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Abstract While spatial heterogeneity is one the

most studied ecological concepts, few or no studies

have dealt with the subject of ambient sound hetero-

geneity from an ecological perspective. Similarly to

ambient light conditions, which have been shown to

play a significant role in ecological speciation, we

investigated the existence of ambient sound heteroge-

neity and its possible relation to habitat structure and

specifically to habitat types (as syntaxonomically

defined ecological units). Considering that the struc-

ture and composition of animal communities are

habitat type specific and that acoustic signals produced

by animals may be shaped by the habitat’s vegetation

structure, natural soundscapes are likely to be habitat

specific. We recorded ambient sound in four forest and

two grassland habitat types in Northern Greece. Using

digital signal techniques and machine learning algo-

rithms (self organizing maps, random forests), we

concluded that ambient sound is not only spatially

heterogeneous, but is also directly related to habitat

type structure, pointing towards the existence of

habitat type specific acoustic signatures. We provide

evidence of the importance of soundscape heteroge-

neity and ambient sound signatures and a possible

solution to the social cues versus vegetation charac-

teristics debate in habitat selection theory.
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d’Histoire naturelle, UMR 7205 CNRS OSEB, 45 rue

Buffon, 75005 Paris, France

123

Landscape Ecol (2013) 28:495–506

DOI 10.1007/s10980-013-9849-1



Introduction

Spatial heterogeneity is one of the most important

determinants of ecological processes as it ‘‘forms the

fundamental basis of the structure and functioning of

landscapes’’ (Wu 2004, p. 125). For landscape ecology

in particular, heterogeneity has been and continues to

be a foundational concept (Urban et al. 1987; Turner

2005; Wiens 2008). Heterogeneity is still actively

researched in landscape ecology (Fahrig et al. 2011;

Wang et al. 2012), although particular forms of spatial

heterogeneity, instrumental for the structure and

function of landscapes, are rarely studied in an

ecological context. Examples of rarely studied heter-

ogeneity include the role of ambient light gradients in

cichlid speciation (Seehausen et al. 2008) or the

influence of habitat heterogeneity on the evolution of

animal communication signals (Morton 1975). None-

theless, as (i) acoustic communication is potentially

constrained by certain habitat characteristics (Endler

1993b) and (ii) communication among animals has

effects on ecological processes (Wagner and Danchin

2010), studies on ambient sound heterogeneity could

provide new insights on dispersal (Clobert et al. 2009),

habitat choice (Vermeij et al. 2010) or even evolution

(Maan and Seehausen 2011).

More recently, landscape ecological studies investi-

gated ambient sound variability in both temporal and

spatial dimensions (Matsinos et al. 2008; Farina et al.

2011a, b; Krause et al. 2011). More importantly,

soundscape ecology, an ‘‘emerging new science’’, has

been recording and measuring soundscapes, assessing

their dynamics and developing tools for their study

(Pijanowski et al. 2011a, b).Covering a broad range of

sound frequencies and exhibiting temporal and spatial

variability, terrestrial soundscapes include animal

signals, mostly emitted by bird, insect and amphibian

species (biophony), potential anthropogenic noise

(anthrophony), and abiotic sources such as wind, rain,

and running water (geophony) (Pijanowski et al. 2011a,

b). A large part of soundscape ecology, partly owing to

its roots in acoustic ecology (Truax and Barrett 2011),

focuses on investigating the dynamics and interactions

of these three components of the soundscape (Matsinos

et al. 2008; Mazaris et al. 2009; Barber et al. 2011;

Krause et al. 2011; Pijanowski et al. 2011a, b).

While the assessment of the spatiotemporal dynam-

ics of soundscapes, as indicated above, has been

well under way, explicit soundscape–landscape

connections have been little studied. Habitat types, as

an ecologically relevant unit (Drakou et al. 2011),

which has already been used to study ambient sound in

behavioural ecology (Waser and Brown 1986; Slab-

bekoorn 2004a, b; Nicholls and Goldizen 2006), could

offer a way to explore this relationship. Considering

that acoustic animal communities are habitat type

specific (Slabbekoorn 2004a) and that acoustic signals

produced by animals may be shaped by the vegetation

structure of the habitat (Morton 1975; Ey and Fischer

2009), the acoustic features of ambient sound are likely

to be habitat specific. Research in aquatic ecosystems

indicates that a relationship exists (Radford et al. 2011;

Simpson et al. 2011; Stanley et al. 2012), but the only

relevant study in terrestrial ecosystems did not explic-

itly investigate the habitat type-ambient sound rela-

tionship (Farina et al. 2011a).

A potential habitat-specific acoustic signature could

not only be utilised for identification and monitoring

techniques (Sueur et al. 2008b; Farina et al. 2011a), but

more importantly it could also be viewed as a source of

environmental heterogeneity that is also connected to

public information sensu Wagner and Danchin (2010),

especially as interpreted recently by Farina et al.

(2011a). Farina et al. (2011a), borrowing from bio-

semiotics, interpret the soundscape as an ‘‘organized

structure’’ that allows organisms to locate resources in

space and time. They introduce a new concept, the

‘‘soundtope’’, i.e. an area of similar acoustic conditions

that allows for the presence of interacting species.

Radford et al. (2010) report distinct soundtopes or

acoustic signatures in coastal areas of aquatic ecosys-

tems and it is possible that similar phenomena could

also take place in terrestrial landscapes.

However, most studies that have actually investi-

gated ambient sound differences among terrestrial

habitat types are mainly focused on behavioural rather

than ecological processes (Ryan 1988; Slabbekoorn

2004a; Kirschel et al. 2009) or study heterogeneity in the

anthro-, bio-, or geo- phonies of the soundscape

(Matsinos et al. 2008; Mazaris et al. 2009). Additionally,

behavioural studies, despite successfully reporting

acoustic differences among habitat types, were con-

strained by several issues: (i) habitat types studied were

drastically different (Tobias et al. 2010) or very similar

(Trefry and Hik 2010) (ii) only a small number of habitat

types were considered in most of cases (mostly just two

habitat types (Slabbekoorn 2004a; Kirschel et al. 2009;

Trefry and Hik 2010)), and (iii) in the cases where more
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than two different habitat types were taken into account,

urban noise, wind turbulence or running water sounds

were also considered (Slabbekoorn 2004b). On the other

hand, soundscape studies, while studying ambient

sound, either focus on the soundscape through a

human-observer perspective (e.g. Matsinos et al. 2008;

Mazaris et al. 2009) or are interested in just one

soundscape component (Barber et al. 2011; Krause et al.

2011; Francis et al. 2011).

Furthermore, to our knowledge, none of the studies

on ambient sound tried to connect differences in

ambient sound to the vegetation structure versus social

cues debate in habitat selection (Goodale et al. 2010),

a debate about the relative importance of vegetation

characteristics versus inter- and intra-specific cues for

habitat choice. From an evolutionary perspective, it

has been shown that heterogeneity in ambient light

conditions can cause divergent selection visual signals

associated with communication (Seehausen et al.

2008). Similarly to ambient light conditions (Endler

1993a), ambient sound heterogeneity among habitats

could be interpreted as a source of environmental

heterogeneity and could be of evolutionary impor-

tance. Finally, since environmental heterogeneity is an

important variable in habitat selection and movement

of mobile organisms (Wiens et al. 1993), attention

should be paid on the possible influence of spatially

heterogeneous ambient sound as used by animals in

informed dispersal decisions (Clobert et al. 2009).

As indicated above, observed heterogeneity in ambi-

ent sound among habitats, plus an explicit correspon-

dence of the ‘‘soundtope’’ to habitat type, i.e. an

‘‘acoustic signature’’, could have important implications

for the ecology and evolution of animals that utilise

sound for communication or resource localisation. Thus,

the explicit aim of our research was to determine whether

a relationship exists between habitat type and the

soundscape. This is the first study to use acoustics and

robust learning techniques to tease apart the connection

between habitat structure, ambient sound and habitat

choice. More specifically, we recorded and analysed

digital recordings of seven habitat types and successfully

subjected them to ordination and classification analysis.

Materials and methods

Our study rests on the hypothesis that vegetation

structure and animal community differences can

produce habitat specific ambient sound. We used self

organizing maps (SOM), an ordination technique, to

reveal habitat similarities based on their sound

profiles. We applied random forests (RF), a classifi-

cation method, to assess whether habitat types can be

effectively and accurately discriminated using ambi-

ent sound characteristics, similarly to Yovel et al.

(2008) who worked on ultrasound-based classification

of vegetation types.

Study area

We collected ambient sound samples in Greece in

September 2010 at 32 sites within the area of the

Kerkini reservoir in Greece (see Fig. 1). The land-

scape of Kerkini and the surrounding mountains

Krousia and Belles (23�050N, 41�150E) is composed

of wetland and mountain ecosystems of national and

European importance. The area is protected under

national (National Park), European (Natura 2000 site)

and international (Ramsar site) laws and treaties. We

use habitat type as a coherent unit that were syntaxo-

nomically defined, described and delineated through

fieldwork and sample collection which has been

carried out as part of a project entitled ‘Identification

and Description of Habitat Types in Areas of Interest

for the Conservation of Nature’, funded by the Greek

Ministry of the Environment. Since our interest was in

discriminating habitat types through their acoustic

features, we were interested in habitat types that were:

I. Structurally dissimilar but spatially close:

(a) deciduous (beech) and coniferous (pine) forests

that are spatially close (see Fig. 1) and (b) undis-

turbed oak forest and disturbed oak forest edge.

These habitat types differ in leaf morphology, for

instance pine (needles) versus beech (rounded),

leaf litter, tree density and animal community.

II. Structurally similar to explore variance within

groups of different forests and different grass-

lands. For example, the vegetation of grassland

habitats mainly consisted of low grass and very

few scattered trees in the landscape, in contrast to

the forested landscape of the other habitat types.

Additionally, the acoustic animal community of the

grasslands was composed of both insect stridulations

and bird vocalisations, while in the deciduous forests it

consisted mostly of birds (DB, personal observation).

We conducted recordings in seven habitats types
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(Table 1). Samples were collected at sites that could

be assigned unambiguously to one of the seven

habitats. Habitat types were identified by DB with

the help of the Habitat’s Directive interpretation

manual and the habitat type map of the Kerkini area.

Vegetation data like leaf morphology, tree density and

leaf litter are readily available from relevant sources,

are straightforward characteristic that can be assessed

by direct observation and are widely used among

ecologists.

Recording procedure and feature extraction

We used an omnidirectional Telinga Stereo DAT-Mic

microphone and a Marantz PMD-660 solid state

recorder to record mono uncompressed digital files,

at a 16 bits/44.1 kHz sampling rate. We pointed

the microphone towards the North at 1.5 m above

the ground. We carried out all the recordings using the

same procedure and instrument settings. To investi-

gate possible effects on ambient sound from road

caused fragmentation (Šálek et al. 2010) we carried

out half of the recordings made in the oak forest 8 m

from a forest road. We called this the oak forest edge

habitat type. For consistency, we carried out all

between 13:00 and 16:00 in late September 2010, on

sunny days with a temperature at 25.3 ± 1.3 �C

(n = 5). As we were mostly interested in ambient

sound produced by the animal communities, we

avoided early morning recordings (dawn chorus is

dominated by birds) or nights (wetland habitats

dominated by anurans). Similarly, September was

Fig. 1 Land cover map of

the Lake Kerkini area. The

points represent the

recording sites. Oak forest

and oak forest edge sites

would not be

undistinguishable in print

due to scale of the map, as

due to the study design they

are spatially proximate

(Source Greek Ministry of

the Environment, Energy

and Climate Change,

www.ypeka.gr). (Color

figure online)

Table 1 Habitat types,

date of recordings, number

of recording sites per

habitat type, and number of

recordings at each site

Abbreviations are given

between brackets

Habitat type based on directive 92/43/EE Date No. sites No. of

recordings

Thermophilous oak woods (FO) 25/9 5 15

Thermophilous oak forest edge (FOE) 25/9 5 15

Artificial Poplar plantations (FAP) 26/9 2 6

Asperulo-Fagetum beech forests (FB) 26/9 5 15

Mediterranean pine forests (FP) 27/9 5 15

Mediterranean humid grasslands (WE) 28/9 5 15

Agricultural land (pasture) (AG) 29/9 5 15
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chosen as, considering the diversity of habitat types

investigated, it could offer us a more diverse animal

communities (e.g. in spring the soundscape would be

dominated by birds, in summer by insects).

To avoid contamination, we did not capture any

human made sound such as road traffic, airplane traffic

or woodcutting machinery during the recording ses-

sions. We made three 2 min recordings made at each

site (see Table 1). This sampling led to a total of 96

recordings of 2 min duration. Eight segments of 10 s

in duration were randomly extracted from each 2 min

audio file leading to a total of 768 audio segments.

A set of eight features that rely more on statistical

features than on spectral analysis was chosen. These

acoustic parameters included typical parameters used

in audio and soundscape classification (Mitrovic et al.

2010) and entropy indices potentially correlated with

species richness (Sueur et al. 2008b). We also

developed a new parameter based on the correlation

of the signal with 1/f noise. 1/f noise is a feature of

complex phenomena discovered in geophysical and

economic time series, music, protein dynamics, DNA-

base sequences, ecological time series (Halley and

Kunin 1999) and is also reported to occur in natural

soundscapes (De Coensel et al. 2003). We generated

10 s of 1/f noise and stored it as a digital audio file in

Matlab R2009a (The Mathworks Inc 2009). This

reference file was then correlated with each 10 s

segment using a non-parametric Spearman correlation

test. The final set of features extracted is shown in

Table 2. We computed the parameters for each 10 s

segment and averaged per 2 min recording session.

Thus we created a 96 9 8 matrix for further analyses.

All signal manipulation and analyses were performed

using the R package seewave (Sueur et al. 2008a;

R Development Core Team 2009).

Machine Learning

Machine Learning is a growing area within eco-

informatics, which can help in revealing structure in

complex data (Olden et al. 2008). Among the most often

used algorithms in unsupervised machine learning are

the SOM (Kohonen 2001) with many applications in

ecology and the environmental sciences (Chon 2011).

For supervised machine learning, RF (Breiman 2001)

have been recently applied to the ecological sciences

and are considered as a promising tool for ecological

classification (Cutler et al. 2007). Both algorithms, in

our case, offer robustness and easy interpretation of the

results while the RF has the additional advantage of an

error estimation method that eliminates the need for

validation tests (Chapman et al. 2010).

SOM is an unsupervised learning algorithm espe-

cially suited to exploratory data analysis, visualiza-

tion, ordination and clustering (Kohonen 2001). SOM

is a particular case of artificial neural networks based

on competitive learning, i.e. the output neurons of the

network compete among themselves to be activated.

SOM consists of an input layer of nodes (input data),

with a size n 9 m (in our case the 96 9 8 matrix),

where n is the number of training samples and m is the

number of features (variables) used for the learning;

the output layer is a grid of j neurons, where j is the

Table 2 Description of the eight signal features extracted from the 96 audio files

Feature Description

Spectral centroid (CENT) A measure a signal mean frequency

Standard deviation (SD) Spectral distribution

Kurtosis (KURT) High values a normal distribution of frequencies with peaks in the mid frequencies, and

smaller peaks at the very high and very low frequencies

Skewness (SKEW) High values indicate a skewness towards the high end of the spectrum

Zero-crossing rate (ZCR) Number per second that the signal crosses the 0 value. A rough measure of dominant

frequency

Entropy (H) Signal complexity, indicating community diversity (values: [0, 1])

Spectral flatness (SFM) Signal complexity measure, equals 1 for noisy signals, 0 for perfect oscillation

Spearman correlation to 1/f noise (1/f) Signal complexity measure

Details can be found for all parameters in Mitrovic et al. (2010) except entropy in Sueur et al. (2008b) and 1/f noise (see text).

Abbreviations are given between brackets
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size of the feature map. The algorithm starts by

initialising the iterations i: i = 0; next it initialises the

weight vectors Wij of the each neuron and proceeds by

presenting the training samples as m-dimensional

vectors x(i) = [x1(i),…, xm(i)] to the output neurons.

The algorithm computes the distances di between the

input vector x, and all the output neuron vectors j as:

dj ið Þ ¼
Pm

n�1 ½xn ið Þ �Wnj ið Þ�2, where xn(t) is the nth

observation vector, and Wnj(i) is the weight vector of

each output neuron at iteration i. The weight vector of

the neuron that has the least dj(i) to the input vector

x (called the winning neuron) is updated with a

learning rate r, along with its neighbouring neurons in

a h radius. Both r and h are decreasing functions of

i. This feature of the algorithm allows for neurons that

lie closely in the feature map, to represent areas lying

close in the input vector space i.e. the topography

presentation properties of the SOM. The algorithm

stops when i = imax.

Due to different units among variables, we stand-

ardised the input matrix by mean subtraction and

standard-deviation division (Kohonen 2001). Addi-

tionally, we determined the size of the SOM heuris-

tically using quality measures; based on the

quantization and topographic error measures we set

the map size to 48 neurons (6 9 8). Finally, we

initialised the SOM using random sampling without

replacement from the input data and a used linearly

declining learning rate r from 0.05 to 0.01. We used

the Kohonen (Wehrens and Buydens 2007) package of

the R environment for the SOM generation.

As finding clusters in the SOM is not a straightfor-

ward procedure (Kohonen 2001), a fuzzy clustering

algorithm on the distances between SOM neurons was

used with the cluster package of R.

RF is an ensemble learning classifier; many weak

classifiers are combined into a more powerful one.

In particular, RF works by a procedure called bag-

ging, where many classification and regression trees

(Breiman et al. 1984), called a committee, are con-

structed independently using only a random sample of

the entire dataset and a random subset of the explan-

atory variables. The output classes are predicted using

a majority vote of the committee of the trees grown

(Breiman 2001). Two important features of the RF

algorithm are the out of bag (OOB) error estimates and

the variable importance measures. OOB is an error

estimate based on the cases not included in the sample

data at each iteration, making the use of a test set for

validation unnecessary. The variable importance mea-

sure allows for the quantification of the importance of

each feature in the classification and is called the Gini

index. When each tree splits, the importance of the

splitting feature is measured as the improvement in the

split criterion and is accumulated over all the trees in

the forest separately for each feature. Larger Gini index

for a feature is an indication of higher importance. The

split criterion is based on the total decrease in node

impurities from splitting on each feature (Friedman

et al. 2001).

We ran two different classifications in a hierarchi-

cal classification approach (Chapman et al. 2010). The

first classification was a run including the six broad

habitat classes. The second classification was a run

that was implemented to discriminate between the

core and edge oak forest types.

The RF algorithm is implemented in the R package

randomForest (Liaw and Wiener 2002). We used a

tuning algorithm provided by the RF package to select

the number of variables at each split using and

conducted sampling without replacement. We deter-

mined the number of iterations heuristically, based on

the convergence of the OOB error rate and assessed

the accuracy of the classification using the OOB error

estimates, a confusion matrix and the Kappa statistic.

Finally, the important variables for both classifications

were assessed using the Gini index.

Results

Ordination and clustering using SOM

Resulting from the use of SOM and fuzzy clustering, a

feature map was produced that displayed the mapping

and clustering of the habitat types and the distribution

of the relative feature weights (Fig. 2).

As our hypothesis predicted, vegetation and animal

community differences produced habitat specific ambient

sound patterns. This is evident in the SOM results (Fig. 2)

as the grassland habitats (AG and WE) types were clearly

distinct from forest habitats (particularly deciduous), and

the forest habitat formed discrete clusters.

However, not only were grasslands and forests

distinct, but there was variation among the forests too.

Forest types with similar vegetation characteristics,
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namely leaf morphology, tree density and leaf sub-

strate were clustered together. More specifically,

deciduous forest habitat types (FAP, FB, FO and

FOE) formed two distinct clusters.

Classification using RF

The first RF algorithm model on the vegetation type

classification yielded an OOB classification error of

8.33 % (Table 3).

The AG and PF classes had zero error rate and the

class with the biggest error was the class with the less

representatives, FAP. The second RF model, between

FO and FOE had an error rate of 6 %, with only one

misclassification per class. CENT and SFM features

were the most important features for the six class

model. For the classification between the oak forest

and its edge the most important feature was SKEW.

Our 1/f noise based feature was the feature with the

least decrease in Gini, for (Fig. 3).

Discussion

Both the SOM ordination and the RF classification

results (Fig. 2; Table 3) revealed significant ambient

sound heterogeneity in the study area. Considering that

environmental acoustic conditions have been inter-

preted as a constraint on animal acoustic communica-

tion (Morton 1975), the latter is potentially influenced

by the habitat as sensory environment i.e. ‘‘the medium

through which signals are propagated and the back-

ground in which they are perceived’’ (Maan and

Seehausen 2011, p. 597). Divergence due to habitat

characteristics that affect communication signals has

been discovered in several species, such as green hylia

Hylia prasina (Kirschel et al. 2009), satin bowerbirds

Ptilonorhynchus violaceus (Nicholls and Goldizen

2006), felids (Peters and Peters 2010) and primates

(Waser and Brown 1986). The likely occurrence of

ambient sound heterogeneity suggests that ambient

sound should act as a spatially diffuse selective pressure

on (i) the evolution of signals and signaller and receiver

behavioural properties (Endler 1993a) and (ii) ecolog-

ical processes that influence the spatial distribution of

animals in the landscape (Francis et al. 2011).

Fig. 2 Self organizing map (SOM) analysis: the points in the

map represent the positioning of the vegetation types in a single

neuron. The positions of vegetation types within the neurons are

random and do not represent actual relationships. The shading of

the neurons represents the clustering of the SOM neurons into

four clusters from the fuzzy clustering algorithm

Table 3 Confusion

matrices for the two random

forest classifications

The 1st classification is the

classification with the six

classes (excluding the oak

forest edge). The 2nd is the

oak forest—edge

classification

Confusion matrices

AG FO FB FP FAP FOE WE Classification error

1st classification

AG 15 0 0 0 0 0 0.00

FO 0 30 0 0 0 0 0.00

FB 0 0 12 0 3 0 0.20

FP 0 1 0 13 0 1 0.13

FAP 0 0 3 0 3 0 0.50

WE 0 0 0 0 0 15 0.00

Kappa = 0.89 Total error = 0.08

2nd classification

FO 14 1 0.06

FOE 1 14 0.06

Kappa = 0.86 Total error = 0.06
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The SOM revealed several ambient sound similar-

ities among the habitat types. FB and FAP share some

structural features: trees have all large rounded leaves,

tree density is similar and leaf litter is deep, while the

FO and FOE (which are spatially and structurally

close) are denser, with less leaf litter. The FP, where

lower tree density, fewer dead leaves, and different

leaf morphology (needles) are the key characteristics,

is different from the other forests and is clustered with

some the wetland recordings. Finally, the biotic

soundscape of the deciduous forest habitats was

shaped by similar animal communities that were

mainly composed of birds but no insects, while in the

pine forest, insect stridulations were present (DB,

personal observation).

The most important features for the first classifica-

tion were the CENT and SFM measures (Fig. 3).

The importance of these parameters, which estimate

the mean frequency and the flatness of the spectrum,

respectively, is probably due to differences in vegetation

structure (Waser and Brown 1986; Peters and Peters

2010) and vocal animal community composition of the

habitat types (Sueur et al. 2008b). The second classifi-

cation discriminated between OF and FOE habitat types.

The SKEW measure was the most important variable

indicating differences due to vegetation structure and

vocal animal community composition.

The classification procedure was based on a set of

features including an index based on the correlation

between the ambient sound and 1/f noise spectral

profiles. Based on the Gini decrease in accuracy, the

weight of this index appeared low for all classifica-

tions. Despite the fact that 1/f noise has been reported

in natural soundscapes (De Coensel et al. 2003) the

variance of the feature was not enough for habitat type

discrimination. Still, this index could be relevant when

comparing natural and human soundscapes, as anthro-

pogenic soundscapes display a higher percentage of

low frequency noise.

Acoustic signatures

However, the most important contribution of our

research was evidence for the existence of habitat type

acoustic signatures. The high accuracy of the RF

classification (Table 3) supposes significant differ-

ences in the ambient sound of distinct habitat types.

Even closely related habitat types such as FO and FOE

(as confirmed by the SOM, Fig. 2) can be effectively

discriminated using ambient sound features and the

RF algorithm (Table 3). Additionally, although dif-

ferences among habitats have been previously studied

(e.g. Slabbekoorn 2004a), this is the first study that

uses machine learning techniques to actually show the

existence of habitat specific acoustic signatures.

Studies on aquatic ecosystems have also provided

evidence of distinct coastal habitat ambient sound

(Radford et al. 2010). Recent results on reef ecosys-

tems have further shown that several organisms use

ambient sound for habitat selection: coral larvae

(Vermeij et al. 2010); fish (Radford et al. 2011); and

crustaceans (Simpson et al. 2011). Similar to reef

ecosystems, ambient sound could be an information

source for terrestrial organisms for habitat selection

and as Francis et al. (2011) suggest, ‘soundscape

orientation’ may even ‘‘guide movements at great

distances’’ (ibid, p. 1278).

Moreover, while previous theory suggested that

birds select suitable habitat mostly based on structural

cues i.e. vegetation characteristics (MacArthur et al.

1962), recent studies have shown that birds may be

Fig. 3 Important features for the random forest classifications

based on the Gini index. The same eight features were used for

both classifications: the one with six classes (top) and the one

with only the oak forest and its edge (bottom). Variable

importance is measured as mean decrease in Gini: high mean

decrease in Gini means high variable importance
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more attracted to suitable habitat by acoustic cues

produced by con- or even hetero-specifics (Mönkkönen

et al. 1990; Hahn and Silverman 2006; Betts et al.

2008). The biotic and abiotic sources of each habitat-

specific acoustic environment could be indices for a

suitable habitat. However, if the hypothesis (acoustic

adaptation hypothesis) that animal songs are adapted

to specific habitats (Morton 1975; Nicholls and

Goldizen 2006; Boncoraglio and Saino 2007; Peters

and Peters 2010) has any merit and the habitat can

indeed affect the evolutionary fitness of organisms

(Maan and Seehausen 2011), social cues may not be

the only extra-vegetation criterion for habitat selec-

tion. Signal attenuation characteristics and ambient

noise heterogeneity could be determinants of habitat

choice as well.

Our discovery of terrestrial acoustic signatures

impacts on the social cues versus vegetation character-

istics debate in habitat selection theory (Melles et al.

2009). It suggests that the two theories may not be

incompatible, providing they additionally consider

ambient sound signatures and the possibility of habitat

dependant ambient sound. It is possible that a complex

function incorporating vegetation characteristics, social

cues and ambient sound determines habitat choice. As

vegetation structure has an effect on animal communi-

ties and animal communities have an effect on ambient

sound, habitat choice is probably a more complex than

the simple vegetation versus social cues dichotomy.

Thus, on broad spatial scales soundscape orientation

may be more important than other cues like con-specific

attraction or visual identification of vegetation (Francis

et al. 2011). For example, Huijbers et al. (2012) recently

provided empirical support for multiple (visual, olfac-

tory and acoustic) cue response in early juvenile

Haemulon flavolineatum and they propose a cue-use

model that hinges on distance-from-habitat: large

distance—acoustic cues, medium distance—olfactory

cues and small distance—visual cues.

Tied to the above, is the recent theoretical proposal

by Farina et al. (2011a, b) to consider the soundtope as

a distinct ecological unit in landscapes. While Farina

et al. (2011a, b) propose the soundtope, they do not try

to investigate its possible relationship to habitat or

other landscape characteristics but instead interpolate

soundscape metrics across the landscape, similar to

Matsinos et al. (2008), Mazaris et al. (2009) and

Pijanowski et al. (2011b). Our results reveal that the

soundtope, defined as a distinct soundscape, is directly

related to the habitats present in a landscape and that a

distance based interpolation (e.g. Matsinos et al.

(2008); Mazaris et al. (2009)), that does not take into

account the spatial structure of the landscape could

possibly be lacking accuracy. Our work echoes the

work of Krause et al. (2011), who similarly to the

above, try to extrapolate sound recording features

across the landscape using vegetation data. However,

while they presuppose the existence of acoustic

signatures and try to locate them in the landscape

using remote sensing tools, we actually bring forth

evidence of their actual existence. Ambient sound thus

displays clumped heterogeneity, contingent on the

habitat type level of organization (Kotliar and Wiens

1990; Allen 1998) and clumping can be important in

cue-use success. And while within habitat and above

habitat heterogeneity is certain to play a role in

determining ecological processes, ambient sound

patchiness (sensu Kotliar and Wiens (1990)) at the

habitat type level has been shown to influence habitat

choice (Huijbers et al. 2012) and signal evolution

(Waser and Brown 1986; Nicholls and Goldizen 2006;

Peters and Peters 2010).

In conservation related terms, even though auto-

mated recognition of species or estimation of species

richness through acoustic methods has recently

received great interest (Depraetere et al. 2012), to

our knowledge, no study has dealt with habitat type

recognition through sound features. Although taxon-

omy and phytosociology are indispensable tools for

conservation, the method developed here, relies on a

simple analysis process that does not require particular

knowledge of taxonomy or acoustics and could be of

use in cases of limited funds, time or specialised

personnel. For example, the detection of changes in

the community structure of a forest edge created by

forest roads traditionally requires species census

(Šálek et al. 2010). Our method could track such

changes with accuracy above 90 % with minimal

sampling (30 sites 9 2 min), as Kennedy et al. (2010)

already succeeded using 2-min identification systems.

Acoustic classification appears then as useful tool that

could be used in different research and conservation

contexts (Farina et al. 2011a, b).

In conclusion, we found that ambient sound is

spatially heterogeneous and that the ‘‘spatial pattern of

the soundscape’’ (Farina et al. 2011a), is inextricably

related to the spatial pattern of vegetation. This finding

gives new insights to the relationship between
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soundscapes and organisms that use sound to com-

municate. Moreover, it should be stressed that exis-

tence of acoustic signatures or soundtopes (Farina

et al. 2011a, b) in direct relation to habitat types is a

novel finding that as shown above, could have

significant applications in habitat selection and eco-

logical evolution theorising and on-the-ground

research. Finally, our results suggest that soundscapes

are important for the maintenance of biodiversity in

different habitat types. Further applications and

refinement of habitat acoustics could also not only

reveal more nuanced similarities and dissimilarities

among habitat types, but also provide insights into the

ecological and evolutionary processes that cause

acoustic signatures to emerge (Pijanowski et al.

2011a, b).
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