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Abstract

Context Changing global environmental conditions,

especially at northern latitudes, are threatening to shift

species distributions and alter wildlife communities.

Objective We aimed to establish current distribu-

tions and community arrangements of small mammals

to provide important baselines for monitoring and

conserving biodiversity into the future.

Methods We used 4,408 archived museum and

open-access records and the machine learning algo-

rithm, RandomForests, to create high-resolution spa-

tial niche models for 17 species of rodents and shrews

in Alaska. Models were validated using independent

trapping results from 20 locations stratified along

statewide mega-transects, and an average species

richness curve was calculated for field samples.

Community cluster analyses (varclus) identified geo-

graphic patterns of sympatry among species. Species

models were summed to create the first small-mammal

species richness map for Alaska.

Results Species richness increased logarithmically

to a mean of 3.3 species per location over 1,500 trap-

nights. Distribution models yielded mean accuracies

of 71 % (45–90 %), and maps correctly predicted a

mean of 75 % (60–95 %) of occurrences correctly in

the field. Top predictors included Soil Type, Ecore-

gion, Landfire Land-cover, December Sea Ice, and

July Temperature at the geographic scale. Cluster

analysis delineated five community groups (3–4

species/group), and species richness was highest

(11–13 species) over the Yukon-Tanana Uplands.

Conclusions Models presented here provide spatial

predictions of current small mammal biodiversity in

Alaska and an initial framework for mapping and

monitoring wildlife distributions across broad land-

scapes into the future.

Keywords Arctic � Boreal Forest � Ecological niche

modeling � Lemmings � Machine learning � Mega-

transect sampling � Open-access data �
RandomForests � Shrews � Voles

Introduction

The arctic and boreal biomes of the circumpolar North

are undergoing dramatic changes in climate, geo-

graphic distribution, ecosystem function, and food

web structure (ACIA 2005; Lovejoy and Hannah

2005; IPCC 2007; Lawler et al. 2009). Mapping the

current extent of spatial overlap among sympatric

species will be of important conservation concern as

we monitor changes in the distributions of small
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mammal species in the future (Prost et al. 2013). In

Alaska, small mammals are managed as non-game

species under the Wildlife Action Plan (Fritts et al.

2006). This management plan recently called for the

increased study of non-game and underrepresented

species, especially birds and small mammals. Specific

requests included efforts aimed at mapping species

distributions, establishing spatial ecological system

baselines, documenting biological diversity, and iden-

tifying lands vital for the conservation of wildlife in

the face of increased human impacts in Alaska (Fritts

et al. 2006).

In terrestrial communities, small mammals com-

prise a large portion of the primary consumer trophic

level and represent the interface between fine-scale

changes on the ground, including those related to

water, soils, toxins, and micro-climate conditions

(Hallett et al. 2003). Rodents are essential prey for a

variety of carnivores and raptors, and also play

invaluable roles in seed dispersal, nutrient cycling,

plant growth, and herbivory (Newton 1979; Gough

et al. 2007; Gilg et al. 2009; Olofsson et al. 2012).

Insectivorous shrews, although less important as prey,

are valuable in controlling invertebrate populations

(Buckner 1964). Yet, despite the ecological impor-

tance of small mammals, high-resolution studies

across the extent of Alaska are conspicuously lacking.

Most descriptions of small mammal distributions in

Alaska have been coarse, non-quantitative, or incom-

plete, whereas spatially-explicit, GIS-based quantifica-

tions using modern statistical methods to analyze

community composition and species richness patterns

have not been conducted for the state (MacDonald and

Cook 2009; Gotthardt et al. 2013; Hope et al. 2013, www.

natureserve.org, www.iucnredlist.org). Using a novel

niche modeling technique, we provide such a detailed,

quantitative, spatial analysis that addresses many of the

regional management goals for small mammals. These

products should prove beneficial for land managers as

they act to promote ecological stability through species

diversity (Lawler et al. 2003; Hooper et al. 2005).

The ecological niche, which encompasses the

environmental constraints of a species, is best suited

for predicting the uncertain ecological outcome of

species interactions. As conceptualized by Hutchinson

(1957), the ecological niche is the space bounded by

an n-dimensional hypervolume such that no two

species can occupy exactly the same space (Cushman

2010). Dimensions include an infinite set of abiotic

and biotic variables including optimal temperatures,

precipitation regimes, land-cover, elevation, soil

chemistry, and resource proximities, to name a few.

Only by quantifying the current dimensions of niche

space and interspecific overlap will it be possible to

correctly predict how species may respond in a

community context to a combination of altered food

availability and a shifting geographic arrangement of

species (Wang et al. 2004; Williams and Jackson

2007; Hope et al. 2010; Murphy et al. 2010; A.

P. Baltensperger and F. Huettmann unpublished).

Spatial modeling adds the multiple dimensions of

landscape space to the quantification of ecological niche

breadth (Kerr et al. 2011). Beyond general linear models,

machine-learning algorithms such as RandomForests,

TreeNet, Mars, CART, and MaxEnt are especially adept

at estimating species distributions by incorporating the

environmental conditions at species’ detection locations

into spatial predictions (Wiersma et al. 2011). Unlike

resource selection functions, which only include a limited

set of variables (e.g. Johnson et al. 2004) machine-

learning can include hundreds of variables and all of their

interactions to identify dominant signals in the data

(Breiman 2001a, b; Cutler et al. 2007). RandomForests is

therefore capable of incorporating many dimensions of

the ecological niche simultaneously (Cutler et al. 2007;

Booms et al. 2010, Evans et al. 2011). As such, machine-

learning modeling techniques are some of the newest and

most comprehensive methods for deciphering complex,

confounding, and non-linear relationships among vari-

ables that drive ecological processes (Breiman 2001b;

Cutler et al. 2007; Kelling et al. 2009; Huettmann and

Gottschalk 2010; Li et al. 2011).

To outline the potential for inter-specific competi-

tion in small mammal assemblages, we focus on the

construction of detailed niche-based distribution maps

for 17 species (Table 1), using them to identify the

current arrangement of small mammal communities

and to create a species richness map for small

mammals in Alaska. This research, in concert with

subsequent analyses of dietary niche overlap using

stable isotopes (A. P. Baltensperger et al. unpublished)

and future projections of species distributions (A.

P. Baltensperger and F. Huettmann unpublished) will

quantify the multi-metric ecological niche spaces

occupied by small mammals, and provide projections

as to how the roles of organisms are likely to shift in a

future dominated by changes in climate and land-use

(Wang et al. 2004).
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Methods

Study area

Alaska covers an area of 1.7 million km2 and extends

from 71.4�N latitude at Pt. Barrow to 54.2�N at

Amatignak Island, and 130.0�W longitude in Portland

Canal in the Alexander Archipelago to 172.4�E on

Attu Island in the Aleutian Archipelago. The state

contains a diversity of geographic features including

several mountain ranges—notably the Alaska, Brooks,

Coastal, Aleutian, and Chugach Ranges (Fig. 1a)—

and elevations up to 6,036 m. Alaska’s vast land area

contains hundreds of glaciers and thousands of lakes

that are drained by several large river systems (Molina

2001). Extreme variations in climate and geography

have resulted in diverse ecosystems that include: arctic

sedge tundra, boreal forest, deciduous hardwoods,

peat wetlands, temperate rainforest, coastal grass-

lands, alpine tundra, shrub-lands, and others (Viereck

et al. 1992).

Data collation

We compiled records of small mammals from digital

georeferenced collections totaling over 112,000

occurrence records in Alaska. A subset of these was

used as training data to create distribution models for

17 species of rodents and shrews in mainland Alaska

(Table 1). Data were collated from archived occur-

rence datasets, primarily from the Global Biodiversity

Information Facility (GBIF; www.gbif.org), but also

from a variety of natural history museum collections

that do not necessarily serve their data to GBIF. This

compiled set of presence-only records was filtered to

remove duplicates, coincident detections of species at

the same location, and those records without geo-

graphic precision to at least five decimals (sub-1-m

accuracy). Because of the presence-only nature of

archived datasets that lack a geographically stratified

design, we aimed to minimize the effects of sampling

bias by using only one record per species within a

2-km radius of any given location. After manually

removing these inaccurate or duplicate records, a total

of 4,408 unique georeferenced small mammal records

collected between 1900 and 2012 remained and

comprised the final model training dataset (Appendix

1—Supplementary material 1).

Field collection

As part of a larger effort to expand wildlife occurrence

databases in Alaska, and to sample small mammal

tissues for stable isotope analyses, we conducted 20

small mammal inventories along two mega-transects

(Assogbadjo et al. 2005) across the state between 2010

Table 1 Integrated

Taxonomic Information

System (ITIS)-derived

scientific names, common

names, and Taxonomic

Serial Numbers (TSN) for

modeled species

Species Common name TSN #

Clethrionomys rutilus northern red-backed vole 180293

Dicrostonyx groenlandicus northern collared lemming 180328

Lemmus trimucronatus brown lemming 180320

Microtus longicaudus long-tailed vole 180299

Microtus miurus singing vole 180309

Microtus oeconomus root/tundra vole 180298

Microtus pennsylvanicus meadow vole 180297

Microtus xanthognathus yellow-cheeked/taiga vole 180301

Sorex cinereus cinereus/masked shrew 179929

Sorex hoyi pygmy shrew 179946

Sorex monticolus montane/dusky shrew 179950

Sorex palustris American water shrew 179933

Sorex tundrensis tundra shrew 179957

Sorex ugyunak barren-ground shrew 552509

Sorex yukonicus Alaska tiny shrew 555663

Synaptomys borealis northern bog-lemming 180323

Zapus hudsonius meadow jumping mouse 180386
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and 2013 (Fig. 1b). During 2011, we sampled small

mammal diversity along a 1,500-km latitudinal tran-

sect between the Arctic Ocean and the Gulf of Alaska.

In 2012, we completed small mammal biodiversity

sampling at seven locations along a longitudinal

transect of the Yukon River during a 1,250-km canoe

expedition from the Dalton Highway to Mountain

Village. Additional sampling was conducted at the

mouth of the Canning River on the Arctic coast during

2010 and near the mouth of the Chandalar River in

2013.

At each location we attempted to detect rodents and

shrews using 200–300 traps (Sherman live traps,

Museum Special snap traps, and pitfall traps) set at

10-m intervals along two or three trap-loops through-

out available habitats within 1 km of the plot center.

Traps remained open for five nights at each site (10

nights at Canning River) so that all sites were sampled

with at least 1,500 trap-nights (number of traps 9

number of nights). Different trap types have different

detectability rates, but the diversity of traps allowed

for the sampling of a variety of taxa; Sherman live-

traps primarily captured rodents, Museum Special

traps captured rodents and some shrews, and pitfall

traps captured only shrews. We received International

Animal Care & Use (IACUC) approvals (172650-2,

172650-16) and Alaska Department of Fish and Game

(ADF&G) Collection Permits (10–135, 11–114,

12–106, 13–162) for all field protocols, and specimens

were archived at the University of Alaska Museum of

the North.

We recorded the species detected at sampling

locations for each day and plotted the accumulated

species richness against the cumulative number of

trap-nights. Linked with predictive modeling, this

mobile, low-impact sampling scheme was designed as

an efficient and cost-effective means of independently

sampling biological diversity across a large geo-

graphic extent. Detections of small mammals in these

surveys were later used to independently validate the

accuracy of species distribution models created from

the small mammal training dataset.

Model development

We used RandomForests (Salford Systems, Inc., San

Diego, CA, USA; www.salford-systems.com) to cre-

ate spatial distribution models for each of the 17 spe-

cies of mainland small mammals in Alaska.

RandomForests is a machine learning software that

uses binary recursive decision trees to parse data

points into terminal categories that minimize within-

group variance (Cutler et al. 2007; Elith et al. 2008;

Supplemental Material 2). Machine learning methods

are non-parametric, and are especially adept at incor-

porating multi-variate interactions to analyze large,

datasets without consistent sampling protocols (Prasad

et al. 2006; Cutler et al. 2007; Elith et al. 2008; Evans

et al. 2011). As such, they are an effective means to

describe and predict the complexity of ecological

systems (De’ath and Fabricius 2000; Prasad et al.

2006; Evans et al. 2011; Baltensperger et al. 2013).

Fig. 1 Map of study areas depicting a Alaskan ecoregions and physical features, and b small mammal sampling locations between

2010 and 2013. Locations are organized along latitudinal and longitudinal megatransects across the state
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Results are data-driven and not fit to a priori

assumptions as would be the case using frequentist,

Bayesian, or maximum entropy (MaxEnt) methods

(Breiman 2001a; Cutler et al. 2007; Elith et al. 2008;

Phillips et al. 2006).

Presence points as well as ‘pseudo-absence’ points

for each species were attributed with 33 environmental

predictor layers (Table 2) using the intersect (ise-

ctpntrst) command in the free software, Geospatial

Modeling Environment 7.2 (GME; H. Beyer; www.

spatialecology.com/gme). Environmental predictor

variables included continuous raster (60-m accuracy)

and categorical polygon layers, all of which had the

potential to affect the biogeography of small mam-

mals. These effects may occur directly at the ecosys-

tem or landscape scales (e.g. habitat, proximity to

resources, topography, etc.), or indirectly at landscape

or regional scales (e.g. climate, ecoregion, etc.;

Table 2).

Because this was a presence-only dataset, lacking

available absences, it was necessary to generate a set

of pseudo-absences to represent areas where target

species weren’t likely to be found. Random sets of

pseudo-absences resulted in inaccurate models, so

pseudo-absences were instead derived from the pre-

sence locations of all other non-target species (Elith

and Leathwick 2007; VanDerWal et al. 2009).

We assumed that a presence of any of the non-target

species, without the coincident occurrence of the

target species within a 1-km radius, represented a

pseudo-absence for the target species (Elith and

Leathwick 2007). Although not ideal, given potential

differences in sampling among other collection

efforts, this was the best available option given the

limitations of presence-only datasets and has been

shown to perform as well as or better than other

pseudo-absence scenarios (Breiman 2001a; Elith and

Leathwick 2007; VanDerWal et al. 2009).

The combined presence/pseudo-absence datasets

for each species were then modeled in RandomForests

(Appendix 2—Supplementary material 2). We grew

each model to 1,000 trees and used all other software

default settings. RandomForests then created a coded

model called a ‘grove,’ containing the algorithm

quantifying patterns in the training dataset. Aspatial

performance was assessed using a set of ‘out-of-bag’

training points (a subset of points automatically left

out of model construction; Breiman 1996). Using this

out-of-bag dataset, predictive performance of each

model was calculated using the area under the curve

(AUC) based on the receiver-operating characteristic

(ROC), which quantified the percentages of correctly-

predicted presences and absences in each model

(Zweig and Campbell 1993; Fielding and Bell 1997;

Huettmann and Gottschalk 2010). RandomForests was

also used to rank the relative importance of environ-

mental variables in models (Supplemental Material 2).

The grove files generated by RandomForests,

containing the predictive algorithm, were then applied

to a regular lattice of points (also attributed with the

environmental variables) spaced at 5-km intervals

across Alaska. Model outputs generated relative

indices of occurrence (RIO; a ranking of pixels from

0 to 1 representing the likelihood of belonging to the

‘presence’ class) for each point in the regular lattice

based on its underlying environmental variables. For

better continuous spatial visualization, RIO values

were smoothed between neighboring points across the

extent of the study area using the Inverse Distance

Weighting tool with 300-m resolution in ArcGIS 10.0

(ESRI, Inc., Redlands, CA, USA) and clipped to the

state coastline, yielding a spatially continuous predic-

tive distribution raster map of each small mammal

species for Alaska. All GIS models and predictor

layers were archived and are freely available on the

online data repository dSpace (www.dspace.org) at the

University of Alaska Fairbanks Elmer E. Rasmuson

Library.

Model validation

One advantage of our predictions is that they carry

known accuracy estimates since they come from a

consistent, testable, and transparent prediction pro-

cess. We used independent field data sampled at 20

locations across Alaska to validate the spatial predic-

tive accuracy of all maps. Observed presences and

absences of species in the field were compared with

model-predicted values at field locations for each

species. We used a symmetric threshold of RIO = 0.5

for differentiating between model-predicted presences

and absences and calculated the percentage of field

points correctly predicted as presences and those

correctly predicted as absences by each model. Using

these accuracy percentages, we calculated Cohen’s

kappa (a statistical measure of agreement between

modeled and observed values) for each species (Cohen

1960; e.g. Baltensperger et al. 2013).
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Community composition analysis

In order to identify the degree of spatial niche overlap

between species, we created a set of 50,000 random

points across Alaska and attributed each point with the

RIO values from the 17 species models. We used the

chart.correlation command from the Hmisc package

(F. Harrell; https://github.com/harrelfe/Hmisc) in R

2.12.1 (R Core Team 2013) to create a correlation

matrix between species. This function yielded Pearson

correlation coefficients (q2) for all interspecific rela-

tionships. Species-pairings with correlation coeffi-

cients C0.5 were considered to be positively

correlated and likely to co-occur in space, whereas

pairings with a coefficient \-0.5 were negatively

correlated and unlikely to co-occur. Coefficients

between 0.5 and -0.5 were regarded as uncorrelated.

Clusters of correlated species were visualized in tree

Table 2 List of predictor variables used in models, type of data (raster or polygon), and their online sources

Variable name Data type Source

Aspect Raster http://ned.usgs.gov/

Distance to coastline Raster http://dnr.alaska.gov/SpatialUtility/SUC?cmd=vmd&layerid=56

Distance to contaminated sites Raster http://dec.alaska.gov/spar/csp/db_search.htm

Distance to fire Raster http://forestry.alaska.gov

Distance to glaciers Raster http://dnr.alaska.gov/SpatialUtility/SUC?cmd=extract&layerid=27

Distance to infrastructure Raster http://www.snap.uaf.edu/data.php

Distance to insect damage Raster http://forestry.alaska.gov

Distance to lakes Raster http://nhd.usgs.gov/

Distance to mean December sea ice Raster http://nsidc.org/data/nsidc-0051.html

Distance to mean June sea ice Raster http://nsidc.org/data/nsidc-0051.html

Distance to Permafrost Raster http://agdcwww.wr.usgs.gov/agdc/agdc.html

Distance to river Raster http://nhd.usgs.gov/

Distance to village Raster http://www.adfg.alaska.gov/index.cfm?adfg=maps.data

Distance to wetlands Raster http://www.fws.gov/wetlands/data/

Ecoregion Polygon http://agdc.usgs.gov/data/usgs/erosafo/ecoreg/

Elevation Raster http://ned.usgs.gov/

Fire year Raster http://forestry.alaska.gov

Insect damage year Raster http://forestry.alaska.gov

Landfire land cover Polygon http://www.landfire.gov/vegetation.php

Mean annual precipitation Raster http://www.prism.oregonstate.edu/

Mean annual temperature Raster http://www.snap.uaf.edu/data.php

Mean December precipitation Raster http://www.prism.oregonstate.edu/

Mean December temperature Raster http://www.prism.oregonstate.edu/

Mean first day of freeze Raster http://www.snap.uaf.edu/data.php

Mean first day of thaw Raster http://www.snap.uaf.edu/data.php

Mean July precipitation Raster http://www.prism.oregonstate.edu/

Mean July temperature Raster http://www.prism.oregonstate.edu/

Mean number of grow days Raster http://www.snap.uaf.edu/data.php

NLCD land cover Polygon http://www.mrlc.gov/nlcd2006.php

Slope Raster http://ned.usgs.gov/

Soil type Polygon http://www.nrcs.usda.gov/wps/portal/nrcs/site/ak/home/

Surficial geology Polygon http://agdc.usgs.gov/data/usgs/geology/metadata/beikman.html

Terrain Raster http://ned.usgs.gov/

Raster layers have a 60-m resolution
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form using the varclus command in Hmisc, so that we

could easily identify groups of sympatric species.

Using binary reclassified distribution models we also

produced maps depicting the regions of Alaska where

these communities are predicted to occur.

Biodiversity hotspot analysis

A composite biodiversity map was created for small

mammals in Alaska by summing individual species

models of known accuracies to create an implied

predictive species richness map. Continuous species

models were reclassified in a binary format so that

cells with RIO \ 0.5 (indicating the predicted absence

of a species) were assigned an absolute absence value

of 0, whereas cells with RIO C0.5 were assigned an

absolute presence value of 1. The reclassified binary

species models were summed in ArcGIS Raster

Calculator to yield a raster whose cells indicated the

total number of species predicted to occur there. We

also calculated Pearson’s correlation coefficient (Zar

2010) to assess the agreement between species rich-

ness values predicted by the composite biodiversity

model and the number of species observed in the field.

We highlighted regions where C11 species (C85 %

of maximum predicted species richness) were predicted

to occur and arbitrarily designated these as biodiversity

hotspots. The resultant biodiversity map was intersected

with a land ownership map of Alaska to determine

which government agencies and Native corporations are

responsible for managing lands on which the highest

levels of small-mammal species richness occur. Own-

ership of biodiversity hotspots was further parsed into

individual management units for each managing entity

and land areas were calculated for each species total.

Results

Field sampling

Over the course of 30,700 trap-nights (Fig. 2), we

captured 624 small mammals belonging to 18 species

at 20 locations along two geographic mega-transects

spanning Alaska (Fig. 1b). Only one species (Amer-

ican water shrew; Sorex palustris) of mainland Alas-

kan small mammals was not detected at any location

(MacDonald and Cook 2009; Fig. 2). We documented

Fig. 2 Composite

histogram of all species

detected at 20 sampling

locations between 2010 and

2013. Each location was

sampled with 1,500 trap-

nights
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several species in regions of the state where they had

not previously been identified, representing range

extensions for some. These new records included the

capture of the rare and understudied Alaska tiny shrew

(S. yukonicus; but see Hope et al. 2010 for taxonomy)

in the Yukon-Tanana Uplands for the first time, as well

as the documentation of the westernmost occurrences

of yellow-cheeked voles (Microtus xanthognathus)

near the village of Russian Mission, and long-tailed

voles (M. longicaudus) in the White Mountains north

of Fairbanks (MacDonald and Cook 2009).

Northern red-backed voles (Clethrionomys rutilus;

but see Carleton et al. 2014 for taxonomy) were the

dominant species at all but five locations near the

geographic limits of their distributions where root

voles (Microtus oeconomus), singing voles (M. miu-

rus), and northern collared lemmings (Dicrostonyx

groenlandicus) were caught in greater abundance

(Fig. 2). The dominant shrew species at most sites was

the cinereus shrew (Sorex cinereus), except at Moun-

tain Village where only tundra shrews (S. tundrensis)

were captured.

Species richness curves averaged across all sites

showed a roughly logarithmic increase in the number

of species detected over the standard sampling period

(Fig. 3). After just 300 trap-nights, a mean of 1.9

species was detected, but an additional 1,200 trap-

nights resulted in the detection of fewer than two

additional species and a mean total of 3.3 species per

plot. However, no asymptote for species detection was

attained after 1,500 trap-nights, indicating that the

extent of total species richness had not been sampled.

Model accuracy

Distribution maps created from each of the 17 species

models (Appendix 3—Supplementary material 3)

demonstrated high degrees of accuracy when evalu-

ated aspatially within each model using OOB cross-

validation methods in RandomForests (Table 3), as

well as spatially using the independent field-derived

validation dataset (Table 4). Areas under the ROCs

were greater than or equal to 0.90 for all species with

the exceptions of water shrews and cinereus shrews

(Table 3). All but two models (northern collared

lemmings and northern bog-lemmings; Synaptomys

borealis) demonstrated overall aspatial accuracies

greater than 50 %. The percent of training presence

points correctly identified as presences in the models

(sensitivity) exceeded 90 % for 14 of the 17 species,

whereas the percentages of absences correctly identi-

fied (specificity) were somewhat less accurate but

nevertheless exceeded 50 % for all but two species

(Table 3).

Model validation

Field validations of model predictions indicated the

accurate spatial performance of most predictive mod-

els. Sensitivities and specificities were greater than or

equal to 50 % for all models with the exception that

just 11.1 % of cinereus shrew absences in the field

were correctly identified as such by the model

(Table 4). In general, sensitivities exceeded specific-

ities, but sample sizes of presences for several species

were small, making meaningful interpretation of

validations difficult. A more conservative perfor-

mance measure, Cohen’s kappa, for long-tailed voles

and singing voles was between 0.6 and 0.8, indicating

‘substantial’ agreement between models and field

observations (Table 3; Landis and Koch 1977),

whereas kappas for northern collared lemmings, root

voles, montane shrews (Sorex monticolus), and bar-

ren-ground shrews (S. ugyunak) were between 0.4 and

0.6 and demonstrated ‘moderate’ agreement. Valida-

tions between model predictions and field detections

for six other species yielded kappas between 0.2 and

0.4, and less than 0.2 for an additional four species

indicating ‘fair’ and ‘poor’ agreement, respectively

(Table 4). Nevertheless all models performed better

than random.

Fig. 3 Mean number of species detected at sampling locations

after cumulative number of trap-nights. Error bars denote 95 %

confidence intervals
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Species distributions and community compositions

Predicted distribution models of small-mammal spe-

cies (Appendix 3—Supplementary material 3) were

grouped by varclus analysis into five communities of

similarly-distributed species (Fig. 4). The first com-

munity group, referred to hereafter as the ‘cold-

climate community’, was composed of species found

at high latitudes as well as high elevations mainly

across the North Slope and throughout the Brooks

Range (Figs. 4, 5a). None of the four species in this

cluster were predicted to occur with any certainty in

the center of the state throughout the central portions

of the Yukon and Kuskokwim River valleys, where

members of the interior and southern communities

were concentrated. The second cluster, or ‘northern

community,’ was composed of species that occurred

across much of the region north of the Alaska Range

(Figs. 4, 5b). These species were distributed patchily

in a metapopulation arrangement across a variety of

regions. Members of the third group, or ‘continental

community’, included species occurring primarily

near the Canadian border and apparently near the

latitudinal extents of more southerly ranges (Figs. 4,

5c). The fourth, or ‘interior community,’ included two

species that were both primarily restricted to a narrow

swath of dry boreal forest between the Brooks and

Alaska Ranges (Figs. 4, 5d). Northern red-backed

voles were predicted to belong to this community,

even though their range was much more expansive.

The fifth species cluster, or ‘southern community,’

was composed of species predicted to occur mainly

south of the Brooks Range (Figs. 4, 5e). Top variables

were largely consistent among models and on average

were ranked in the order of Soil Type, Ecoregion,

Landfire Landcover, December Sea Ice, and June Sea

Ice (Appendix 4—Supplementary material 4).

Regional biodiversity hotspots

A composite biodiversity map derived from the

summation of 17 binary species models identified

four main small-mammal species richness hotspots in

Alaska (Fig. 5f). Model predictive accuracy, assessed

Table 3 Model training dataset sample sizes and aspatial (internally cross-validated) model performance metrics for 17 species of

small mammals in Alaska

Species No. of

training

presences

No. of

training

absences

AUC

ROC

Sensitivity

% Presences

correct

Specificity

% Absences

correct

Accuracy

% Overall

correct

Clethrionomys rutilus 949 1,157 0.96 91.15 86.34 88.51

Dicrostonyx groenlandicus 35 2,539 0.95 100.00 45.33 46.08

Lemmus trimucronatus 142 2,098 0.95 99.30 54.19 57.05

Microtus longicaudus 191 2,292 0.99 100.00 87.30 88.28

Microtus miurus 183 2,153 0.98 98.91 71.44 73.59

Microtus oeconomus 612 1,029 0.94 93.95 79.20 84.70

Microtus pennsylvanicus 244 1,725 0.96 99.18 63.30 67.75

Microtus xanthognathus 88 2,377 0.99 100.00 70.55 71.60

Sorex cinereus 818 267 0.88 70.05 85.77 73.92

Sorex hoyi 97 1,370 0.95 97.94 63.72 65.99

Sorex monticolus 566 507 0.90 80.04 83.43 81.66

Sorex palustris 13 1,701 0.77 69.23 66.20 66.22

Sorex tundrensis 195 1,071 0.94 99.49 67.13 72.12

Sorex ugyunak 37 1,634 0.99 100.00 90.33 90.54

Sorex yukonicus 34 1,610 0.98 100.00 69.88 70.50

Synaptomys borealis 142 1,986 0.91 98.59 45.92 49.44

Zapus hudsonius 72 2,348 0.95 100.00 53.58 54.96

Area under the receiver operating curve (AUC ROC) is a measure (0.00–1.00) of performance describing how well presences and

absences are correctly predicted as such. Sensitivity and specificity are individual measures of correctly identified presences and

absences, respectively, and accuracy is a combined measure of sensitivity and specificity
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using Pearson’s correlation coefficient, indicated

moderate positive correlation (r = 0.6) between mod-

eled and observed species richness values for Alaska.

Statewide, the majority of lands coinciding with

biodiversity hotspots ([10 species) are managed by

the State of Alaska (20,199 ha), and the Bureau of

Land Management (BLM) and Regional Native Cor-

porations maintain an additional 7,271 ha and 5,587

ha, respectively (Table 5). The largest and most

diverse of these hotspots occurred across the Yukon-

Tanana Uplands near the Canadian border. Most of

this area is managed by the State of Alaska, including

the largest area predicted to contain the highest

statewide level of small mammal diversity (13

species) in Game Management Unit 25 (Table 5).

We detected six species in 1,500 trap-nights nearby at

the Upper Tanana site in 2011 (Fig. 2). A significant

portion of the Yukon-Tanana Uplands hotpot also

occurs on land managed by the BLM, including in the

Steese National Conservation Area, where we

detected seven species in 1,500 trap-nights at the

White Mountains site in 2011 (Fig. 2). Doyon

Regional Native Corporation, the National Park

Service, and the U.S. Fish and Wildlife Service also

maintain thousands of hectares containing high small

mammal diversity in this region (Table 5).

The second small mammal hotspot occurred in the

mountainous region between the headwaters of the

Koyukuk, Kobuk, and Noatak Rivers in the central

Brooks Range. Most of this land is managed by the

National Park Service and the State of Alaska

(Fig. 5f). A third hotspot cluster was located east of

Kotzebue Sound in the Selawik National Wildlife

Refuge, and on BLM and State of Alaska lands. Other

diversity hotspots included several areas to the north-

west of the Alaska Range in Denali National Park and

on nearby BLM and State of Alaska lands (Fig. 5f).

Regions predicted to contain low small mammal

diversity included the North Slope, lower Yukon

River, Yukon-Kuskokwim Delta, and Bristol Bay.

Independent field results largely support these predic-

tions. For example, we detected only northern collared

Table 4 Sample sizes and validation statistics for the independent field validation dataset compared to model predictions for 17

species of small mammals in Alaska

Species No. of

validation

presences

No. of

validation

absences

Sensitivity

% Presences

correct

Specificity

Absences

correct

Accuracy

% Overall

correct

Cohen’s

kappa

Clethrionomys rutilus 18 2 61.11 100.00 65.00 0.24

Dicrostonyx groenlandicus 2 18 100.00 83.33 85.00 0.50

Lemmus trimucronatus 1 19 100.00 57.89 60.00 0.12

Microtus longicaudus 1 19 100.00 94.74 95.00 0.64

Microtus miurus 3 17 100.00 88.24 90.00 0.69

Microtus oeconomus 10 10 70.00 80.00 75.00 0.50

Microtus pennsylvanicus 2 18 50.00 72.22 70.00 0.12

Microtus xanthognathus 2 18 50.00 61.11 60.00 0.05

Sorex cinereus 11 9 100.00 11.11 60.00 0.12

Sorex hoyi 3 17 66.67 76.47 75.00 0.31

Sorex monticolus 4 16 75.00 81.25 80.00 0.47

Sorex palustris 0 20 – 75.00 – –

Sorex tundrensis 4 16 75.00 56.25 60.00 0.20

Sorex ugyunak 1 19 100.00 89.47 90.00 0.46

Sorex yukonicus 1 19 100.00 73.68 75.00 0.22

Synaptomys borealis 3 17 66.67 76.47 75.00 0.31

Zapus hudsonius 1 19 100.00 78.95 80.00 0.27

Sensitivity and specificity are individual measures of correctly identified presences and absences, respectively, and accuracy is a

combined measure of sensitivity and specificity. Cohen’s kappa is an alternate metric that evaluates the success of observed versus

modeled value agreement between -1.0 (perfect disagreement) to 1.0 (perfect agreement; Cohen 1960). Only specificity could be

calculated for Sorex palustris because it was not detected in the field
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lemmings at the Canning River site on the North

Slope, just two species in the Nulato Hills along the

lower Yukon, and three species at Mountain Village

on the Yukon-Kuskokwim Delta (Fig. 2).

Discussion

The goals of this research were to compile species

occurrence records, predict species distribution and

richness patterns, and to delineate the geographic

community structure of small mammals in Alaska,

while providing a modeling framework for other multi-

species systems. We found that the distributions of the

mainland small mammal species of Alaska can objec-

tively be structured into five main community groups

(Fig. 4), each with a unique set of geographic patterns

(Fig. 5) but similar ecological predictors (Appendix

4—Supplementary material 4) that depict the influence

of climate, soils, and vegetation on the arrangement of

species across the state. We have created fine-resolu-

tion, statewide distribution maps for 17 mainland small

mammal species in Alaska that represent the most

accurate continuous depictions of occurrences to date

(Appendix 3—Supplementary material 3). We also

created species richness curves for sampling locations

(Fig. 3), objective delineations of small mammal

community structure (Figs. 4, 5) and a small-mammal

species richness map that is the first of its kind for small

mammals in Alaska (Fig. 5f). The moderate to high

accuracy of these models attests to the efficiency of

machine learning techniques when applied to archived

datasets not collected using consistent methods.

Species richness sampling

The style of rapid assessment or ‘bio-blitz’ (Wilson

2006) sampling employed here allowed for small,

mobile trapping teams to efficiently sample a geo-

graphically significant portion of Alaska in just two

main field seasons. The detection of all but one of the

small mammal species in the region is a testament to

the efficacy of this design. Sampling efforts also added

a large number of records to the statewide species

occurrence dataset, expanding known species ranges

and filling in training datasets gaps.

Fig. 4 Results of varclus

analysis depicting small

mammal community

clusters. Species pairs with

root node correlation

coefficients[0.25 are

considered to be part of the

same community and have

the same color. Species pairs

with root node correlation

coefficients\0 are

negatively correlated
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Trapping efforts detected roughly half of the

model-predicted number of species occurring in most

regions. The under-sampling of total species diversity

at the plot level was perhaps the trade-off of a

geographic mega-transect strategy designed to maxi-

mize diversity detection at the statewide scale. Despite

a variety of trap styles aimed at detecting a diversity of

species, and higher than average trap-nights, some

species may have been especially trap-shy and

remained undetected despite this intense effort.

Because the number of species detected continued to

increase with additional trap-nights, studies aiming to

detect levels of species richness at the study site scale

would be served well to trap in excess of 1,500 trap-

nights.

Model progress and accuracy

All models performed remarkably well given their

ability to correctly identify species presences. The

models created here represent improvements in detail

and accuracy over other maps for small mammals in

Alaska including NatureServe and the International

Union for Conservation of Nature (IUCN; www.

iucnredlist.org) range maps, deductive and inductive

distribution models by the Alaska Gap Analysis Pro-

ject (AKGAP; http://gapanalysis.usgs.gov/species/data)

models (Gotthardt et al. 2013), and other recent species

niche models (Hope et al. 2013). Commonly-used range

maps are coarse in scale and reflect only basic minimum

convex polygon outlines of the extents of species

occurrences without accounting for the influence of

environmental variables in defining niche space.

The AKGAP deductive models were derived solely

from habitat suitability associations and these models

tended to over-predict wildlife distributions (Gotthardt

et al. 2013). Although inductive AKGAP models

incorporated 20 environmental variables into predic-

tive models, this is 13 fewer than used here, and

inductive models tended to under-estimate distribu-

tions. Nearly all of our species models had higher

overall accuracies than models for the same species

generated by AKGAP (Gotthardt et al. 2013). Our

models had AUC values similar to those of AKGAP

and exceeded those for the five species modeled by

Hope et al. (2013).

Nevertheless, all of these ecological niche-model-

ing approaches provide valuable species distribution

Fig. 5 Biodiversity hotspot maps depicting model-predicted

small mammal species richness values for five geographic

community clusters: a cold-climate, b northern, c continental,

d interior, e southern, and f composite species richness map for

Alaska. Maps are summations of individual species maps

(Appendix 3—Supplementary material 3) converted to binary

maps using relative index of occurrence (RIO) = 0.5 as a

threshold to differentiate between the presence or absence of

each species at each pixel
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predictions that likely fall on a spectrum between

depictions of the fundamental and realized niche

spaces. Models that over-predict distributions repre-

sent more of a fundamental niche versus our models,

which likely depict a more restricted realized niche.

Because ecological niche models often do not include

parameters to account for the details of physiology,

movement, and adaptation (Bush 2002), real distribu-

tions are probably closer to some combination of these

models. Future distribution mapping efforts should

focus on combining several modeling approaches into

a single ensemble model framework that utilizes the

best components of each to produce the most accurate

spatial models (Elith and Leathwick 2007; Hardy et al.

2011).

The improved accuracy of our models can be

attributed to the use of more accurate presences and

more representative pseudo-absence datasets based on

the locations of non-target-species where target spe-

cies did not also occur. This practice is an improve-

ment over the common alternative of using randomly

generated pseudo-absences or Maxent-generated

absences, and resulted in more accurate models that

generalized well without fitting too tightly to the

training data (Elith and Leathwick 2007; Gotthardt

et al. 2013). Our emphasis on correctly predicting

presences may have come at the cost of reduced

absence prediction, as many specificity values and

consequently some overall accuracies were rather low

in comparison. This effect may be a necessary

detriment of using pseudo-absences in lieu of ‘true

absences’ recorded in the field. Nevertheless, given

the complexity of archived datasets, we have created

models representing accurate predictions of species

occurrence. We recommend using non-target surveys

to aid in generating appropriate pseudo-absence

scenarios for the creation of other multi-species,

presence-only, distribution models.

Environmental predictors

The top three predictors, Soil Type, Ecoregion, and

Landcover, were similar for all species, and along with

some climate-related layers were consistently the most

important predictors used in model algorithms

(Appendix 4—Supplementary material 4). Their

Table 5 Land ownership

status and area (ha) for

biodiversity hotspots in

Alaska containing at least

11 species of small mammal

Public lands are parsed into

management subunits for

geographic specificity

Land status Number of species Total area (ha)

11 12 13

State of Alaska 11,937.4 8,225.3 36.7 20,199.4

Game Management Unit 20 9,340.9 7,471.9 4.3 16,817.1

Game Management Unit 25 887.2 705.7 32.4 1,625.3

Game Management Unit 12 666.4 87.3 0.0 753.7

Bureau of Land Management 4,953.7 2,304.9 12.1 7,270.7

Steese Conservation Area 2,515.1 1,305.8 4.7 5,089.2

Upper Black River Subunit 372.5 767.5 7.5 1,147.5

Forty-mile Planning Subunit 468.3 97.8 0.0 566.1

Native Corporations 3,611.1 1,937.5 38.8 5,587.4

Doyon Ltd 3,581.3 1,937.5 38.8 5,557.6

N.A.N.A Regional Corp 28.1 0.0 0.0 28.1

National Park Service 2,022.6 1,078.9 15.5 3,117.0

Yukon-Charley Rivers National Park 1,306.2 1,013.0 12.4 2,331.6

Denali National Park 436.2 0.4 0.0 436.6

Gates of the Arctic National Park 258.7 10.4 0.0 269.1

U.S. Fish and Wildlife Service 1,697.8 164.9 0.0 1,862.7

Arctic National Wildlife Refuge 124.0 1.9 0.0 125.9

Yukon Flats National Wildlife Refuge 109.7 155.1 0.0 264.8

Tetlin National Wildlife Refuge 159.8 0.0 0.0 159.8

Military 15.4 23.4 2.8 41.6

Private 2.6 0.0 0.0 2.6
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prevalence demonstrates a consistent bottom-up effect

of climate and soils interacting to produce habitats that

drive biodiversity and community assemblage pat-

terns. These results suggest that shifting habitat

conditions resulting from changes in climate will

likely have strong influence in determining distribu-

tions of wildlife and inter-specific relationships at

northern latitudes.

Although these were the most important predictors

on a geographic scale, their values may be overesti-

mated at finer scales in the field. We should also note

that the top three predictors are all categorical

variables. Because of their categorical structure,

RandomForests can easily utilize stark differences

between categories to partition data points, effectively

inflating the importance of these variables in the

models. Nevertheless, these results provide data-

mining-based foundations for more detailed hypoth-

esis-driven analyses aimed at identifying mechanisms

driving patterns of wildlife distribution.

Community structure

Small mammal species in Alaska can be organized

into five main community groups that reflect their

current distributions and potential for interactions with

other species. Varclus provides a repeatable method

for outlining large-scale spatial relationships among

wildlife species and for documenting changes in

community arrangement over time. For example, the

spatial pattern for the cold-climate community is an

approximate inverse prediction of the interior com-

munity’s distribution, and members of these two

communities do not often co-occur. As the member-

ship of communities and the spatial arrangement

between them changes with the warming climate, a

consistent analysis such as varclus will be useful for

documenting specific changes in the community

composition and overlapping distributions of wildlife

species around the world.

Although varclus community clusters indicate the

most common arrangement of species at a geographic

scale, they do not reflect the extent of species

assemblages that may occur across different habitats.

The statewide species richness map depicts overlap-

ping distributions of[6 species over a large portion of

the state, clearly demonstrating frequent cross-over

between community clusters on the landscape

(Fig. 5f). Correlations between species within each

cluster were high, but in some cases inter-cluster

correlations for some species combinations were also

large. The tightest geographic relationships occurred

in the southern community, and indeed all of these

species were frequently detected together in the field

(Fig. 2).

Trapping records included several instances in

which species belonging to different community

groups co-occurred at a single location. For example,

northern red-backed voles, root voles, and cinereus

shrews—members of three different communities—

occurred together at three sampling locations (Fig. 2),

indicating wider geographic niche breadths and more

generalist distribution patterns. Dominant species like

northern red-backed voles and cinereus shrews are

increasingly being found beyond their historical dis-

tributions, leading to the higher likelihood of novel

species contacts and newly emerging interspecific

relationships (Hope et al. 2013). Recent stable isotope

analyses have shown that in areas where species

distributions overlap, dietary plasticity and niche

partitioning may allow dominant and secondary spe-

cies to coexist without significant competition (A.P.

Baltensperger et al. unpublished). Monitoring how

changes in the extent of geographic overlap between

species may alter community membership can serve to

identify the landscape-level effects of environmental

change on wildlife persistence (Hope et al. 2013).

Regional biodiversity patterns

The region with the highest level of small mammal

diversity was the Yukon-Tanana Uplands, where a

maximum of 13 species were predicted to co-occur.

This region appeared as a major biodiversity hotspot

for several reasons. First, it is closest to the North

American interior both geographically and ecologi-

cally. It is an extension of the interior Canadian boreal

ecoregion and represents the farthest reach of many

species that may be slowly expanding their ranges

northward from the contiguous United States and

Canada (Parmesan and Yohe 2003; Root et al. 2005).

This includes members of the continental community,

as well as members of the interior and southern

communities. Many of these species are also not

usually found outside of the interior and historically

did not occur in Alaska prior to the last glacial

maximum (MacDonald and Cook 2009; A.G. Hope

personal communication).
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Second, this region contains a wide range of

elevations and habitats, resulting in a variety of available

niches. With the diversity of habitats, it is likely that

more common species such as northern red-backed

voles, cinereus shrews, root voles, and other members of

the northern community such as brown lemmings and

tundra shrews would be found there. Because of the high

elevations, the models predict that singing voles should

also occur there. The only mainland species not

predicted to live in this region are all three of the cold-

climate species, whose distributions are far removed

from this area. A similar geographic ecotone containing

a variety of habitat types may also account for the

hotspot in the Central Brooks Range between the

headwaters of the Koyukuk, Kobuk and Noatak Rivers,

as well as the hotspot cluster on the lee side of the Alaska

Range. Such small mammal biodiversity hotspots

occurring at the ecological crossroads along biome

boundaries support the notion of these areas as important

biodiversity reservoirs worthy of conservation in a

changing climate (Neilson 1991).

Management implications

The conservation of biodiversity is important for a

number of reasons. Although many of these species

occur together across the state and appear to fill similar

ecological roles, our understanding of the mechanistic

functions and niche overlap of animals in ecosystems

is limited (Churchfield et al. 1999; Hooper et al. 2005;

Fritts et al. 2006; Prost et al. 2013). Nevertheless,

apparent ecological redundancy has the benefit of

insuring against the uncertainty of climate change.

Maintaining a range of species that provide different

ecological services and that may respond differently to

environmental disturbances can have a stabilizing

effect on food webs and ecosystems as they evolve

(Aarssen 1997; Hooper et al. 2005; Duffy et al. 2007).

Maximizing diversity also increases the likelihood

that species that have disproportionately large effects

on ecosystem functionality will persist (Aarssen 1997;

Hooper et al. 2005). Furthermore, active conservation

of a diversity of prey species occupying a variety of

niches is an essential part of conserving predator

diversity, and ultimately for maintaining ecosystem-

wide trophic structure and functionality (Noss 1990;

Lawler et al. 2009).

Because two-thirds of the land in Alaska is public,

the vast majority of small-mammal hotspots occur on

federal and state lands, granting an opportunity to

pursue biodiversity conservation on a large scale. For

land managers, the results of these types of analyses

should provide them with the spatially-explicit tools

and knowledge to prioritize species richness as a

conservation management goal. Documenting current

distribution and baseline community patterns of

primary consumers at a geographic scale is the first

step towards identifying the effects of impending

environmental changes on the bottom-up flow of

nutrients into wildlife communities (Noss 1990). Of

course, species responses will not be uniform, but will

depend on the capacity of each to tolerate, adapt, or

disperse given rapid, large-scale ecological change

(Parmesan and Yohe 2003; Williams and Jackson

2007; Hope et al. 2013). Monitoring shifts in individual

species distributions over time will provide tangible

accounts of how species are responding across space,

and will be vital for assessing the temporal stability and

adaptive capacity of natural systems (Hooper et al.

2005; Hope et al. 2013). Based on other predictive

modeling efforts (Magness et al. 2008) we advocate for

the establishment of a permanent network of small

mammal survey sites, distributed across the state, but

especially in the areas of highest diversity (e.g. Yukon

Tanana Uplands), and checked at annual or decadal

intervals to serve as the foundation for such long-term

monitoring efforts (Noss 1990; Hope et al. 2013). Not

only could a network of stations monitor species

richness, but using a consistent trapping grid protocol

would also allow for the calculation of species

densities. These could also be modeled across space

to create detailed maps of population status for

multiple species. Both would be sound applications

of the best professional research practices to wildlife

management across a continually changing landscape.

Although species distributions and community

compositions are likely to shift with the climate over

time, providing wildlife with the opportunity to

disperse to new areas within their niche envelope will

be paramount for their persistence into the future

(Bush 2002; Williams and Jackson 2007). Even as the

climate, soils, and habitat conditions change, if land

managers can promote the continued connectivity of

important refugia along latitudinal and elevational

corridors, then species incapable of coping with new

environmental conditions can disperse to unexploited

areas of their fundamental geographic niche (Bush

2002; Hope et al. 2013). Predicting where and how the
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environment will change, determining how species are

likely to respond, and conserving these areas for the

future are the biggest challenges currently facing

species diversity conservation worldwide.
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