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Abstract

Context Vegetation is projected to continue to

undergo major structural changes in coming decades

due to land conversion and climate change, including

widespread forest die-offs. These vegetation changes

are important not only for their local or regional

climatic effects, but also because they can affect

climate and subsequently vegetation in other regions

or continents through ‘‘ecoclimate teleconnections’’.

Objectives We propose that ecoclimate teleconnec-

tions are a fundamental link among regions within and

across continents, and are central to advancing large-

scale macrosystems ecology.

Methods and results We illustrate potential ecocli-

mate teleconnections in a bounding simulation that

assumes complete tree cover loss in western North

America due to tree die-off, and which predicts

subsequent drying and reduced net primary produc-

tivity in other areas of North America, the Amazon

and elsewhere. Central to accurately modeling such

Special issue: Macrosystems ecology: Novel methods and new

understanding of multi-scale patterns and processes.

Guest Editors: S. Fei, Q. Guo, and K. Potter.

S. C. Stark (&) � D. M. Minor

Department of Forestry, Michigan State University,

East Lansing, MI 48824, USA

e-mail: scott.c.stark@gmail.com; scstark@msu.edu

D. D. Breshears

School of Natural Resources and the Environment and

joint with Department of Ecology and Evolutionary

Biology, University of Arizona, Tucson, AZ 85721, USA

E. S. Garcia

Department of Atmospheric Sciences, University of

Washington, Seattle, WA 98195, USA

D. J. Law

School of Natural Resources and the Environment,

Tucson, AZ 85721, USA

S. R. Saleska

Department of Ecology and Evolutionary Biology,

University of Arizona, Tucson, AZ 85721, USA

A. L. S. Swann

Department of Atmospheric Sciences and Department of

Biology, University of Washington, Seattle, WA 98195,

USA

J. C. Villegas

GIGA Group, School of Environment, University of
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ecoclimate teleconnections is characterizing how

vegetation change alters albedo and other components

of the land-surface energy balance and then scales up

to impact the climate system. We introduce a frame-

work for rapid field-based characterization of vegeta-

tion structure and energy balance to help address this

challenge.

Conclusions Ecoclimate teleconnections are likely a

fundamental aspect of macrosystems ecology needed

to account for alterations to large-scale atmospheric-

ecological couplings in response to vegetation change,

including deforestation, afforestation and die-off.

Keywords Amazon � CESM � Ecoclimate

teleconnections � Energy balance � Forest die-off �
Hemispherical photography � LiDAR � Macrosystems

ecology � North America � Vegetation change

Introduction

If ecologists are to be successful in distinguish-

ing competing and interacting causes of large-

scale ecological changes and associated feed-

backs to the atmosphere and hydrosphere, they

will need to match the spatial and temporal

scales of analysis employed routinely by clima-

tologists (AIBS 2004).

Macrosystems ecology focuses on ‘‘diverse eco-

logical phenomena at the scale of regions to continents

and their interactions with phenomena at other scales’’

(Heffernan et al. 2014). Critical questions of this type

include (AIBS 2004): ‘‘What are the time–space

domains of ecological variance, and how are they

influenced by the spatial and temporal scales at which

climate varies and changes?’’, ‘‘How does climate

variation impact the dynamics of biologically avail-

able water in terrestrial systems, and how do those

dynamics in turn affect ecological patterns and

processes at regional-to-continental scales?’’, and

more generally ‘‘How will changes in climate influ-

ence regional ecosystem structure and function, and

how will these ecosystem changes feedback to climate,

hydrology, and biogeochemical cycles?’’. While much

macrosystems biology has predicted patterns at large

scales, central to many types of macrosystems issues is

connectivity: how processes from one region influence

another region (Peters et al. 2008; Heffernan et al.

2014). A frontier in addressing these questions is the

specific role of ‘‘ecoclimate teleconnections’’, in

which ecological changes in one area influence

climate and associated ecological responses in

another. This requires considering the links between

vegetation, soil, and climate at a hierarchy of spatial

scales spanning local, regional and synoptic scales

normally considered in climatology but often not all

considered in ecology.

At regional and larger scales, vegetation is pro-

jected to continue to undergo major structural changes

in coming decades due to land conversion and climate

change. Such patterns of change are often related to

pronounced increases or decreases in the proportion of

woody cover within a region. These can include

afforestation, deforestation, forest degradation, woody

plant encroachment, desertification, and forest die-off

(Breshears 2006). These changes represent potentially

critical forces for altering land surface-atmosphere

feedbacks (Bonan 2008a). Global scale modeling

studies are beginning to suggest how ecoclimate

teleconnections may link the fates of vegetation—
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and atmospheric circulation—across regions and even

continents (e.g., Swann et al. 2012). For instance,

recent model estimates to determine the upper bounds

of responses to conversion of northern hemisphere

grasslands to forests—a potential afforestation

effort—show that conversion could increase energy

transfer between northern and southern hemispheres,

leading to increased drought in the Amazon (Swann

et al. 2012). Similarly, Amazon deforestation could

have global impacts including across North America

(e.g., Medvigy et al. 2013). Such teleconnection

effects may impact local vegetation structure and

function, altering local vegetation-atmosphere feed-

backs, such as those between forest cover and rainfall

in the Amazon (Spracklen et al. 2012), or potentially

creating inter-regional feedbacks when the telecon-

nection is bidirectional. Of particular concern with

global warming is an emerging pattern of widespread

tree mortality due to drought, warmer temperature,

and associated pests, pathogens and fires (Allen et al.

2010, 2015). Climate change may drive rapid vege-

tation change across large regions of the Earth’s land

surfaces over the coming decades, based on recent

rates of observed mortality and basic climate-vegeta-

tion relationships (Breshears et al. 2005; Adams et al.

2009; Phillips et al. 2009, 2010; van Mantgem et al.

2009; Allen et al. 2010, 2015; Choat et al. 2012;

Williams et al. 2013; Brienen et al. 2015). These large-

scale die-off events are likely candidates for altering

ecoclimate teleconnections but have not yet been

evaluated for this potential.

Here we describe how such ecoclimate teleconnec-

tions can fundamentally connect regions within and

across continents and argue that understanding this

connectivity is central to advancing macrosystems

ecology. We focus on forest die-off as a key type of

vegetation change. First, we introduce the concept of

ecoclimate teleconnections. Second, we illustrate

potential ecoclimate teleconnections in a bounding

simulation assuming complete tree-cover loss in

western North America due to die-off, which predicts

subsequent drying and reduced net primary produc-

tivity in other areas of North America, the Amazon

and elsewhere. Third, we argue that characterizing

how contemporary vegetation change such as die-off

alters surface properties including albedo and other

components of energy balance is particularly impor-

tant for modeling ecoclimate teleconnections. Finally,

we introduce a framework for rapid field-based

characterization of vegetation structure and energy

balance that can aid in addressing this challenge. To

effectively characterize ecoclimate teleconnections,

an integration of continental-scale observing net-

works, such as the National Ecological Observatory

Network (NEON; Keller et al. 2008), The Amazon

Forest Inventory Network (RAINFOR; Peacock et al.

2007) and Large Scale Biosphere–Atmosphere exper-

iment in Amazonia (LBA; Avissar et al. 2002) with

earth system models is needed. However, NEON and

other network observations must be strategically

supplemented with direct observation in locations

undergoing vegetation change. More generally, we

highlight that ecoclimate teleconnections are a funda-

mental aspect of macrosystems ecology that may be

needed to account for alterations to large-scale

atmospheric-ecological couplings in response to major

types of vegetation change.

Components of ecoclimate teleconnections

The role of vegetation: the ‘‘Ecoclimate’’

component

The influence of the atmosphere on vegetation

Global vegetation patterns are determined, in large

part, by climate. In the past, correlational approaches

have been used to link vegetation types with mean

climate states (e.g., Holdridge 1967); however, these

approaches do not encompass the rapid time scales

required to predict vegetation structural and functional

responses to global change, such as climate-induced

forest die-off and associated alterations of vegetation-

atmosphere energy exchange (e.g., Allen et al. 2010,

2015; Anderegg et al. 2013). For forest die-off, as well

as some other key types of climate-driven vegetation

change, the critical drivers are associated with extreme

climate events rather than background climate trends

alone (Jentsch et al. 2007). That is, drought com-

pounded by warmer temperature (‘‘global-change-

type drought’’; Breshears et al. 2005; or ‘‘hotter

drought’’; Allen et al. 2015) is a key driver of die-off

events. Importantly, temperature increases are associ-

ated with nonlinear increases in atmospheric moisture

demand during drought (Breshears et al. 2013) and this

atmospheric demand component is a critical aspect of

a new Forest Drought Severity Index that accurately
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predicts die-off events, shown for the Southwestern

US (Williams et al. 2013) but likely relevant to other

regions because of fundamental plant physiology

(McDowell et al. 2008).

Progress related to patterns and mechanisms of

mortality has recently been reviewed (McDowell et al.

2008, 2011; Allen et al. 2010, 2015; Anderegg et al.

2013), and we point readers to those reviews for

additional details related to die-off processes. In brief,

contemporary observational research suggests that

tree die-offs impacting more than 30 % of the cover or

of individuals are widespread in temperate regions

around the world (Allen et al. 2010). Indeed, forests

and woodlands of the Southwestern US have lost more

than 20 % cover to drought-driven tree die-off events

and wildfire (Williams et al. 2010). In the tropics, the

Amazon forest carbon sink appears to be declining,

attributed in part to increasing plant mortality (Brienen

et al. 2015), with large trees experiencing higher

mortality rates (Fisher et al. 2007; Nepstad et al. 2007;

da Costa et al. 2010); this may be associated with

drought related to tropical North Atlantic ocean

anomalies (Aragão et al. 2007; Marengo et al. 2008;

Phillips et al. 2009). However, increased mortality

rates to date have not been at the scale of tree die-off

there (i.e., loss of [30 % cover), except when

associated with fire (Aragão et al. 2007).

Disturbances including forest die-off events funda-

mentally alter vegetation structure (Anderegg et al.

2013). The response of vegetation structure to varia-

tion in climate likely emerges primarily from impacts

on plant demography—mortality, as well as growth

and recruitment—which in the short term may impact

the distribution and quantity of leaf area in the canopy

(e.g., Medvigy et al. 2009; Stark et al. 2015). Even in

relatively open semiarid woodlands, a reduction in tree

cover due to die-off from *14 to *6 % of individuals

yielded a nearly 10 % increase in incoming near-

ground solar radiation (Royer et al. 2010, 2011). In the

long-term, such effects may lead to changes in the

composition and function of ecosystems. In more

dense forests, such as in the Amazon, structural

responses to climate-driven tree mortality are still

evident even though these systems may have pro-

nounced canopy resilience. For example, under severe

multi-year experimental drought Leaf Area Index

(LAI) dropped by[25 % from pre-drought levels of

*6 (Brando et al. 2008) even though tree loss was

moderate and the canopy never completely collapsed

(i.e., lost *100 % cover). Gap fraction observed from

LiDAR remote sensing in the Amazon was also

correlated with mortality rates (Stark et al. 2012).

The persistence of vegetation structural changes

varies with vegetation type. Such changes may persist

for decades in semiarid woodlands and forests (Allen

and Breshears 1998). Recovery could be comparably

faster in parts of the Amazon (however see Saatchi

et al. 2013) but may be related to the severity and

duration of the extreme climate event. Increased light

penetration following disturbance may promote

recovery. For example, when light limitation is

reduced by thinning the overstory in tropical forests,

compensatory growth is typically observed in smaller

individuals; forest management prescriptions and

changes in tree growth following gap formation

support this assertion (e.g., Miller et al. 2011; Stark

et al. 2012). Such resilience, however, could be eroded

if the regional scale-dependent feedback between

forest cover and rainfall were disrupted by deforesta-

tion or climate change (Cox et al. 2004; Lawrence and

Vandecar 2015), reducing net water input and possibly

the potential for canopy recovery. Importantly, struc-

tural changes of vegetation in response to die-off are

interrelated with the effects that vegetation has on the

atmosphere on both short and long timescales.

The influence of vegetation on the atmosphere

The dynamics of vegetation affect radiation and

energy-balance partitioning at the interface between

land and atmosphere at multiple spatial and temporal

scales; from the local effects of woody-canopies on

surface energy balance, thermal emissivity, and sur-

face properties—such as turbulence and aerodynamic-

roughness structures—to synoptic scales where atmo-

spheric circulation responds to surface forcings to the

atmosphere—often associated with the presence and

function of vegetation (Fig. 1a; Makarieva et al.

2013). At local scales, vegetation canopies, particu-

larly trees and other woody plants, affect surface

energy balance through interception of solar radiation

and by influencing radiative properties of the sur-

face—especially albedo and emissivity. Further, veg-

etation structure (e.g., the size, number, and spacing of

tree crowns) affects surface roughness, modifying

wind properties (Breshears et al. 2009). These com-

bined effects have implications for the partitioning of

net radiation into sensible and latent heat (i.e.,
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evapotranspiration; Villegas et al. 2014, 2015). At the

landscape-to-regional scale, evidence of these effects

is captured by eddy flux measurement networks that

directly measure the exchange of mass and energy

between the biosphere and atmosphere (Baldocchi

et al. 2001; da Rocha et al. 2009). These networks have

enabled development of a broad understanding of the

relationship between vegetation types and land-surface

energy balance (Hasler and Avissar 2007; Fisher et al.

2009), but many areas that are undergoing rapid

vegetation change (Allen et al. 2010, 2015) lack

detailed assessments of energy balance. In particular,

the effects of vegetation change such as tree die-off has

typically not been addressed using eddy flux measure-

ments, and more studies using paired tower arrays are

needed to quantify energy balance effects of die-off

(Goulden et al. 2006; Litvak et al. in prep). Given the

scope of the challenge, additional measurement

approaches to understand vegetation change impacts

that can improve sampling globally are needed.

Vegetation changes such as forest die-off likely

have important effects on regional as well as local
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Model Experiment: Complete tree die-off in Western North America

Global Consequences:

Fig. 1 Ecoclimate Teleconnections: concept and model-based

example. a Conceptual diagram showing how tree mortality can

lead to local changes in energy balance that create shifts in

atmospheric circulation leading to teleconnection impacts.

(Second and third rows) Climate modeling experiment repre-

senting complete die-off of western North American tree cover.

Maps show the difference (present day minus forest loss

scenario) due to the b change in tree cover for c annual mean

precipitation, d temperature, e evapotranspiration, and f,
h annual mean net primary production (NPP), and g precipitation

globally. For panels b through f the delineated regions indicate

NEON Domains. Note that the Southeastern United States is

impacted by die-off in the Western US, as are the tropics, Siberia

and other regions
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atmospheric dynamics, although at larger scales there

is currently greater uncertainty as to those effects.

Regional modifications of atmospheric temperature,

pressure and energy properties associated with vege-

tation changes lead to potential changes in atmo-

spheric circulation (Dominguez et al. 2009; Swann

et al. 2012). Current models assume rapid and

complete transitions from one biome to another (e.g.,

forest to savanna) when climates become more

favorable to the new biome according to present-day

vegetation-climate relationships (e.g., Cox et al. 2004;

Costa and Pires 2010). However, uncertainty in how

ecological dynamics will actually play out following

forest die-off or climate-driven disturbance creates

uncertainty in the regional effects of vegetation

change on the atmosphere. When such effects occur,

though, they enable the potential for altered telecon-

nections (e.g., Swann et al. 2012) whereby climate in

other regions can be affected, suggesting that a range

of scenarios should be explored.

Global-scale responses: the ‘‘Teleconnection’’

component

Until recently, atmospheric teleconnections driven by

changes in plant cover have received little attention as

potential mechanisms that influence biosphere–atmo-

sphere dynamics. However, modeled patterns of large-

scale atmospheric circulation have been shown to link

distant regions through the effects of the land surface

on the atmosphere between regions, including feed-

backs between regions (Avissar and Werth 2005;

Feddema et al. 2005; Swann et al. 2012; Medvigy et al.

2013; Devaraju et al. 2015). Changes in vegetation

cover and structure can alter climate locally in a given

region and additionally have global effects on atmo-

spheric circulation. For example, conversion of North

American grasslands to forests via afforestation is

predicted to shift the Intertropical Convergence Zone

(ITCZ) by creating an energy imbalance between the

northern and southern hemispheres that drives changes

in the Hadley circulation (Swann et al. 2012). This

shift in the ITCZ leads to drying over the southern

flank of the Amazon, and a subsequent decrease in

productivity and possible change in forest structure in

locations far removed from the original forest cover

change. This particular mechanism and others (i.e.,

Medvigy et al. 2013) suggest that the climate impacts

of changes in forest structure and function are

communicated widely by the atmosphere and can

have implications for vegetation across the globe.

An approach for assessing ecoclimate

teleconnections

Identifying ecoclimate teleconnections

via modeling

Assessment of ecoclimate teleconnections requires

specifically evaluating ecosystem-climate circulation

feedbacks on global scales. Global climate simulations

allow for the prediction of atmospheric circulation

responses to land-surface forcing and are necessary for

identifying plant-climate interactions for two primary

reasons. First, we can use models to project the

impacts of land-surface changes that have either not

yet occurred (i.e., predicted tree die-off in the Amazon

due to climate change) or that are not yet widespread.

Second, global climate models can be used to help

isolate and identify the effects of a single forcing

factor on the climate system. The signal from a change

in forest cover that has already occurred (e.g., North

American forest die-off) may be identifiable locally

(e.g., Maness et al. 2012), but the variability inherent

in the global atmosphere will make any larger-scale

signal very difficult to identify in observations without

knowing where to look. Global-climate models can be

used to identify the expected signal and enable

hypothesis testing using direct observations.

In research that we have underway, we ask what

possible ecoclimate teleconnections could arise from

widespread tree die-off in Western North America and

what mechanisms control them (Garcia et al. in prep.).

Building from an analogous study on afforestation

(Swann et al. 2012) and employing the Community

Earth System Model with coupled atmosphere, land,

and ocean models (V1.3 with interactive leaf area,

static vegetation cover, and interactive ocean surface

temperatures), we imposed 100 % tree loss across

western North America (Fig. 1b) and tracked the

response of surface-climate and ecosystem variables,

including precipitation, temperature, evapotranspira-

tion, and Net Primary Production (NPP) over a 50-year

period (Fig. 1c–h). We found that widespread die-off

is predicted to lead to local changes in climate through

reductions in evapotranspiration, and decreasing
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temperatures from increased albedo. These local-scale

changes force a global-scale atmospheric response

that leads to widespread changes in precipitation

(Fig. 1c, g) with consequences not just for climate

elsewhere (Fig. 1c–e), but also for ecosystems

(Fig. 1f, h) elsewhere. In particular, we see significant

decreases in plant productivity (p value\ 0.05)

aligned primarily with regions experiencing a reduc-

tion in rainfall in mid and low latitudes, with some

regions influenced more by temperature (not shown

globally). For example, NPP decreases in northern

Eurasia, due to statistically significant decreases in

temperature and ice-driven declines in soil moisture

and despite only small (non-significant) reductions in

rainfall. Two scales of potential ecoclimate telecon-

nections appear important from these results. First, by

highlighting the boundaries of the US National

Ecological Observatory Network, we illustrate how

changes in one or more Domains of that network can

negatively impact another, such as the small (non-

significant) drying and moderate yet significant reduc-

tion in NPP in the SE US (Fig. 1c, f). Second, we

illustrate how the tropics and other non-local regions

such as northern Eurasia could be negatively impacted

by North American die-off (Fig. 1g, h). These exam-

ples demonstrate the types of ecoclimate teleconnec-

tions that could become increasingly important as

global changes in climate and land use progress, but

that to date are not generally accounted for. Under-

standing and better quantifying them will require

improving our ability to link changes in surface energy

balance to changes in vegetation structure.

Linking changes in energy balance to changes

in vegetation structure: including rapid field

assessment

Central to refining predictions of ecoclimate telecon-

nections is the prioritization—and subsequent measure-

ment—of which aspects of vegetation structure and of

energy balance are most influential (Fig. 2; see also Lou

et al. 2012). Geometrical changes in vegetation structure

that result from disturbances including tree die-off

directly influence surface properties associated with

energy balance partitioning—particularly latent and

sensible heat flux partitioning, surface aerodynamic

roughness, and radiative properties including surface

albedo, which all directly influence atmospheric pro-

cesses (Bonan 2008a; Swann et al. 2012). While leaf-

level ecophysiological responses to changing climate

(e.g., stomatal conductance) may also play an important

role, the largest changes to ecosystem conductance and

other factors impacting energy balance may occur when

vegetation structure is altered by disturbances such as

die-offs or land-use change. Consequently, digital

characterization of vegetation geometry across distur-

bance gradients, such as with LiDAR remote sensing

and hemispherical photography, can reveal changes to

components of energy balance (Lefsky et al. 2002;

Royer et al. 2010, 2011) that influence local through

regional and interregional atmospheric dynamics.

For energy balance, long-term fixed-location flux-

tower observations of vegetation-atmosphere energy

exchange serve as high-quality standards. However,

methods that are quicker and more portable would

enable more rapid and widespread assessment of these

impacts of vegetation change and thus enable advances

in understanding ecoclimate teleconnection responses

to die-off and other disturbances.

A portable microclimate array could potentially

enable rapid characterization of mean surface attri-

butes relevant to energy and radiation balance parti-

tioning and efficiently quantify surface energy budget

change associated with actual tree die-off (Fig. 3a).

These data could also offer opportunities to inform

dynamic ecosystem approaches in Earth system mod-

els (e.g., Fisher et al. 2015) by directly linking forest

structure to representations of surface energy fluxes.

Here we illustrate such an array that incorporates a

portable retractable mast instrumented with a net

radiometer measuring down and upwelling radiation;

an array of portable weather stations (Kestrel weather

meter—Nielsen Kellerman 4500) to characterize near-

surface wind/humidity/temperature profiles; soil tem-

perature probes; and heat-flux plates to complete the

description of the canopy boundary layer. This

instrumental array allows short-term field observa-

tions in paired locations with and without tree cover

change. With a 24–72 h observation period, albedo

values can be derived from the short wave components

of the net radiometer data. Canopy structural attributes

are characterized by a combination of hemispherical

photographs, ground-level net shortwave and photo-

synthetically-active radiation measurements, and a

profiling LiDAR system that quantifies vertical veg-

etation structure (measurements along *1 m wide

transects arrayed in a 10 m 9 10 m sampling grid in

the radiometer footprint; Parker et al. 2004a; Stark
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et al. 2012). Processing these measurements with

simple assumptions about vegetation optical proper-

ties offers estimates of vertical and horizontal varia-

tion in leaf area and vertically incident radiation

interception (Lefsky et al. 2002; Parker et al. 2004b;

Stark et al. 2012).

With this approach, we calculate the proportion of

direct solar radiation that reaches the ground surface

relative to that for an open-sky situation at the same

location (Direct Site Factor, DSF; Rich et al. 1999;

Royer et al. 2010; Villegas et al. 2010). Solar radiation

indices are quantified using hemispherical pho-

tographs taken at a fixed location (25–100 cm) above

the ground using a horizontally leveled digital camera

with a 1808 field of view fish-eye lens. Images are

analyzed using standard radiation simulation compu-

tational tools (Hemiview canopy analysis software

version 2.1; 1999 Delta-T Devices, Ltd., Cambridge,
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Fig. 2 Model structure and schema of data synthesis investi-

gation. The left column of boxes depicts the components of an

earth system model (ESM; modified from Medvigy et al. 2009).

The land surface component of the ESM calculates the short-

term fluxes of water, energy, momentum, and carbon from

atmospheric inputs of climate variables such as incoming

radiation and precipitation. Center column boxes indicate major

sources of model uncertainty, while lines depict which

component of the ESM model incorporates a representation of

the process in question. Right column suggestions of prioritized

data sources (e.g., Luo et al. 2012). The strongest colored boxes

are the sources of uncertainty and indicate a suggested ranking

of priority for synthesis activities and data collection. (Color

figure online)
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UK; Rich et al. 1999). Energy-balance partitioning can

be estimated using the Bowen ratio energy budget

method (Shuttleworth 2012), which combines mea-

surements of net radiation, soil heat flux and estimates

of the Bowen ratio (b, the ratio of sensible to latent

heat flux) to partition available energy between

sensible and latent-heat components, as a function of

soil moisture condition (e.g., different behavior is

expected in conditions when soil water is or is not

limiting). To derive b from field observations, it is

assumed that the processes that transport sensible and

latent heat vertically are the same at the scale of meters

to tens of meters from the ground. At these spatial

scales, the transport of sensible heat is proportional to

the difference in atmospheric-heat content between

two levels of the atmosphere. Similarly, to estimate

latent-heat flux, the rate of moisture transport is

assumed proportional to the difference in humidity

content between the two levels (Shuttleworth 2012). In

our illustrated rapid-assessment approach, we use the

vertical profiles of temperature and relative humidity

derived from the portable weather station array to

determine atmospheric gradients of virtual potential

temperature and moisture content in the atmosphere

and then calculate Bowen ratio b as a function of these

variables (Shuttleworth 2012) for 30-min intervals

throughout the entire observation period. We use these

30-min averages of b to partition net radiation into

sensible and latent heat portions (after accounting for

heat dissipation through the soil, measured with a heat

flux plate).

To illustrate the characterization of vegetation-

structure-vs-energy-balance-component relationships

relevant for land-surface models, we draw on data

from a 1-week field campaign in piñon-juniper

woodland in northern Arizona, USA. We deployed

our approach across a gradient of 5 sites of increasing

tree cover, with each having recent tree mortality.

Within this short field campaign, we were able to

quantify how albedo changes using the amount of

potential incoming near-ground solar radiation (DSF,

described above; Fig. 3b) and how it changes as a

function of change in LAI (Fig. 3c). The albedo-LAI

relationship was associated with the hypothesized

shifts (Fig. 3a) in the partitioning between sensible

and latent heat (data not shown). These results

combined with similar characterization in other forest

types from both temperate and tropical regions could
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provide the basis for altering the forest structure-

energy balance relationship in future model simula-

tions to determine if they refine estimated ecoclimate

teleconnections. More generally, this field approach is

relevant across different types of vegetation change

and could enable the rapid establishment of model-

relevant relationships between changes in vegetation

structure and energy balance, providing a practical

supplement to measurements from eddy-flux installa-

tions for regions undergoing rapid vegetation change.

Toward accounting for ecoclimate teleconnections

following vegetation change

The examples presented here illustrate a framework

for advancing macrosystems ecology by assessing

ecoclimate teleconnections. More generally, they

highlight ecoclimate teleconnections as a fundamental

aspect of macrosystems ecology needed to account for

alterations to large-scale atmospheric-ecological cou-

plings in response to major types of vegetation change.

They also provide a roadmap for developing an

approach that improves the integration of modeling

and observational and experimental data (e.g.,

MODEX of the US DOE research program) from

vegetation undergoing change for application to

global-scale analysis. Although we have focused on

tree die-off as an example of vegetation change, the

concepts and approach presented here are also relevant

to other major types of vegetation change, including

losses of woody cover due to deforestation (Devaraju

et al. 2015), or gains of woody cover due to

afforestation (Swann et al. 2012) or shrub expansion

(Walker et al. 2006).

In general, assessing ecoclimate teleconnections

requires addressing the following: (1) How does the

land surface change in terms of vegetation structure?;

(2) How does the vegetation-structure change influ-

ence albedo and other components of land surface

energy balance?; (3) What are the consequences of the

changes in vegetation structure and energy balance

for the region?; (4) What climate teleconnections link

the initially impacted region to other regions?; and (5)

What type of secondary ecological impacts does this

produce in another teleconnected region of interest?

Few studies consider more than one component of this

list. We argue that a more comprehensive approach

will enable us to effectively address problems that

have an inherent component of connectivity through

an ecoclimate teleconnection. Furthermore, the mis-

match between spatiotemporal scales of ecological

and climatological data sets will need to be reconciled

with enhanced data acquisition—including multi-

scale remote sensing and field sources—and upscaling

approaches. Global-scale coupled land–atmosphere-

ocean modeling approaches that are better informed

by field and remote-sensing data are needed to identify

key potential ecoclimate-teleconnection responses to

vegetation change because, based on our current

understanding, it is difficult to identify a priori where

they will occur. Additionally, such a modeling

approach can aid in targeting measurement efforts to

reduce specific uncertainties in vegetation and ecosys-

tems responses, including resilience, as well as

enabling improvements in understanding of the asso-

ciated ecological and atmospheric mechanisms driv-

ing ecoclimate teleconnections. To accurately predict

ecoclimate teleconnections, it is necessary to consider

two important aspects of uncertainty: (1) was the land

surface forcing on the atmosphere correctly parame-

terized, and (2) is the atmospheric circulation response

robust (while taking into account interactions between

the atmosphere and ocean). State-of-the-art Earth

systems modeling, robust field measurement

approaches, and wide-spread remote sensing of veg-

etation structure and function offer the potential to

rapidly address these questions.

We have also outlined an approach that can be

applied to rapidly assess needed site characteristics in

the field to then better inform models. This approach

includes characterizing vegetation structure through

traditional surveys and digital means (LiDAR and

hemispherical photography) and deployment of

portable masts with multi-height microclimate instru-

mentation, including portable weather stations and

radiation sensors. These rapid field assessments,

which do not require the long deployment times

(years) associated with more detailed eddy-flux-tower

studies, could become an integral and strategic

complement of Earth systems modeling, continental

scale observation networks such as the National

Ecological Observatory Network (NEON; Keller

et al. 2008), and detailed paired experiments of

vegetation-structure-change effects on surface-atmo-

sphere coupling (Litvak et al. in prep).

While recognition of the likely role of ecoclimate

teleconnections has increased, we now need to move
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towards quantifying these ecoclimate teleconnections

more explicitly. Teleconnections that modify major

atmospheric circulation processes such as monsoons

and convergence zones may be stronger or more

widespread than currently appreciated. Although the

largest effects are expected when forests undergo

widespread die-off or deforestation, or when grass-

lands and semi-arid regions undergo conversion to

forest, intermediate degrees of disturbance and con-

version have the potential to drive ecoclimate tele-

connections as well. However, predicting future or

demonstrating present ecoclimate teleconnections

remains difficult due in part to inadequate pairing

between climate and ecological monitoring, an insuf-

ficient spatial scale of monitoring, and key uncertain-

ties in Earth systems models in the response of energy

balance to vegetation change. In summary, we argue

that ecoclimate teleconnections are likely a funda-

mental aspect of macrosystems biology that are

needed to account for alterations to large-scale

atmospheric-ecological couplings in response to major

types of vegetation change.
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Mendoza C, Morel A, Neill DA, Nepstad D, Patiño S,
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PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen

TT (2009) Widespread increase of tree mortality rates in

the western United States. Science 323(5913):521–524

Villegas JC, Breshears DD, Zou CB, Royer PD (2010) Sea-

sonally pulsed heterogeneity in microclimate: phenology

and cover effects along deciduous grassland–forest con-

tinuum. Vadose Zone J 9(3):537–547

Landscape Ecol (2016) 31:181–194 193

123



Villegas JC, Espeleta JE, Morrison CT, Breshears DD, Huxman

TE (2014) Factoring in canopy cover heterogeneity on

evapotranspiration partitioning: beyond big-leaf surface

homogeneity assumptions. J Soil Water Conserv 69(3):78A–

83A

Villegas JC, Dominguez F, Barron-Gafford GA, Adams HD,

Guardiola-Claramonte M, Sommer ED, Selvey AW, Vil-

legas JC, Dominguez F, Barron-Gafford GA, Adams HD,

Guardiola-Claramonte M, Sommer ED, Selvey AW,

Espeleta JF, Zou CB, Breshears DD, Huxman TE (2015)

Sensitivity of regional evapotranspiration partitioning to

variation in woody plant cover: insights from experimental

dryland tree mosaics. Glob Ecol Biogeogr 24(9):1040–

1048

Walker MD, Wahren CH, Hollister RD, Henryd GHR, Ahlquist

LE, Alatalo JM, Bret-Harteh MS, Calef MP, Callaghan TV,

Carroll AB, Epstein HE, Jónsdóttirk IS, Klein JA,
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