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Abstract Forest insects cause defoliation distur-

bances with complex spatial dynamics. These are

difficult to measure but critical for models of distur-

bance risk that inform forest management. Under-

standing of spatial dynamics has lagged behind other

disturbance processes because traditional defoliation

sketch map data often suffered from inadequate

precision or spatial resolution. We sought to clarify

the influence of underlying habitat characteristics on

outbreak patterns by combining forest plots, GIS data

and defoliation intensity maps modeled from Landsat

imagery. We quantified dependence of defoliation on

spatial patterns of host abundance, phenology, topog-

raphy, and pesticide spray for a recent gypsy moth

outbreak (2000–2001), in a mixed deciduous forest in

western Maryland, USA. We used semivariograms

and hierarchical partitioning to quantify spatial pat-

terns and variable importance. Habitat characteristics

from plot data explained 21 % of defoliation variance

in 2000 from tree density, phenological asynchrony,

pesticide spray status, and landform index and 34 % of

the variance in 2001 from previous-year defoliation,

relative abundance of non-host species, phenological

asynchrony, pesticide spray status, and relative slope

position. Spatial autocorrelation in residual defoliation

ranged over distances of 788 m in 2000 and 461 m in

2001, corresponding well with gypsy moth larval

dispersal distances (100 m to 1 km). Un-measured

processes such as predation, virus and pathogen

occurrence likely contribute to unexplained variance.

Because the spatial dynamics of these factors are

largely unknown, our results support modeling gypsy

moth defoliation as a function of dependence on

significant exogenous characteristics and residual

spatial pattern matching.

Keywords Lymantria dispar L. � Geostatistics �
Semivariograms � Landsat � Forest disturbance �
Dispersal � Phenology � Spatial patterns �
Appalachians

Introduction

Insect defoliation of forest canopies arises from

complex interactions among insect populations and

their endogenous and exogenous drivers (Turchin and

Taylor 1992). Outbreaks occur when defoliator pop-

ulations increase exponentially and disturb large areas

of forest (Cooke et al. 2006). Spatial propagation of
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outbreak populations remains poorly understood, in

part because defoliation effects are often ephemeral

and difficult to quantify. Ephemeral spatial patterns,

however, may reveal processes that drive disturbance

behavior (Fortin et al. 2003). For example, defoliation

that mirrors the distribution of host tree species

suggests that populations are responding to bottom-

up resource constraints, whereas unrelated patterns

suggest top-down (e.g., predation, parasitism, disease)

or dispersal-related processes (Hunter et al. 1997), or

some combination (Liebhold et al. 2000; McCullough

2000; Peltonen et al. 2002). Improved analysis of the

relative role of these processes will enhance landscape

models of outbreak occurrence, spread and impact that

often lack spatial detail.

Spatial patterns are increasingly used to explain and

predict defoliation outbreaks (Liebhold et al. 1991,

1998), albeit primarily over regional-scales (Magnus-

sen et al. 2004; Seidling and Mues 2005; Tobin and

Blackburn 2008). The use of spatial tools to under-

stand finer-grain, intermediate- and landscape-scale

defoliation patterns has lagged behind. In this paper,

we examine patterns at an ‘‘intermediate’’ scale which

falls between traditional scales of defoliation research

(regional scale) and population ecology research (plot

scale). We define intermediate scales to range from

100 s to 10,000 s ha, which allows for characteriza-

tion of important processes that contribute to defoli-

ation patterns, such as dispersal or disease spread

(Weseloh 2003).

Past analyses of defoliation patterns have relied on

limited data, primarily aerial sketch maps delineated

by hand from a moving airplane or from aerial

photographs (Hohn et al. 1993; Candau et al. 1998).

Remote visual identification like this works if defo-

liation exceeds 30 % (MacLean and MacKinnon

1996) and produces polygons classified as defoliated

(or not). The resulting regional estimates of defoliation

extent are useful for studies of defoliator population

dynamics (Gray et al. 2000; Candau and Fleming

2005). These data, however, are limited in the types of

processes they can describe because they: (1) provide

only binary indicators of defoliation occurrence,

which over-simplifies the range of defoliation inten-

sity (0–100 % of canopy foliar biomass) (Dobbertin

2005), and (2) aggregate sketch-map polygons to

coarse resolutions (typically [1 km2) to account for

geospatial uncertainty, and thus lack the detail to

understand finer-scale processes.

Recent technological and analytical advances,

however, enable more detailed mapping of the inten-

sity of defoliation events (Fraser and Latifovic 2005;

Townsend et al. 2012). For example, Townsend et al.

(2012) mapped defoliation intensity across mid-

Atlantic forests by measuring changes in vegetation

indices from Landsat TM images before and during a

European gypsy moth (GM, Lymantria dispar L.)

outbreak and tying them to ground-based defoliation

measurements. This methodology quantitatively maps

the full intensity and extent of defoliation caused by an

outbreak of the exotic, but naturalized, gypsy moth

(Fig. 1).

Maps of defoliation intensity enable us to improve

our understanding of the bottom-up, resource factors

and spatial processes that contribute to intermediate-

scale defoliation patterns. Statistical models can

explain how some components of defoliation pattern

depend on exogenous factors (i.e., factors that influ-

ence insect populations in a density independent

fashion). Exogenous factors include the distribution

and phenology of host species, topography, and

population suppression activities. Once we have

accounted for exogenous factors, we can isolate

residual patterns that may indicate important endog-

enous (i.e. density dependent) processes such as insect

dispersal. Such residual spatial variation is rarely

addressed, though defoliation research frequently

focuses on the importance of underlying factors to

local-scale disturbance dynamics (Campbell and

Sloan 1977; Davidson et al. 2001a).

Forests in the eastern US suffer widespread defo-

liation by gypsy moth populations and are well-suited

for the spatial analysis of defoliation patterns. The

gypsy moth was introduced to the United States in

Massachusetts in 1869. Since then, it has expanded its

range north, south and west, establishing populations

that fluctuate to outbreak levels with a periodicity of

5–10 years (Baker 1941; Johnson et al. 2006). The

gypsy moth is a voracious generalist that feeds on

hundreds of deciduous species but has limited endog-

enous dispersal capabilities in the US (Doane and

McManus 1985; Liebhold et al. 1995).

We used linear modeling and hierarchical parti-

tioning to examine the direction and explanatory

strength of exogenous drivers hypothesized to affect

gypsy moth defoliation intensity. Our analysis

addressed two questions: (1) How much of the spatial

variation in defoliation intensity is explained by host-
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abundance, phenology, topography, and suppression

patterns? And (2) Are residual patterns spatially

autocorrelated across the landscape in a manner that

agrees with gypsy moth movement and dispersal?

We expected exogenous patterns to explain a

significant portion of the variance in gypsy moth

defoliation intensity, but that some residual spatial

pattern would remain. We predicted that residual

patterns would be spatially autocorrelated over dis-

tances that are biologically relevant to gypsy moth life

history traits, such as dispersal distances, and would

vary from the first year of an outbreak (2000) to the

second (2001). We expected first year variance to be

higher with shorter spatial autocorrelation if the initial

outbreak was patchier. In the second year, we expected

that less variance would be explained by exogenous

factors and that residual autocorrelation would range

over longer distances if residual patterns reflected

dispersal from high density populations to less desir-

able sites.

Methods

Study area

Our study focuses on the Green Ridge State Forest

(GRSF, Fig. 1), which covers 19,000 ha in the Ridge

and Valley physiographic province of western Mary-

land, U.S.A. The forest is managed for timber,

wildlife, recreation and water resources. Topography

ranges from 400 to 900 m elevation and is character-

ized by steep ridges that run northeast to southwest.

Oak species (Quercus spp.) dominate diverse decid-

uous forests (Foster and Townsend 2004), providing a

matrix of gypsy moth hosts that vary subtly in

preference and quality (Montgomery 1991). Gypsy

moth populations invaded this area in the 1980s

(Francis Zumbrun, former Forest Manager, Maryland

Department of Natural Resources (MDNR), personal

communication) and have since undergone periodic

outbreaks in the 1980s, 1990s, and in 2000–2001.

Fig. 1 Study area and maps

of defoliation intensity for

two-year gypsy moth

outbreak derived from

Landsat TM and ground-

based defoliation

measurements. Red heavily

defoliated, black non-forest

landuse or clouds, yellow

approximate state forest

boundaries. (Color figure

online)
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The abundant oaks at GRSF mix with occurrences

of pine and hemlock communities (Foster and Town-

send 2004). Red oak (Quercus rubra L.) dominates

along flattened mesic ridgetops. Chestnut oak (Q.

prinus L.) forests are common on drier ridges and

black oak (Q. velutina Lam.) forests occupy mids-

lopes. A large swath of white oak (Q. alba L.) forest

occurs at lower elevations mixing with scarlet oak (Q.

coccinea Muench.) on xeric hill tops. Mixed hard pine

stands, composed primarily of Virginia pine (Pinus

virginiana Mill.), occur on xeric aspects near white

oak forest. White pine (P. strobus L.) is more common

in red oak forests. Deciduous bud-burst phenology is

heterogeneous in this landscape at spatial and tempo-

ral scales that may interfere with gypsy moth larval

dispersal (Foster et al. 2013).

Data

We analyzed spatial datasets that included maps of

defoliation intensity and forest composition derived

from remote sensing imagery as well as plot-based

forest inventory data (Table 1). In 1998–1999, just

prior to the gypsy moth outbreak, the Maryland DNR

collected Continuous Forest Inventory (CFI) plot data

at GRSF. They measured 436 plots for standard forest

structure variables such as tree species, diameter

(DBH), height, and age. Variable radius plots aver-

aged approximately 0.08 ha in size and were distrib-

uted on a systematic grid with 550 m spacing. GPS

coordinates for plots were updated in 2004 and 2007.

We specified general explanatory variable catego-

ries (Table 1) using a variety of measurements and

indices common to defoliation research (Table 2). Our

goal was to use a parsimonious model within the

‘‘driver-response paradigm’’ (Cushman et al. 2007) to

understand the relative importance of habitat charac-

teristics within these categories to defoliation inten-

sity. We calculated tree biomass using standard

allometric equations (Jenkins et al. 2001). We grouped

tree species into gypsy moth food preference classes

following Liebhold et al. (1995): susceptible genera

such as Quercus (susceptibility class #1), resistant

genera such as Acer (class #2), and immune genera

such as Fraxinus (#3). Basal area (BA) of preferred

species is a common predictor of defoliation suscep-

tibility (Kleiner and Montgomery 1994; Liebhold et al.

1997; Davidson et al. 2001b). Phenological asyn-

chrony is the absolute value of the difference

between satellite derived leaf-out dates and model

derived gypsy moth egg-hatch dates (Foster et al.

2013). Greater difference between these critical

phenological events should decrease defoliation risk

by interacting with early stage larval survival.

Pesticide status is a binary classification of sprayed

areas. Because defoliation is often observed to vary

with topography, we derived topographic indices

from a DEM (Table 1).

Map sampling

We derived explanatory variables for CFI plot loca-

tions, excluding plots harvested or obscured by clouds

in defoliation maps, for a total of 376 plots (hereafter

called the plot-based dataset). We used defoliation

intensity from plot locations as the dependent variable

for plot-based regression models.

The plot-based dataset provided quantitative field

measurements of host abundance, but did not permit us

to assess spatial autocorrelation for distances shorter

than 550 m. Windborne dispersal of gypsy moth

larvae occurs over distances as short as 100–200 m,

Table 1 Data sources

Forest variable Source data Dates Brief methods

Defoliation (%) Landsat TM 2000–2001 Disturbance index, regression with plot data

Forest comp. 436 field plots 1998–1999 Forest inventory and community analysis

Forest type map AVIRIS image 22-May-2002 Canonical discriminant analysis

Phenological asynchrony MODIS and BIOSIM 2000–2001 Leaf-out date (MODIS)—egg-hatch date (BIOSIM),

(Regniere 1996)

Topography DEM NA Acquired from USGS

Spray history GIS maps 1984–2001 Digitized by MD Dept. of Agriculture
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and rarely exceeds 1 km (Mason and McManus 1981;

Hunter and Elkinton 2000). To measure spatial

autocorrelation over shorter distances, we also created

models using map-based data (30 m by 30 m resolu-

tion). To generate the map-based dataset, we randomly

sampled 5,000 points from each mapped data layer,

with a minimum inter-point distance of 45 m. The

main difference from the plot-based dataset was that

we did not have unique forest inventory data for these

random locations. To create point estimates of

variables within the host abundance category

(Table 2), we calculated means from CFI plots that

intersected with forest classes in an existing map of

twenty forest community types (Table 1) (Foster and

Townsend 2004). Therefore, random points were

assigned class means as host abundance values. We

used the plot-based dataset for model selection and

comparison of variable importance and used the map-

based dataset to assess fine-scale autocorrelation for

selected models.

Table 2 Variables tested to explain mapped defoliation intensity from four categories of habitat characteristics

Explanatory variable Label Mean Units Data source

Host abundance

Total basal area TBA 20.99 m2/ha CFI plots (Map)a

Total biomass TB 145 Mg/ha CFI plots (Map)a

Foliar biomass FB 4 Mg/ha CFI plots (Map)a

Tree density Dens 390 stems/ha CFI plots (Map)a

Tree species richness Rich 6 species/ha CFI plots (Map)a

Basal area (Class #1 host sp.) BA#1 14.47 m2/ha CFI plots (Map)a

Basal area (Class #2 host sp.) BA#2 5.64 m2/ha CFI plots (Map)a

Basal area (Class #3 host sp.) BA#3 0.85 m2/ha CFI plots (Map)a

Relative basal area (#1 host sp.) RBA#1 0.67 Proportion CFI plots (Map)a

Relative basal area (#2 host sp.) RBA#2 0.29 Proportion CFI plots (Map)a

Relative basal area (#3 host sp.) RBA#3 0.04 Proportion CFI plots (Map)a

Topography

Elevation Elev 307 m Map

Aspect Asp 160 Unitlessb Map

Landform index LFI 903 Unitless Map

Relative slope position RSP 64 % Map

Slope Slope 18 % Map

Topographic convergence index TCI 70 Unitless Map

Phen.

Phenological asynchrony (2000) Phen00 -12 days Map

Phenological asynchrony (2001) Phen01 2 days Map

Pest.

Pesticide spray (current year) Pest-Yr NA 0,1 Map

Pesticide spray (previous year) Pest-Yr NA 0,1 Map

Response variable

Defo.

Defoliation intensity (2000) Defo00 11 % Map

Defoliation intensity (2001) Defo01 13 % Map

Defoliation intensity represents % of foliar biomass removed by gypsy moth

N = 376 plots for CFI plot dataset, N = 5,000 pixels for map-based dataset
a Landscape map values represent class means for forest community types
b Beers transformed aspect (SW–NE from 0 to 200)
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Statistical analyses

We expected mapped defoliation intensity to vary in

relation to four exogenous factors following the basic

linear model (Eq. 1).

Defoliation¼ b0þb1ðHost AbundanceÞ
�b2 ðPhenological AsynchronyÞj j
þb3ðTopographyÞ�b4ðPesticideÞþ ei

ð1Þ

Rather than create a predictive model, we used a linear

modeling framework to understand the significance

and direction of the relationship between these factors

and defoliation intensity (Mac Nally 2002). We made

this distinction because defoliation intensity is not

normally distributed. Rather it may be bimodal and is

theoretically bounded from 0 to 100 % of canopy

foliage (Fig. 2). Though less-suited for prediction in

such cases, linear models produce mean responses that

are robust with non-parametric data, and thus may be

used to assess explanatory variable importance.

We evaluated all possible models with up to four

predictors based on their ability to explain variation in

defoliation intensity as described by R2 and Mallow’s

Cp using the SAS REG procedure (Version 9.1 of the

SAS System for Windows. Copyright � 2002–2003

SAS Institute Inc.). We selected models that explained

the most variation and retained significant coefficients

for up to one variable of each category in Eq. 1. We then

tested the selected models for ecologically plausible

interactions. We graphically evaluated model residuals

and employed hierarchical partitioning analysis (Che-

van and Sutherland 1991) to assess the relative impor-

tance of explanatory variables (Mac Nally 2002).

We next used semivariograms to understand resid-

ual spatial autocorrelation and thereby to quantify the

connectivity of defoliation in the forest landscape

(Fortin and Dale 2005; Tobin and Blackburn 2008).

We created empirical semivariograms from residuals

of defoliation intensity from plot-based models using

the geoR module in the R statistical software package

(maximum distance = 10,200 m, lag distance inter-

vals = 600 m) (R Development Core Team 2008).

We assessed statistical significance using 95 % con-

fidence intervals and Monte Carlo simulation with

1,000 permutations. We evaluated spatial linear mod-

els against non-spatial models with nested Likelihood

ratio tests.

We evaluated finer-scale autocorrelation in heavily

defoliated areas with local spatial statistics (Fortin and

Dale 2005). We fit local semivariograms centered on

individual pixels using spherical models for highly

defoliated patches (maximum lag = 3,000 m) with

the program VESPER (Minasny et al. 2005). We

delineated patches with Local Moran’s I, which

provides a measure of the direction and strength of

autocorrelation between a pixel and its neighbors

within concentric lag distances (Anselin 1995). We

defined heavily defoliated areas as positively autocor-

related with Moran’s I values[0.10 ([97.5 percentile,

lag = 555–600 m) calculated using ENVI software

(ENVI Version 4.3, Copyright � 2006, ITT Industries,

Inc. 4990 Pearl East Circle, Boulder, CO 80301,

USA).

Results

Models

CFI plot dataset

The strongest individual predictors of defoliation

intensity in 2000 were current year phenological

asynchrony (R2 = 0.14) and landform index (LFI)

Fig. 2 Density histogram (grey) of defoliation intensity from a

random sample of the defoliation map (2000). Defoliation

approximates a skewed Beta distribution with asymmetric peaks

near 0 and 100 %. Black line shows the empirical cumulative

distribution function
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(R2 = 0.07) (McNab 1992). Tree density explained

the most variance of measures of host abundance

(R2 = 0.06). The final multivariate model for 2000

explained 21 % of the variance in mapped defoliation

(Table 3). This model used four predictors and one

significant interaction (see Eq. 1): pesticide spray

status (Pest00), landform index (LFI), phenological

asynchrony (Phen00), tree density (Dens), and the

interaction [LFI x Dens]. All the predictors explained

significant variation (ANOVA F-tests), although tree

density became insignificant when its interaction was

included (Table 3). The direction of the variable

effects generally agreed with our expectations (Eq. 1).

Phenological asynchrony and pesticide spraying neg-

atively affected defoliation intensity, while landform

index and tree density had positive effects.

In 2001, the best fit model explained 34 % of the

variance (Table 3) and included five variables: previous

year’s defoliation (Defo00) (R2 = 0.14 individually),

pesticide spray (Pest01), relative slope position (RSP),

phenological asynchrony (Phen01), and relative basal

area of immune hosts (RBA#3). This model had

significant interactions between prior year defoliation

and pesticide spray [Defo00 9 Pest01] and asynchrony

and relative slope position [Phen01 9 RSP]. Semivari-

ograms of CFI plot-based model residuals showed no

significant spatial autocorrelation in either year.

Hierarchical partitioning of final models with and

without interaction terms decomposed the variance

explained (R2) by each variable (Fig. 3). Large

independent contributions to explained variance

(i.e. large relative to joint contributions) show that

variables explain unique partitions of defoliation

variance and that colinearity is inconsequential.

Interaction terms complicate this analysis because

they are the product of two variables, and thus must

jointly explain variance. Hierarchical partitioning of

the final model in 2000 with no interactions showed

that three of the four variables had high independent

contributions, supporting the conclusion that they

explained unique aspects of the data (Fig. 3a).

Landform index, the topographic variable, had a

higher joint contribution. Phenological asynchrony

explained the most variance (58 %), followed by tree

density (21 %), landform index (19 %), and spray

status (2 %). With interaction terms, the joint effect

of landform index decreased while density increased,

presumably because the interaction terms were jointly

explaining defoliation variance (Fig. 3b). The joint

contribution of the interaction term, [LFI 9 Dens],

was negative, meaning that this interaction had a

suppressing effect on the explanatory power of other

variables. For this reason coefficients for one of the

raw predictors became insignificant once interactions

were included.

Hierarchical partitioning of the 2001 plot-based

model showed that defoliation from the previous year

explained the greatest proportion of the explained

variance (60 %), followed by relative slope position

(14 %), phenological asynchrony (13 %), pesticide

spraying (7 %) and relative basal area #3 (immune

species) (5 %). All of the predictor variables

decreased in the proportion of variance explained in

comparison to 2000 except for pesticide spray status,

which explained more variance (Fig. 3c). Both previ-

ous year defoliation and pesticide spray had negative

joint contributions, suppressing some of the variance

potentially explained by other variables.

Table 3 Coefficients for linear models of defoliation

Year Data Intercept Explanatory variablesa Interactions

|Phen00| (days) Pest00 LFI Dens (Trs/Ha) LFI 9 Dens R2

2000 Plot 19.01 -1.29 -9.76 0.020 0.011b -0.000039 0.21

2000 Map 66.98 -2.38 7.35b -0.005 -0.54 0.00088 0.16

Year Data Intercept Defo00 (%) Phen01 (days) Pest01 RSP (%) S3RBA (%) Defo00 9 Pest01 Phen01 9 RSP R2

2001 Plot 16.27 0.61 -2.35 -0.56 -0.16 14.81 -0.34 0.019 0.34

2001 Map 26.08 0.42 -0.69 -13.07 -0.079 – 0.095 – 0.20

a Variables: pesticide spray status 2000 or 2001 (Pest00 or Pest01), phenological asynchrony 2000 or 2001 (Phen00 or Phen01), landform index (LFI),

relative slope position (RSP), tree density (Dens), and basal area of tree species immune to gypsy moth (S3RBA). Further details are available in

Table 2
b P [ 0.05; t tests for slope difference from zero. All variables significant in ANOVA
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Map-based data set

Map-based variables allowed improved characteriza-

tion of fine-scale spatial patterns (distances \550 m),

but were constrained to mean measures of host abun-

dance. As a result, map-based data explained less of the

variance in defoliation than the plot-based variables.

The final model explained only 16 % of the defoliation

variance in 2000 and the coefficient for pesticide spray

became slightly insignificant (Table 3). The final model

for 2001 (Table 3) explained 20 % of the defoliation

variance but some terms became insignificant.

Residuals from map-based models revealed signifi-

cant spatial autocorrelation at distances both shorter and

longer than plot-based minimum spacing (550 m)

(Fig. 4). Spherical semivariogram models uncovered

global spatial autocorrelation ranging up to 788 m

(2000) and 461 m (2001). Sill semivariance in the first

year was significantly higher than in 2001, indicating

more variability in residual defoliation, as we expected.

Plot-based models remain better suited for interpretation

of variable importance, due to the observed indepen-

dence of plot-based model residuals.

Local autocorrelation

Positive local Moran’s I values indicated spatial

autocorrelation with surrounding neighborhood pixels

in heavily defoliated forests (Fig. 5). Local autocor-

relation measured from individual pixels followed a

right-skewed distribution with a mean of 323 m in

2000 (Fig. 6a), with 95 % of ranges falling below

596 m. Defoliation in 2001 was locally autocorrelated

with a right-skewed distribution of ranges peaking

between 50-300 m and a mean of 341 m (Fig. 6b).

Discussion

Our linear models demonstrate that some of the

intermediate-scale variation in defoliation intensity

(20–34 %) can be explained by exogenous habitat

characteristics: distribution of host abundance, phe-

nology, topography, pesticide spray and prior-year

defoliation. Significant interactions occurred in the

first year of the outbreak between host abundance and

topography. The direction and strength of the model

Fig. 3 Hierarchical

partitioning results.

Variance explained, as a

percentage of the total

model R2, by predictors

included in final plot-based

models for 2000 without

interaction terms (a), the full

model in 2000 (b), without

interaction terms 2001 (c),

and the full model in 2001

(d). Independent

contributions in grey, joint

contributions hatched.

Variables include pesticide

spray status in 2000 or 2001

(Pest00 or Pest01),

phenological asynchrony in

2000 or 2001 (Phen00 or

Phen01), landform index

(LFI), relative slope position

(RSP), tree density (Dens),

and basal area of tree species

immune to gypsy moth

(S3RBA)
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coefficients and their interactions are ecologically

informative. Phenological asynchrony and pesticide

spraying reduced defoliation intensity, while landform

index and tree density had positive effects in the

model. Surprisingly, relative measures of host abun-

dance (BA or RBA) did not explain as much variance

as tree density or foliar biomass. This may reflect the

even dominance of preferred gypsy moth hosts at

GRSF (mean RBA of preferred hosts = 67 %); rela-

tive host abundance varies too little across the

landscape to sufficiently explain defoliation patterns.

In theory, landform index, phenological asynchrony

and pesticide spray status should modify the effect of

host abundance, by indirectly affecting host or habitat

quality and suitability. The fact that these variables

explained more variance than host abundance suggests

that modifiers become more important when defolia-

tion occurs in host-dominated landscapes.

While host abundance and topography are known to

affect gypsy moth outbreaks, plot-level research

analyzing the role of phenological asynchrony on

gypsy moth populations has produced equivocal

results (Hunter and Elkinton 2000). In our models,

phenological asynchrony explained 60 % of the total

explained variance in 2000 (Fig. 3), more than three

times as much as host abundance, topography, or spray

status. Prior studies have identified phenological

asynchrony as a factor important to population

dynamics of deciduous (Hunter et al. 1997; Hunter

and Elkinton 2000) and coniferous defoliators includ-

ing jack pine budworm (Choristoneura pinus pinus

Freeman) (McCullough 2000) and spruce budworm

(Choristoneura fumiferana Clemens) (Nealis and

Regniere 2004). Until now, however, phenological

asynchrony has not been measured across intermedi-

ate-scales in a way that unlocks its potential to explain

defoliation patterns. Our analysis demonstrates that

variations in asynchrony between gypsy moth egg-hatch

and bud-burst helped explain which areas of host-

dominated forest were defoliated, especially when

considered in light of variations in host abundance or

topography (Foster et al. 2013). Hunter et al. (1997)

Fig. 4 Semivariograms for map-based defoliation model resid-

uals (points) with fitted spherical models (lines) show significant

autocorrelation. Dashed vertical lines correspond to global

autocorrelation ranges derived from spherical semivariogram

models

Fig. 5 Local Moran’s I at

600 m lag distances. Red

defoliated patches with

strong positive

autocorrelation. Weakening

of autocorrelation patches in

southern part of the study

area suggests localized

population crashes in 2001.

(Color figure online)
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found a similar pattern for winter moth (Operopthera

brumata), concluding that host plant foliage quality (e.g.

phenological asynchrony) controlled the spatial varia-

tion in population densities, though not the temporal

fluctuations. Although this relationship may not hold for

every landscape, the pronounced variation in phenology

among red and white oak forests at Green Ridge clearly

produces heterogeneity in foliage availability beyond

the susceptibility classes defined by Liebhold et al.

(1995).

Defoliation intensity from the previous year

accounted for only 20 % of defoliation variance in

2001 (i.e., 60 % of the 34 % variance explained by the

model). One might expect that defoliation caused by a

species with limited dispersal, such as the gypsy moth,

would be highly correlated from 1 year to the next.

Gypsy moth population densities, however, are known

to change rapidly and unpredictably, especially during

later phases of an outbreak. For example, Montgomery

(1990) found that overwintering egg-mass densities

explained only 25 % of the variability in defoliation

occurring in the same year and generation. Accord-

ingly, defoliation intensity from prior years should

explain a smaller proportion of variance, which is

consistent with the 20 % we observed.

Although pesticide spray history explained signif-

icant variance in both years, its explanatory strength

was low. Defoliation varied significantly in relation to

spray patterns in 2000 according to univariate

ANOVAs, but with heavier defoliation in sprayed

areas. We attribute this counterintuitive observation to

the fact that spray programs select areas for pesticide

suppression based on criteria such as high egg mass

counts, the presence of favorable hosts, and high

economic value. Forests with these characteristics are

more likely to be defoliated if spraying is ineffective

or inadequate. In 2000, spraying of Bacillus thuringi-

ensis (Bt) was followed by rain that could have washed

the toxic bacteria off leaves. Dimilin and Mimic were

sprayed in other treatments, both of which are less

susceptible to rain. A variable response of defoliation

to Bt spraying is consistent with previous studies

(Liebhold et al. 1996). In addition, spray efforts often

focused on ridgetops, hence landform index or relative

slope position may have accounted for variance that

could have been explained by spray status in the

models. In 2001, gypsy moth defoliated sprayed areas

less than unsprayed forests, as expected, and spraying

had more predictive power. Our results suggest that

pesticide spraying may have added noise to defoliation

patterns that dampened the strength of relationships

with other exogenous variables.

At finer spatial scales, residual defoliation was

locally autocorrelated primarily from 0 to 600 m,

demonstrating variability in connectivity of gypsy

moth populations over these scales. We speculate that

dispersal and disease patterns help determine the range

of endogenous autocorrelation in residual defoliation.

Gypsy moth dispersal does not occur in the adult stage

because females are flightless in the U.S. (Keena et al.

2008); they mate and lay eggs on the same trees where

they pupate. Gypsy moths disperse primarily by

ballooning during the earliest instars as tiny caterpil-

lars, and to a lesser extent when larger caterpillars

Fig. 6 Frequency distributions of local semivariogram ranges

for spherical models of defoliation in 2000 (a) and 2001 (b).

While most defoliated pixels are autocorrelated with neighbors

from 50 to 300 m away, some pixels are autocorrelated up to

longer neighborhood distances (1,000–2,000 m). Spikes are an

artifact of interactions between bin distance definition and

Landsat pixel resolution
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move around the forest floor. Passive dispersal of early

instar gypsy moth (100–200 m, \1 km) (Mason and

McManus 1981) agrees well with the ranges of spatial

autocorrelation found in residual mapped defoliation

intensity.

If dispersal explained local autocorrelation pat-

terns, we expected defoliation to be patchier and more

dependent on resource conditions in the first year

(2000). In the second year (2001), we expected passive

dispersal to spread populations to less desirable sites,

producing more diffuse patterns, characterized by

lower residual variance and longer autocorrelation

ranges. Residual variance was higher in 2000 than in

2001 (Fig. 4), consistent with a patchier first year.

However, the range of autocorrelation became shorter

in the second year, suggesting that patches were

shrinking rather than expanding. Some patches shrank

from 2000 to 2001 (Fig. 5) (NW study area) while

others expanded (NE study area) and some disap-

peared (SE study area), consistent with local popula-

tion crashes. Heterogeneity in local patch behavior

complicates interpretation of changes in mean auto-

correlation range. Exogenous variables explained less

variance in defoliation intensity in 2001 than in 2000,

consistent with defoliation becoming less dependent

on bottom-up constraints, and more dependent on

spatial adjacency. A temporal weakening of the

relationship between exogenous resource factors and

defoliation impacts has also been observed for a

spruce budworm outbreak (Campbell et al. 2008).

These factors may be most useful to explain where

defoliation outbreaks initiate, while patterns of sub-

sequent generations respond more to dispersal or top-

down processes as outbreaks develop.

Exogenous habitat characteristics accounted for

significant variation in defoliation intensity (16–34 %)

at GRSF. These results are similar to the variance

(17 %) attributed to bottom-up effects on population

densities of winter moth (Hunter et al. 1997). This

suggests that gypsy moth defoliation patterns may

depend similarly on bottom-up constraints. Population

fluctuations also vary across space in a stochastic

fashion, possibly in response to un-measured factors

whose spatial distribution is stochastic or density-

dependent in nature, such as predation pressure from

small mammals (Elkinton et al. 1996; Goodwin et al.

2005), and variability in occurrence and spread of

nuclear polyhedrosis virus (NPV) (Dwyer and Elkin-

ton 1995) and the fungal pathogen Entomophaga

maimaiga (Dwyer et al. 1998; Weseloh 2003). Gypsy

moth demographic data that capture some of these

factors increase the explanatory power of defoliation

models. For example, Davidson (2001b) included egg

mass density with host basal area to model gypsy moth

defoliation, which could explain as much as 39 % of

the variance (n = 48). Montgomery (1990) used

gypsy moth population variables to predict defoliation

for plots (n = 32) spread over New England. Demo-

graphic data, including density of egg masses, percent

of eggs hatched, disease incidence, and early instar

survival, combined with some host resource variables,

explained 70 % of defoliation variance in his data.

Inclusion of these endogenous variables in our models

might account for some of the unexplained variance in

defoliation intensity, but currently it is unfeasible or

impossible to measure these variables continuously at

landscape scales. Our limited knowledge of the spatial

distributions of these processes provides further

support for modeling defoliation patterns in a semi-

stochastic fashion with some dependence on measur-

able exogenous factors.

We designed our model selection strategy to

identify the most parsimonious models with signifi-

cant predictors from each of four exogenous catego-

ries. This approach facilitated comparison of the

explanatory power of these categories and helped

minimize collinearity. However, some models using

different combinations of explanatory variables per-

formed equally well to the final models we report here.

If we had relaxed our model selection criteria to allow

up to two variables from one category, we could at

times explain slightly more variance in defoliation

intensity with fewer predictor variables. For the first

year of the outbreak, multiple measures of host

abundance were often selected in the top performing

models. These model sets often combined generic

abundance variables such as total foliar biomass or

tree density with relative measures of host abundance.

In contrast, in 2001, topographic variables increased in

importance as predictors, with elevation and topo-

graphic convergence index often selected together.

Models aimed at the highest predictive accuracy could

incorporate more explanatory variables than we have,

though increased model complexity can make ecolog-

ical interpretation of such models more difficult.

Another source of uncertainty in our models is the

defoliation maps (root mean square error of 11 %

defoliation (2000) and 8 % (2001)), which causes
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some error in defoliation intensity (Townsend et al.

2012). However, these limitations are small when

compared to sketch map uncertainty. Finally, though

every effort was made to mask out disturbance

patterns that were related to human management, it

is possible that some defoliation resulted from causes

other than gypsy moth. Such unrelated defoliation

cannot easily be distinguished by remote sensing

methods and may produce variance that is unlikely to

be explained by models specific to gypsy moth

defoliation.

Our data permitted unbiased sampling designs

(systematic and random) and model estimates that

otherwise are not usually possible for field-based

studies involving a limited number of plots selectively

placed in heavily defoliated areas. The bimodal

landscape distribution of defoliation intensity resem-

bled a skewed Beta distribution (Fig. 2). Zeide and

Thompson (2005) observed a similar defoliation

distribution among individual trees, but caused by a

sawfly species with gregarious feeding behavior,

which is a distinct mechanism from those that might

explain gyspy moth defoliation distributions.

Future studies seeking to model defoliation inten-

sity from exogenous spatial variables should consider

a Beta distribution in their analysis, as it has been

observed empirically and is logical. The range of

residual spatial autocorrelation observed here should

also be considered, as plot-based sampling designs

with lag-distances smaller than the observed autocor-

relation ranges may not produce independent obser-

vations or error structures. Spatial models should be

considered for gypsy moth defoliation models derived

from sampling designs with inter-plot distances

shorter than 600 m.

Summary

Improved data sources that capture the full dynamic

range of defoliation intensity at intermediate scales

allowed us to compare the relative importance of

explanatory variables measured intensively across the

landscape. This analysis illustrates how spatial pat-

terns of defoliation depend on underlying habitat

characteristics and provides new evidence for the

importance of host phenological asynchrony. We

quantified residual patterns of spatial autocorrelation

which were consistent with gypsy moth dispersal

distances. Similar dependencies may be expected for

defoliation events in different defoliator systems, with

habitat characteristics accounting for relatively more

or less explanatory power when top-down versus

bottom-up factors dominate. A more complete under-

standing of the spatial variability in defoliation

intensity will improve efforts to understand the long-

term impact that defoliation cycles have on above-

ground forest carbon dynamics.
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