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Abstract Understanding the factors determining the

spatial distribution of species is a major challenge in

ecology and conservation. This study tests the use of

ecosystem functioning variables, derived from satel-

lite imagery data, to explore their potential use in

modeling the distribution of the European badger in

Mediterranean arid environments. We found that the

performance of distribution models was enhanced by

the inclusion of variables derived from the Enhanced

Vegetation Index (EVI), such as mean EVI (a proxy

for primary production), the coefficient of variation of

mean EVI (an indicator of seasonality), and the

standard deviation of mean EVI (representing spatial

heterogeneity of primary production). We also found

that distributions predicted by remote sensing data

were consistent with the ecological preferences of

badger in those environments, which may be

explained by the link between EVI-derived variables

and the spatial and temporal variability of food

resource availability. In conclusion, we suggest the

incorporation of variables associated with ecosystem

function into species modeling exercises as a useful

tool for improving decision-making related to wildlife

conservation and management.
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Introduction

Understanding the factors determining the spatial

distribution of species is a major challenge in ecology

and conservation biology (Brown et al. 1995). The

European badger (Meles meles) is medium-sized

carnivore widely distributed across Europe. In Med-

iterranean arid landscapes the species is not abundant

or is absent due to extreme aridity (Virgós et al. 2005).

Current spatial distribution models for the European

badger use occurrence data in conjunction with

environmental variables derived from GIS data

sources, such as topographic, climatic, and land

cover/use (Virgós and Casanovas 1999a; Jepsen

et al. 2005; Newton-Cross et al. 2007). These models

have improved our understanding of badger distribu-

tion and abundance (Newton-Cross et al. 2007) by

reducing limitations associated with field sampling

(e.g., high economic cost and limited geographic

range). However, data derived by GIS cartography

could include limitations of ecological representative-

ness such as not representing relevant landscape

features for the target species or inadequate spatial

resolution (Pearce et al. 2001).

The use of ecosystem functioning variables could

improve spatial distribution modeling due to their

capacity to reflect spatial variability of landscape

features and faster response to environment changes

(Pettorelli et al. 2011). Ecosystem functioning vari-

ables can be extracted from remote sensing imagery,

available continuously, both spatially and temporally.

This allows the employment of standardized spectral

indexes for monitoring species on different spatio-

temporal scales (Nilsen et al. 2005) reducing extrap-

olations. An example of potentially useful ecosystem

functioning variables are the functional attributes

derived by the Enhanced Vegetation Index (EVI).

The EVI has been used in mammal ecology by Wang

et al. (2010), Meynard et al. (2012), and Bardsen and

Tveraa (2012). The EVI is linearly related to ecosys-

tem carbon gains, and therefore, to net primary

productivity (NPP) (Monteith 1981), which is used

as a surrogate of ecosystem functioning (Alcaraz et al.

2006; Cabello et al. 2012b). Thus, measures derived

from EVI can describe ecosystem functional attributes

(Pettorelli et al. 2005). These attributes include the

mean annual EVI (i.e., surrogate of primary produc-

tion) (Huete et al. 1997; Sims et al. 2006) and the

coefficient of variation of mean annual EVI (i.e.,

indicator of seasonality) (Alcaraz-Segura et al. 2012).

The resource dispersion hypothesis posits that the

size of badger territories is mainly linked to the

dispersion of food resources (Macdonald 1983; Kruuk

1989; Macdonald and Carr 1999). This hypothesis

emphasizes the key role of patchiness of food quality in

determining how large badger territories are. For

example, habitat productivity tends to drive body

condition, ultimately influencing fitness (Woodroffe

1995). As a consequence, reproductive success of

females is largely dependent on food conditions, which

in badgers are mainly linked to climate factors medi-

ating food abundance (e.g., productivity of habitats)

(Woodroffe and Macdonald 1995). Therefore, badger

demography, abundance and social life is mainly shaped

by food availability and predictability (seasonality),

which can be assessed by ecosystem functional attri-

butes derived of spectral vegetation indices (e.g., Nilsen

et al. 2005; Pettorelli et al. 2005, 2006).

The purpose of this study is to test the use of

ecosystem functional variables derived from EVI (e.g.,

mean annual EVI, coefficient of variation of mean

annual EVI, and spatial deviation of mean annual EVI)

to improve spatial distribution modeling of the Euro-

pean badger. With this aim, we first sampled badger

occurrence in a representative arid landscape located in

the southeastern Iberian Peninsula (Fig. 1). Secondly,

we designed a variety of spatial distribution models

based on environmental variables, with and without

including EVI-derived variables. We also explored

their performance based on a subset of previously

sampled presence data and the habitat preferences of

badger as described by other authors. Finally, we

discuss the role of ecosystem functional dimension in

species ecological modeling and conservation.

Methods

Study area

We selected a representative area of arid landscapes in

the southeastern Iberian Peninsula based on the
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Martonne aridity index (Martonne 1926) (Fig. 1), as it

is easily calculated and mapped with GIS layers.

Inside this area defined as Arid steppic by the

Martonne index (range 5–15), we drew a 3.5 km-

radius buffer zone on both sides of the two major rivers

basins in the region, and then joined the two buffers

(Fig. 1). In this form, we ensure inclusion of the

potential home range estimated for European badgers

in these environments (i.e., 9 km2) (Lara-Romero

et al. 2012). The study area comprised 835 km2, with a

temperature gradient (range of minimum mean tem-

peratures: 7–12 �C, range of maximum mean temper-

atures: 23–28 �C) and an annual precipitation gradient

(200–600 mm/m3) associated with a wide altitudinal

gradient (0–1,400 m). Evapotranspiration ranges from

93 to 945 mm/year. Another important feature of the

area is the diversity of land cover/use: xerophytic

scrubs represent 48 % of the area, where Stipa

tenacissima is the most abundant. Forested habitat is

very scarce, corresponding mostly to scattered pine

forests (Pinus halepensis). Crops occupy 27 % of the

study area and include fruit orchards (especially

abundant near the rivers), arable crops and green-

houses, in similar proportions.

Field survey data

A field survey was conducted from September 2010 to

February 2011. The study area was divided into

5 9 5 km UTM (Universal Transverse Mercator)

plots (out of total 66 plots) to organize the field

surveys and not as the sampling unit. A survey to

identify signs of badgers (i.e., footprints, latrines and

setts) was carried out for 6 h in each plot. To maximize

the detection of the species with the least effort, we

selected places for survey such as paths and catch-

ments for footprints, hills for latrines and easy to dig

sloping areas for setts. These places are known to be

usually used by badgers. The GPS (UTM) coordinates

of each sign were noted with a measurement error of

up to 10 m using a GPSmap� 60CS9-Garmin. To

avoid spatial autocorrelation of environmental vari-

ables (see below), no signs within 100 m from each

other were considered (see Appendix 5).

Environmental data

The study area was characterized based on

twenty predictor variables (Table 1 and Appendix

Fig. 1 Study area location
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4). Nine of these variables are commonly used in

European badger ecology studies (e.g., Virgós and

Casanovas 1999a; Revilla et al. 2000; Macdonald

and Newman 2002; Jepsen et al. 2005; Rosalino

et al. 2008; Lara-Romero et al. 2012), and were

comprised by two climate variables, one topo-

graphic variable and six variables related to habitat

structure represented by different land cover/use.

The eleven remaining variables were derived from

remote sensing data.

Final resolution of environmental data sets was

adjusted to 100 9 100 m pixel size (i.e., sample unit),

to agree with the predominant smallest spatial reso-

lution of data (Ferrier and Watson 1997; Elith and

Leathwick 2009). Some variables (i.e., land cover/use

variables) were scaled to the relevant scale for badgers

(i.e., their home range).

Topographic and climate variables

Topographic and climate variables were derived from

spatial data layers of the Environmental Information

Network of Andalusia (http://www.juntadeandalucia.es/

medioambiente/site/web/rediam). ESRI� ArcMapTM

9.3 was used for their handling and processing. The

topographic variable was mean slope, which has been

described as a factor relevant for sett digging (Jepsen et al.

2005). It was estimated from the digital elevation model

of Andalusia with a spatial and elevation pixel resolution

of 20 9 20 m. This layer was resampled to 100 9 100 m.

Climate variables (Virgós and Casanovas 1999a;

Johnson et al. 2002; Macdonald and Newman 2002)

were mean annual rainfall and the mean maximum

temperature, acquired with a resolution of 100 x 100

m, so no transformation was made.

Table 1 Groups of variables used for constructing models

Variable Short name Groups of variables

Group 1 Group 2 Group 3 Group 4

Mean slope SLO X

Annual mean rainfall MRAIN X

Mean value of the maximum temperatures MMT X

Area of scattered scrub SSCRUB X

Area of dense scrub SDCRUB X

Area of woody crop SWCROP X

Area of arable crop SACROP X

Area of mixed crop SMICROP X

Area of mosaic crop SMOCROP X

EVI annual mean EVIMEAN X

Standard deviation of EVI annual mean EVISTD X

Coefficient of variation of EVI annual mean EVICV X

EVI autumn mean AEVI X

EVI spring mean SEVI X

EVI annual mean of scattered scrub SSCEVI X

EVI annual mean of dense scrub DSCEVI X

EVI annual mean of woody crop WCEVI X

EVI annual mean of arable crop ACEVI X

EVI annual mean of mixed crop MICEVI X

EVI annual mean of mosaic crop MOCEVI X

Group 1: topography and climate, group 2: Land cover and Land use, group 3: EVI variables, group 4: EVI of land cover. Each model

contained group 1, the ALL model all four groups, LC & LU model groups 1 and 2, the EVI model groups 1 and 3, and the EVI LC

model groups 1 and 4. Thus, three models included the ecosystem functional variables: EVI, EVI LC and ALL, and only LC & LU

model did not include these variables
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Land cover and land use variables

The land cover and land use variables (Virgós and

Casanovas 1999a; Revilla et al. 2000; Rosalino et al.

2008; Lara-Romero et al. 2012) were derived from

Andalusian Land use/Land cover map (scale 1:25,000

from 2007), in vector format. This layer included the

following classes: scattered scrub, dense scrub, woody

crops, arable crops, mixed crops (woody and arable)

and mosaic crops (crops and natural vegetation). The

study area was first divided into 3 9 3 km plots. We

estimated the area (km2) of each class and then we

rasterized to 100 9 100 m pixel size. These variables

were scaled because the percent cover is relevant for

badgers (Lara-Romero et al. 2012), instead of using

the class of land cover/use as categorical variable. We

considered a 9 km2 area as the probable home range of

the European badger in areas of low habitat suitability

(Lara-Romero et al. 2012).

EVI variables

The eleven variables derived from remote sensing data

were estimated based on the MOD13Q1 EVI product,

generated from images captured by the MODIS sensor

aboard the NASA’s TERRA satellite (www.modis.

gsfc.nasa.gov) for a period of seven years. These

images have the advantages of its high temporal res-

olution of 16 days (23 images/year) and spatial reso-

lution appropriate to the scale of the study (231 9

231 m). The images were subjected to pixel quality

filtering, in which those affected by heavy content of

aerosols, clouds, shadows, snow or water were elimi-

nated. The EVI is the index least affected by atmo-

spheric conditions and presents fewer saturation

problems for high levels of biomass (Huete et al.

2002).

The mean annual EVI is linearly related to total

carbon gain (Running et al. 2000), and has been used

as a surrogate of vegetation productivity (Alcaraz-

Segura et al. 2012). The standard deviation of mean

annual EVI is an indirect measure of spatial hetero-

geneity, so that a high standard deviation may indicate

mixed patches, while a low standard deviation is

common in homogeneous landscapes. This variable

was estimated by calculating the standard deviation of

mean annual EVI in the 3 9 3 km plots used to

estimate the land cover/use variables. The coefficient

of variation of mean annual EVI is a seasonal carbon

gain descriptor (Alcaraz et al. 2006) that has been used

as an indicator of ecosystem seasonality (Alcaraz-

Segura et al. 2012). Furthermore, seasonality,

although described by other variables, has proven

decisive in modeling the habitat of several other

species (Boyce 1978; Ferguson and McLoughlin

2000; Wiegand et al. 2008). In addition to these, the

EVI autumn mean (September–November) and EVI

spring mean (March–May) were also included as

variables, because they represent the two growing

seasons in Mediterranean arid landscapes (Cabello

et al. 2012b).

EVI variables were resampled to 100 9 100 m by a

bilinear resampling technique. It determines the new

value of a cell based on a weighted distance average of

the four nearest input cell centers. This is likely more

realistic than using nearest-neighbor interpolation

method (Phillips et al. 2006).

EVI of land cover and land uses variables

Five variables were created by calculating mean EVI

for each class of land cover/use referred to above.

These variables were also resampled to 100 9 100 m

by a bilinear resampling technique.

Model building

MaxEnt

We used MaxEnt (Phillips et al. 2006) to model the

spatial distribution of the European badger. The

MaxEnt algorithm uses presence-only data. This is

an advantage when working with a very low density of

target species at large scales, as we expected in the

study area based on Lara-Romero et al. (2012), due to

the uncertainty in absences. Although MaxEnt has

been criticized on several occasions (see recently

Veloz 2009; Yackulic et al. 2012), it is widely used for

modeling the spatial distribution of species for various

purposes, e.g., testing model performance against

other methods (Elith et al. 2006) and using several

types of variables (Buermann et al. 2008), predicting

species richness or diversity (Graham and Hijmans

2006), or forecasting distributions to estimate varia-

tions with climate change/land transformation (Yates

et al. 2010). Finally, given that (1) the main goal of this

study is to test the performance of models using

ecosystem functional variables, and (2) prediction

Landscape Ecol (2014) 29:843–855 847
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maps generated by MaxEnt are of interest as assess-

ment tools, but are not the goal itself, we considered

MaxEnt a valid tool for achieving our objectives.

Models

To test the utility of environmental functional vari-

ables in modeling the spatial distribution of the

badger, we combined the twenty variables into four

groups, with and without including ecosystem func-

tional variables (Table 1). We defined these four

groups because they were the most ecologically

reasonable and of interest for comparison in keeping

with the objectives of this study. These groups of

variables, along with the badger presence data, were

input to compute models. We used 10-fold cross-

validation of the occurrence locations. Each partition

was made by randomly selecting 75 % of the occur-

rence locations as training data, and the remaining

25 % as test data. Then, each one of the partitions,

along with each of the four combinations of variables,

was run in MaxEnt to compute the models. We made

10 random partitions rather than a single one in order

to assess the average model behavior, and to allow for

statistical testing of observed differences in perfor-

mance (Phillips et al. 2006).

Model evaluation

Threshold-independent evaluation

We evaluated the performance of models created from

different combinations of variables using all discrim-

inating thresholds within the predicted area as suitable

or unsuitable for badgers. We used (threshold-inde-

pendent) receiver operating characteristic (ROC)

analysis for this, as it uses a single measure, the area

under the curve (AUC), to show model performance.

With presence-only data, the AUCPO (i.e., AUC

estimated with presence-only data) maximum was

less than 1 (Wiley et al. 2003), so we do not know how

close to optimal a given AUCPO was. Nevertheless, we

were able to determine the statistical significance of

the AUCPO and compare the performance of different

models (Phillips et al. 2006). We employed a DeLong

test (DeLong et al. 1998) to compare AUCPO values

for each combination of variables. The DeLong test is

designed to nonparametrically compare the difference

between two AUCs from two correlated ROC curves.

The Z score is defined as the difference of AUC

divided by its standard error. Under the null hypothesis

(the difference in AUC is zero) Z has a standard

normal distribution (Chen et al. 2013). This test was

computed in R (R Development Core Team 2008).

Information criteria

Following Warren and Seifert (2011), we imple-

mented an Akaike information criterion corrected for

small sample size (AICc) (Burnham and Anderson

2002) in the MaxEnt models. We standardized raw

scores for each model, so that all scores within the

study area added up to 1. Then we calculated the

likelihood of the data in each model by taking the

product of the suitability scores for each pixel showing

presence. Both training and test data were used in

calculating likelihood. The number of parameters was

measured by counting all parameters with a nonzero

weight in the .lambda file produced by MaxEnt. All

AICcs were computed using ENMTools software

(Warren et al. 2010).

Variable relative importance and response curves

We evaluated the relative importance of the variables

using a jackknife test on the AUCPO found from test

data. Thus AUCPO was estimated by (1) removing the

corresponding variable, and then creating a model

with the remaining variables, (2) creating a model

using each variable alone, and (3) using all variables.

Furthermore, we plotted the response curves for the

variables which caused the widest variations in the

AUCPO. Curves were estimated by generating a model

using only the corresponding variable and disregard-

ing those remaining (Phillips et al. 2006).

Results

Occurrence of European badger

The field survey yielded 94 presence locations, mainly

associated with the two main rivers in the study area

(see Appendix 1). Landscapes near the rivers had a

larger supply of food resources for the European

badger, because crops are abundant there (Fig. 1).

These presence records are enough for this study since

MaxEnt algorithm has been proved to works well at
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different sample size (Hernández et al. 2006). 51 of the

records were footprints, 26 latrines, 15 setts and 2 road

casualties.

Threshold-independent test

In 6 of the 10 partitions, combinations with all

variables (ALL) yielded the models with the highest

AUCPO (Table 2). In 8 of the 10 partitions, the AUCPO

was higher for EVI and EVI LC than for the Land

cover & Land uses models, which were the lowest in

most of the partitions.

Information criteria

Table 3 shows Akaike weights found by models. It is

accepted that models with AICc differences (DAICc)

\2 are plausible while models with DAICc values

[10 are rejectable (Burnham and Anderson 2002).

Thus, 6 of the 10 data partitions accepted EVI and LC

& LU as the most parsimonious models, while one of

the partitions accepted the EVI LC model. ALL

models were not plausible in any of the partitions.

Relevant variables and their effects

We only analyzed the relative importance of variables

from the ALL model, with the maximum AUCPO

value. Area of mosaic crop (SMOCROP) caused a 2 %

reduction in AUCPO (Fig. 2b). Therefore, this vari-

able, along with others that caused a reduction of over

1 % (Area of scattered scrub (SSCRUB), EVI of

mosaic crop (MOCEVI), mean maximum temperature

(MMT) and coefficient of variation of mean EVI

(EVICV)), provided the most useful information not

present in the other variables. We considered reduc-

tions about 2 and 1 % as relevant, because these

percentages were above the third quartile (0.84 %) of

reduction values percentage. EVIMEAN alone had the

highest AUCPO (87.4 % AUCPO with all variables)

(Fig. 2a) and therefore, this variable provided the most

useful information by itself. Apart from this, others

like EVI spring, EVI autumn, EVI scattered scrub and

standard deviation of mean EVI, were over 79 %.

Variables such as scattered scrub area, mean

maximum temperature, standard deviation of mean

EVI and EVI of scattered scrub exerted a nonlinear

effect on European badger habitat suitability, as

predicted by MaxEnt (Appendix 2). On the contrary,

mosaic crop area and mean annual EVI, exerted a

positive linear effect, while EVI crop mosaic and

coefficient of variation of mean EVI had a negative

linear effect.

Discussion

Did the EVI-derived variables improve ecological

niche modeling of the European badger in arid

landscapes?

EVI variables provided useful information that

improved the ecological niche modeling of European

badger in arid Mediterranean landscapes. Based on the

AUCPO and AICc criteria, models built with EVI

variables, performed well in predicting the spatial

distribution, while models without them were inferior

(based on AUCPO). We suggest that the variables

included in the EVI models underlie the spatiotempo-

ral dynamic of badger food resources by describing

vegetation productivity (EVIMEAN), seasonality

Table 2 Comparison of threshold-independent receiver oper-

ating characteristic (ROC) results for European badger using

LC & LU, EVI, EVI LC and ALL models

Data partition LC & LU EVI EVI LC ALL

AUCPO AUCPO AUCPO AUCPO

1 0.722 0.669 0.725 0.722

2 0.63 0.701 0.634 0.674

3 0.644* 0.705 0.745 0.658

4 0.753* 0.756* 0.761 0.816

5 0.625* 0.785 0.69 0.69*

6 0.742* 0.793* 0.746* 0.808

7 0.734 0.726 0.707 0.741

8 0.673* 0.711 0.682 0.735

9 0.772 0.788 0.753 0.831

10 0.718* 0.758* 0.77 0.82

Average 0.701 0.739 0.721 0.749

Standard deviation 0.053 0.042 0.042 0.065

Maximum 0.772 0.793 0.770 0.831

Minimum 0.625 0.669 0.634 0.658

For each random partition of occurrence records, the maximum

AUCPO is marked in bold, the minimum italicized, and if the

observed difference between the maximum AUCPO and the rest

is statistically significant (under a null hypothesis that true

AUCPOs are equal), it is marked with an asterisk

LC & LU Land cover and Land uses, AUCPO AUC estimated

with presence-only data
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Table 3 Number of estimated parameters (K), AICc differences (DAICc) and Akaike weights (Wi). The maximum Wi for each

random partition of occurrence records is marked in bold

Partition data LC & LU EVI EVI for LC ALL

K DAICc Wi K DAICc Wi K DAICc Wi K DAICc Wi

1 24 0.00 0.73 30 1.98 0.27 33 29.28 0.0 46 40.63 0.0

2 26 17.72 0.00 27 0.00 1.00 28 35.18 0.0 49 91.35 0.0

3 27 29.05 0.00 28 0.00 1.00 37 58.81 0.0 51 107.23 0.0

4 28 0.00 0.55 33 0.41 0.45 37 44.61 0.0 47 34.45 0.0

5 25 0.00 1.00 34 15.58 0.00 29 11.82 0.0 47 53.23 0.0

6 29 13.74 0.00 30 0.00 1.00 34 38.57 0.0 54 108.75 0.0

7 27 15.15 0.00 26 0.00 1.00 31 39.43 0.0 43 27.42 0.0

8 30 0.00 0.94 33 5.39 0.06 35 25.30 0.0 47 34.13 0.0

9 25 0.00 0.69 34 14.69 0.00 27 1.61 0.3 53 94.24 0.0

10 25 0.00 1.00 34 19.93 0.00 28 12.72 0.0 50 66.34 0.0

LC & LU Land cover and Land uses

Fig. 2 Jackknife test of variable importance for European

badger in the ALL model with maximum AUCPO. a Bars show

the AUCPO with each variable modeled separately. Ratios above

the bars show the AUCPO percentage of the reference value

(0.831); b Bars show the AUCPO, when each variable is

extracted from the model. The ratios above the bars show the

ratio decreased by the AUCPO with respect to the reference

value (0.831)
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(EVICV) and spatial heterogeneity (EVISTD). Thus,

areas with high EVI mean and EVI spatial heteroge-

neity represented more suitable habitats for the

European badger, while they rejected areas with high

EVI seasonality.

Our study showed that despite the fact that rainfall

(expressed here as mean annual rainfall, MRAIN) is

considered the main driver of vegetation growth in

Mediterranean environments (Nemani et al. 2003), it

did not prove to be as good a predictor as the mean EVI

(as proxy of primary productivity) for European

badger distribution. The higher performance of EVI

mean can be explained by the findings of Cabello et al.

(2012b), in which productivity derived from EVI in

drylands reflects the variation of the water use

efficiency and its availability due to the features of

vegetation and lithology. In addition, EVI mean also

reflected the NPP for irrigated crops, which do not

depend directly on rainfall (33 % of crops in the study

area are irrigated).

Additionally, more seasonal environments in the

study area (i.e., with high EVICV values) represented

zones with low habitat quality for European badger.

Johnson et al. (2002), suggested that badger densities

across Europe are associated with seasonal con-

straints, or some other constraint(s) that covary with

seasonality. EVI models predicted as suitable, land-

scapes with little annual variation in EVI values,

corresponding with sites where the availability of food

may be assured even in summer, the season experi-

encing the most extreme shortages in food. Similarly,

Virgós and Casanovas (1999a) showed that a decrease

in summer rainfall reduces badger occurrence in

Mediterranean mountains.

We also found that badgers selected areas with high

EVI spatial heterogeneity. Pita et al. (2009) described

the Mediterranean rural landscape as a shifting mosaic

that benefits diversity and presence of species as the

European badger. The different types of traditional

crops, along with patches of semi-natural vegetation,

especially scrub and/or forest, yield a wide variety of

food resources. We argue that the EVISTD variable

might detect these mosaic landscapes. However,

although this variable contributed positively to Euro-

pean badger habitat suitability, its effect was nonlin-

ear, suggesting that badgers would not need such

heterogeneity to survive in certain landscapes.

Both EVICV and EVISTD might depict variability

of resources availability. EVICV represents temporal

variability in the availability of resources because it is

the dispersion of mean EVI throughout the year. In this

sense, if EVI in summer and winter are significantly

different, the annual temporal variability of EVI will

be large. On the other hand, EVISTD represents spatial

variability because it is the standard deviation of mean

EVI into the potential territories of badgers. In

consequence, high values indicate that a landscape

will be more heterogeneous.

Was the predicted spatial distribution across arid

lands consistent with the ecological preferences

of the European badger?

The distribution predicted by the EVI models was

coherent with the habitat preferences described for the

European badger (see Appendix 3 for further details of

predicted distributions by models). Our results reveal

that badger0s presence in the study area was mainly

associated with sites near rivers where there were

several different types of crops and patches of natural

vegetation. According to Lara-Romero et al. (2012), in

Mediterranean drylands the European badger prefers

mosaic landscapes consisting of fruit orchards and

natural vegetation, which provide shelter and food

resources. In these environments, the diet is diversi-

fied, with consumption of fruit increasing in some

seasons (Barea-Azcón et al. 2010). Fruits, insects and

vertebrates have also been described as relevant food

resources for European badger in Mediterranean

environments (Rodrı́guez and Delibes 1992; Revilla

and Palomares 2002). Likewise, other authors have

related the occurrence or abundance of these items

with satellite-derived vegetation indices, such as EVI

or Normalized Difference Vegetation Index (NDVI)

(see Willems et al. 2009; Lafage et al. 2013; Tapia

et al. 2013).

EVI and EVI for Land cover models discriminated

better between suitable (i.e., mosaic landscapes with

crops) and unsuitable areas (homogeneous patches of

dense xerophytic scrubs) than the LC & LU models

(see Table 2 and Appendix 3). EVI variables provided

information for discriminating between two patches

with the same type of land use and cover, but with

different primary production, seasonality and spatial

heterogeneity. The EVI for Land cover models

exhibited an intermediate performance (Table 2).

These models also used variables related to primary

productivity. However, such variables were averaged
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based on the spatial classification derived by GIS

cartography. These maps may not represent relevant

landscape features for the target species or inadequate

spatial resolution (Pearce et al. 2001).

Sites with high EVIMEAN and SMOCROP (area of

mosaic crops) values represented the most suitable

habitats for the European badger. However, the

variable EVI mean of mosaic crops (MOCEVI)

showed a negative effect on badger presence, which

could be explained by the fact that 1—mosaic crop

variable, in turn, encompasses different types of crops,

and 2—badger presence records with high EVI values,

are associated with non-irrigated almond crop, which

would not favor badger presence in those areas. This

suggests that in particular landscapes, the type of land

use would be more decisive for badger than its

associated productivity.

Removal of variables such as SWCROP (area of

woody crop) and AEVI (EVI autumn), did increase

performance, meaning that such variables reduced the

generality of the model. This is, models made with

these variables appear to be less transferable to other

geographic areas or to projected future distributions by

applying future conditions (Phillips 2006).

Regarding the potential bias of the selected study

area on results, we consider that the study area

contained enough variability to ensure that its effect

was minimized. Probably, a larger buffer would

provide similar results because the area between both

rivers has not crops. In Mediterranean arid landscapes,

the major landscape variability is generally associated

with areas near rivers (Corbacho et al. 2003) and along

altitudinal gradients, just what we defined with our

study area.

Ecosystem functional dimension in species

ecological modeling and conservation

The incorporation of remotely sensed characterization

of the ecosystem functional dimension in management

and monitoring of species and populations is gaining

attention in conservation biology (Cabello et al.

2012a). Ecosystem functional dimension provides

proxies showing biodiversity patterns and new tools

and criteria that can assist in designing conservation

planning and actions. Some examples are shown by

Bardsen and Tveraa (2012), who used vegetation

productivity estimated by EVI to advance knowledge

of the reproductive biology of reindeer (Rangifer

tarandus) in Norway; Oindo (2002) who predicted

mammal species richness and abundance using multi-

temporal NDVI data; or Wiegand et al. (2008), who

studied the relationship between brown bear (Ursus

arctos) habitat quality and the seasonal course of

NDVI as a proxy for ecosystem functioning in the

northern Iberian Peninsula.

Ecological modeling of the European badger in the

Iberian Peninsula has to date been addressed mainly

using landscape structural variables estimated from

visual field observation (transect scale) (Virgós and

Casanovas 1999b) and by GIS information (regional

scale) (Rosalino et al. 2004). Even though these

variables that reflect landscape structure are essential

to modeling the species distribution (Rosalino et al.

2008), they do not reflect the role of ecosystem

functioning indicators or their bidirectional relation-

ship with the conservation of biodiversity and ecosys-

tem processes (Cabello et al. 2012a). However,

Pettorelli et al. (2005) and Garcı́a-Rangel and Pettor-

elli (2013) point out some constrains of remote sensing

data to wildlife studies such as select the most suitable

processing to eliminate noise in the data, insufficient

temporal resolution to precisely date phenological

phenomena, and economic disadvantages due to many

satellites still produce data that are not free.

Our study is the first to show that incorporation of

ecosystem functional variables (EVI-derived) improves

the prediction of spatial distribution modeling of the

European badger in arid landscapes, considered espe-

cially sensitive to Global Change (Lavorel et al. 1998).

In this sense, Pettorelli et al. (2005) suggested that

satellite-derived indexes, such NDVI or EVI, could be

used to predict the ecological effects of environmental

change on ecosystems functioning and animal popula-

tion dynamics and distributions, due to their correlation

with vegetation biomass and relationship with climate

variables.

Finally, we found that EVI variables represented

relevant ecological parameters for the description of

the distribution of the European badger as they can

indicate (1) a high NPP associated with orchards or

fruit crops, very important for its survival in Mediter-

ranean arid landscapes (Rodrı́guez and Delibes 1992;

Lara-Romero et al. 2012), (2) seasonality in the

primary production, which can be seen as a surrogate

of habitat quality (Johnson et al. 2002), and (3)

spatially heterogeneous landscapes which provide

different food resources (Pita et al. 2009). However,
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these variables should be tested in other areas of its

distribution range. Models including EVI variables

perform better (based on AUCPO) than models not

including these variables. Additionally, continuous

availability, both spatially and temporally, of remote

sensing data can improve the accuracy of monitoring

and modeling wildlife for conservation purposes in

arid ecosystems throughout the world.
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B, Graham CH (2008) Prediction species distributions

across the Amazonian and Andean regions using remote

sensing data. J Biogeogr 35(7):1160–1176

Burnham KP, Anderson DR (2002) Model selection and mul-

timodel inference. A practical information-theoretic

approach. Springer, New York

Cabello J, Fernández N, Alcaraz-Segura D, Oyonarte C, Piñeiro
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