (Fahrig 2003) and

improving the quality of the matrix.

These management strategies not only increase the

amount of suitable habitat, but they would also

enhance landscape connectivity, reduce the proportion

of forest exposed to edge effects and allow for the

persistence of species with large home range require-

ments. To improve matrix quality, conservation prac-

tices should aim at reducing the amount of open area,

for example, by diversifying productive alternatives in

the region and increasing the economic feasibility of

agroecosystems with a forest-like structure (e.g.,
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shade-grown crops and silvopastoral systems). For

example, shade cocoa plantations under rustic man-

agement in the study region have proven to be good

habitat for dung beetles (C. Santos-Heredia unpubl.

data) and other animal groups (e.g., primates: Zárate

et al. 2014). Overall, three attributes related to forest

loss and to landscape composition (size of forest

fragments, the amount of forest cover in the landscape,

and the amount of open area in the matrix), seem to be

acting interdependently to determine the structure and

composition of the dung beetle assemblages in the

Lacandona rainforest. Thus, conservation efforts will

also require multiple but interdependent management

actions at both the patch and landscape level in order

to attain long-term success.
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