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Abstract Landscape ecology links landscape pat-

tern to ecological function. Achieving this goal hinges

on accurate depiction and quantification of pattern,

which is frequently done by visually interpreting

remotely sensed imagery. Therefore, understanding

both the accuracy of that interpretation and what

influences its accuracy is crucial. In addition, imagery

is pixel-based but landscape pattern exists, more

realistically, as irregularly shaped patches. Patches

may contain only one feature type such as trees, but, in

some landscapes, patches may contain several differ-

ent types of features such as trees and buildings. Using

a patch-based approach, this paper investigates two

types of variables—whole-patch and within-patch—

that are hypothesized to influence the accuracy of

visually estimating the cover of features within

patches. A highly accurate reference map, obtained

from object-based classification, was used to evaluate

the accuracy of visual estimates of cover within

patches. The effects of the variables on the accuracy of

these estimates were tested using logistic regressions

and multimodel inferential procedures. Though all

variables significantly affected the accuracy, the

within-patch configuration of features is the most

significant factor. In general, errors of cover estimates

are more likely to occur when patches are smaller or

have more complex shapes, and features within a

patch are (1) more diverse; (2) more fragmented; (3)

more complex in shape; and (4) physically less

connected. These results provide an important first

step towards a quantitative, spatially explicit model

for predicting error of cover estimates and determining

under what circumstances estimation error is most

likely to occur.

Keywords Visual interpretation � Object-based

classification � HERCULES � Accuracy � Land cover

composition and configuration � Pattern analysis �
Spatial heterogeneity � Urban systems

Introduction

Landscape ecology focuses on understanding the

reciprocal link between pattern and process (Turner

et al. 2001; Wu and Hobbs 2002). Building this

understanding requires accurate quantification of

landscape pattern at the grain and extent appropriate

for a specific research question (Gustafson 1998;

Turner 2005; Shao and Wu 2008). Quantifying
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landscape pattern primarily relies on thematic maps,

and these maps are frequently derived from visual

interpretation of remotely sensed imagery (Turner

et al. 2001; Groom et al. 2006; Iverson 2007).

Therefore, pattern quantification, and consequently

our ability to apply it to understanding and predicting

variation in ecological processes in the landscape,

hinges on accurate classification of remotely sensed

imagery (Wu and Hobbs 2002; Iverson 2007; Li and

Wu 2007; Shao and Wu 2008). Because this is

fundamental to advancing research in landscape

ecology, it is crucial that we assess what influences

the accuracy of these classifications.

Visual interpretation of patterns and land cover

features is an approach used both by landscape

ecologists and remote sensing specialists. Visual

interpretation, frequently referred to as photo-inter-

pretation or manual interpretation, is the process by

which human analysts extract information by visually

inspecting an image (Lillesand and Kiefer 2004;

Richards and Jia 2006). Within the remote sensing

literature, visual interpretation has typically been used

for digitizing individual landscape features and

ground truthing images (Lillesand and Kiefer 2004;

Richards and Jia 2006). In landscape ecology, visual

interpretation is a well-established method for patch

mapping and classification (e.g., Fensham et al. 2002;

Allard et al. 2003; Cadenasso et al. 2007; Gill et al.

2008; Heiskanen et al. 2008; Ståhl et al. 2011).

Patches in the landscape can be mapped based on

many different criteria such as variation in plant

community composition or land use/land cover.

Patches can also be delineated based on a contrast in

an ecological process, such as rates of denitrification.

The appropriate criteria used to delineate patches

depend on the specific research question being

addressed (Cadenasso et al. 2003). A patch is a spatial

unit that has a specific location and dimensionality.

Therefore, patches can be quantitatively described by

size and shape as well as location relative to other

patches (Gustafson 1998). In addition, patches may

contain more than one feature. For example, patches

delineated using the criteria of land use may all be

residential but these patches contain types and amounts

of features such as buildings, impervious surfaces, and

trees (e.g., Cadenasso et al. 2007; Gill et al. 2008).

Patch mapping and classification commonly con-

sists of two steps: (1) delineating patch boundaries,

and (2) deriving attribute values of with-patch features

such as percent cover of trees and impervious surfaces

(e.g., Allard et al. 2003; Cadenasso et al. 2007; Gill

et al. 2008). The variation in delineating boundaries by

different interpreters or the same interpreter over time

has been extensively assessed (Congalton and Mead

1983; Cherrill and McClean 1995; Ellis et al. 2006).

This paper, however, focuses on the accuracy of the

second step—visually estimating the cover of features

within the patch.

The accuracy of estimating the cover of features

within a patch may be affected by the photoscales,

land cover types, landscape structure, and the skills of

the photo-interpreters (Fensham et al. 2002; Paine and

Kiser 2003; Fensham and Fairfax 2007; Zhou et al.

2010). This accuracy has been commonly assessed and

calibrated by field measurements (e.g., Fensham and

Fairfax 2003; Clehmann et al. 2009) or reference data

derived from other approaches (e.g., Zhou et al. 2010).

Few studies, however, have quantitatively examined

factors that may affect this accuracy (Fensham et al.

2002; Paine and Kiser 2003; Fensham and Fairfax

2007), and we are not aware of any that have

investigated how whole-patch characteristics and

within-patch characteristics affect the accuracy of

visually estimating within-patch cover. We suggest

that this accuracy may be influenced by whole-patch

characteristics, such as the size and shape of the patch,

and within-patch characteristics, such as the compo-

sition and configuration of the features (Zhou et al.

2010). Quantitatively understanding the relationship

between accuracy of cover estimates and whole-patch

and within-patch characteristics can provide insight

into potential causes of classification errors and

identify under what circumstances classification errors

are most likely to occur. In addition, analyses of these

relationships provide a potential tool to predict how

the magnitude of error is spatially distributed in the

landscape. These insights are not available from

standard accuracy assessment procedures (Shao et al.

2001; Smith et al. 2002, 2003; Ellis and Wang 2006;

Shao and Wu 2008). This paper aims to fill this gap.

The overarching goal of this study, therefore, is to

determine whether patch characteristics at two

scales—whole-patch and within-patch—influence

the accuracy of estimating the relative cover of land

cover features inside patches. Specifically, the objec-

tives are to (1) investigate whether whole-patch

characteristics, such as patch size and shape, and

within-patch characteristics, such the composition and
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configuration of features, are useful predictors of

errors in estimating the cover features within a patch,

and (2) examine the relative strength of whole-patch

and within-patch characteristics as predictors of errors

in estimating the cover of features within a patch.

Methods

Study area

We have delineated and classified land cover patches

in the Gwynns Falls watershed of Baltimore, MD,

USA as part of the Baltimore Ecosystem Study, a Long

Term Ecological Research Program funded by the

National Science Foundation (www.beslter.org). The

watershed is approximately 17,150 ha, and traverses

an urban–suburban–rural gradient from downtown

Baltimore City, through suburban and suburbanizing

areas, out to the rural/suburban fringe (Fig. 1).

Because of this size and range of land cover, the land

cover data layer consists of patches that vary in size

and shape and that vary in the relative cover of features

within them. Therefore, this data layer is well suited

for the goals of this research.

Data

Creating a patch layer to assess classification

accuracy

A base patch layer was created using the high

ecological resolution classification for urban land-

scapes and environmental systems (HERCULES) land

cover classification. This classification was specifi-

cally developed for urban landscapes (Cadenasso et al.

2007), and focuses on the biophysical structure,

specifically: (1) coarse-textured vegetation—trees

and shrubs (CV), (2) fine-textured vegetation—herbs

and grasses (FV), (3) bare soil, (4) pavement, (5)

buildings, and (6) building typology (Cadenasso et al.

2007). Because the last feature is qualitative, it will not

be discussed further. The first five features are allowed

to vary independently of each other and a shift in the

amount or distribution of one or more features will

result in a different patch. The utility of this approach

for linking landscape pattern to ecological processes is

best illustrated by an example. Using standard land

use/land cover classifications, residential areas in the

urban landscape would be classified the same and be

delineated as one continuous patch. But residential

Fig. 1 The Gwynns Falls

watershed includes portions

of Baltimore City and

Baltimore County, MD,

USA, and drains into the

Chesapeake Bay
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blocks can vary considerably in terms of building

density or the presence and abundance of trees. This

variation may influence ecological processes such as

biodiversity or carbon storage. The HERCULES

classification captures this heterogeneity in biophys-

ical features and delineates different patches where a

shift in tree abundance occurs. Patch boundaries,

where possible, are digitized down the middle of a

road (Fig. 2).

HERCULES patches were digitized on-screen

using high-spatial resolution aerial imagery in Arc-

GISTM (version 9.2). The imagery was collected in

October 1999, has a pixel size of 0.6 m, and is 3-band

color-infrared (green: 510–600 nm, red: 600–700 nm,

and near-infrared: 800–900 nm). The imagery was

orthorectified and meets the National Mapping Accu-

racy Standards for scale mapping of 1:3,000 (3-m

accuracy with 90 % confidence). A total of 2,250

patches were delineated in the watershed, with a mean

size of 7.6 ha, and a density of approximately 13/km2.

Each HERCULES patch, most likely, contains

multiple land cover features such as buildings and

trees (Fig. 2). We evaluate whether the accuracy of

visually estimating the cover of those features within a

patch is influenced by whole-patch characteristics—

size and shape—and within-patch characteristics—

composition and configuration of the features.

Creating the test and reference datasets

Using the HERCULES patch layer for the watershed,

the cover of all five features within a patch were

estimated using two approaches: (1) visual interpre-

tation, and (2) object-based classification. Through

visual interpretation the cover of each feature within a

patch was assigned to a cover category: (0) absent, (1)

Landscape
Feature

Cover
Category

Build 3

CV 1

FV 2

Pave 1

Bare soil 2

Landscape
Feature

Percent Cover
Category

Build 0.16 2

CV 0.03 1

FV 0.24 2

Pave 0.47 3

Bare soil 0.10 2

Landscape
Feature

Response
Variable

Build 0

CV 1

FV 1

Pave 0

Bare soil 1

Fig. 2 HERCULES patches and within-patch cover of each of

the five land cover features. Left panel high-resolution image

with HERCULES patch boundaries superimposed. Right panel
land cover classification map with HERCULES patch bound-

aries superimposed. Left table cover categories of the five

features estimated by visual interpretation for the patch

highlighted in the right panel. Center table: percent cover of

the features obtained for the same highlighted patch by object

based classification and the equivalent cover category. Right
table: binary response variables used to represent whether the

cover was correctly estimated by visual interpretation. Value of

one indicates a correct categorization and zero indicates an

incorrect categorization
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present to 10 %, (2) 11–35 %, (3) 36–75 %, and

(4) [ 75 % (Fig. 2; Cadenasso et al. 2007). This was

the test dataset. The object-based classification

approach used the software eCognition (Zhou and

Troy 2008) to generate the reference dataset contain-

ing the cover of features in the patches as a continuous

value. The continuous cover values were then assigned

into the cover categories described above (Fig. 2). The

continuous values were converted to categories so that

the two approaches could be compared. The overall

accuracy of the object-based classification was

92.3 %, with producer’s accuracies ranging from

88.3 to 100 %, and user’s accuracies from 83.6 to

97.7 % (Table 1).

The test and reference datasets were compared to

assess the accuracy of estimating cover of features

within patches based on visual interpretation. Each

land cover feature was assigned a one or a zero to

indicate whether or not the proportion cover estimates

from visual interpretation were in the same category as

those generated from the object-based approach. The

resulting binary variables were used as response

variables in the later logistical regressions.

Whole-patch and within-patch characteristics

Many metrics have been developed to characterize and

measure spatial pattern in landscapes (Gustafson

1998; McGarigal et al. 2002). We selected commonly

used metrics to describe whole-patch characteristics

and the composition and configuration of features

within a patch (Fig. 3; Table 2). Whole-patch metrics

included: total area, total edge (i.e., perimeter), fractal

dimension index, shape index, and perimeter–area

ratio. Within-patch metrics included those to describe

the composition of the features—percent cover of each

feature and the Simpson’s diversity index—and those

to describe the configuration of features—area, edge,

density, shape, connectivity, and proximity of each

feature type (Table 2) (Gustafson 1998; McGarigal

et al. 2002). Simpson’s diversity combines richness

(i.e., the number of feature types present) and evenness

(i.e., the distribution of area among features). Cohe-

sion index (CI) was used to quantify connectivity

among land cover features within a patch (Schumaker

1996). Proximity/isolation was measured by Euclid-

ean nearest neighbor distance (McGarigal et al. 2002).

All of the metrics, except for Euclidean nearest

neighbor distance, were calculated at both the feature

level (e.g., PD_Build, patch density for building) and

whole-patch level (e.g., PD_LS, patch density of all

five land cover features within a patch) (Table 2).

Statistical summaries, including mean and standard

deviation, were calculated for metrics of patch size,

patch edge, fractal dimension index, shape index,

perimeter–area ratio, and Euclidean nearest neighbor

distance (Table 2).

Metrics of whole-patch characteristics and within-

patch composition and configuration were calculated

for each feature separately in ArcGISTM 9.3 (McGa-

rigal et al. 2002). These metrics were calculated based

on the HERCULES patch layer and the reference land

cover layer generated from object-based classification

(Table 2). These metrics were used as predictor

variables in later statistical analyses to examine

whether whole-patch and within-patch characteristics

affect the accuracy of cover estimates based on visual

interpretation.

Statistical analyses

Using logistic regressions, we first examined how

variables of whole-patch characteristics could affect

cover estimates by visual interpretation. We repeated

the analyses using the variables of within-patch

composition and configuration. Whether a combina-

tion of whole-patch and within-patch variables yielded

better predictions than either alone was then investi-

gated. The response variable for each of the five land

cover features was binary, with value of one or zero

representing the proportion cover estimates from

visual interpretation were correct or incorrect. Five

models were constructed and compared for each

response variable. Those five models have a given

dependent variable as a function of: (1) whole-patch

Table 1 Summary of the accuracies for the reference land

cover map obtained from object-based image analysis

Building CV FV Pavement Bare

soil

User’s

accuracy

(%)

83.6 97.7 94.9 91.9 90.0

Producer’s

accuracy

(%)

94.4 94.4 89.3 88.3 100

Overall

accuracy

92.3 % Kappa

statistic

0.899
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characteristics; (2) within-patch composition; (3)

within-patch configuration; (4) within-patch compo-

sition ? within-patch configuration; and (5) whole-

patch characteristics ? within-patch composi-

tion ? within-patch configuration (Table 3). Because

there were a large number of predictor variables, and

some were highly correlated to each other, we used a

forward stepwise variable selection procedure in the

logistic regressions to determine which variables to

add or drop from the models (Hosmer and Lemeshow

2000). The entry probability was set as 0.05. Conse-

quently, only significant predictor variables were kept

in the final models.

In a logistic regression, a response variable that is

typically binary (0, 1) is predicted as a function of a

series of continuous or categorical predictor variables.

Rather than model the binary response variable

directly, logistic regression converts the response

variable into a logit variable, or the natural log odds

of the response occurring. The logistic regression

model is given as (Agresti 1996):

logitðpÞ ¼ lnðp=ð1� pÞÞ
¼ aþ b1x1 þ b2x2 þ � � � þ bkxk ð1Þ

where ln is the natural logarithm, p is the probability of

the proportion cover of a feature within a patch (e.g.,

buildings) being correctly classified, p/(1 - p) is the

odds of a specific response occurring, a is the

intercept, x1 through xk are predictor variables, and

bn is the coefficient of variable xn.

A positive regression coefficient indicates that the

odds of a correct classification increases as the

predictor variable increases, while a negative regres-

sion coefficient means a decrease in the odds of a

Variables Value
Metrics of whole-patch characteristics
PA (ha) 7.28
PERIM (km) 1.24
FRAC 1.03
PARA 0.02
SHAPE 1.15
Metrics of within-patch composition 
Per_Build 0.16
Per_CV 0.03
Per_FV 0.24
Per_Pave 0.47
Per_BS 0.10
SIDI 0.69
Metrics of within-patch configuration
AMN_Build (m2) 493.9
EMN_Build (m) 159.5
LPI_Build 1.43
PD_Build 329.6
ED_Build 525.8
PARAMN_Build 0.36
SHAPEMN_Build 1.81
FRACMN_Build 1.19
ENN_MN_Build (m) 35.8
CI_Build 97.6
AMN_LS (m2) 353.5
EMN_LS (m) 110.6
LPI_LS 43.4
PD_LS 2929.2
ED_LS 3127.8
PARAMN_LS 1.36
SHAPEMN_LS 1.67
FRACMN_LS 1.24
CI_LS 99.42

Fig. 3 An example of a HERCULES patch (highlighted), and the values of the metrics that measure the whole-patch and within-patch

characteristics. The building feature is used as an example in the table (Note: not all of the configuration metrics for building are listed)
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Table 2 Metrics of whole-patch characteristics and within-patch composition and configuration of land cover features

Variable Description Mean SD

Metrics of whole-patch characteristics

PA Patch area (m2) 7.62E4 2.38E5

PERIM Patch perimeter (m) 1303.88 2189.32

FRAC Fractal dimension index, measure of shape complexity 1.046 0.044

PARA Perimeter–area ratio, measure of shape complexity 0.043 0.314

SHAPE Shape index, measure of shape complexity 1.332 0.532

Metrics of within-patch composition of land cover features

Per_Build Percent buildings 0.117 0.120

Per_CV Percent CV 0.261 0.248

Per_FV Percent FV 0.306 0.225

Per_Pave Percent pavement 0.278 0.208

Per_BS Percent bare soil 0.032 0.122

SIDI Simpson’s diversity index 0.558 0.175

Metrics of within-patch configuration of land cover features

AMN_Build Mean patch sizes of all building patches 577.15 1425.69

AMN_LS Mean of patch sizes of all patches 690.30 675.01

ASD_Build Standard deviation of patch sizes of all building patches 452.79 1407.93

ASD_LS Standard deviation of patch sizes of all patches 3073.87 4825.72

EMN_Build Mean of patch edges of all building patches 110.47 131.80

EMN_LS Mean of patch edges of all patches 158.95 61.97

ESD_Build Standard deviation of edges of all building patches 61.35 104.54

ESD_LS Standard deviation of edges of all patches 434.52 296.33

LPI_Build Largest patch index for building, calculated at feature level 5.02 8.25

LPI_LS Largest patch index calculated at landscape level 48.08 21.63

PD_Build Patch density of buildings, the number of building patches per km2 338.09 518.72

PD_LS Patch density, the number patches per km2 6451.92 1.93E5

ED_Build Edge density of buildings, the total length of all building patches per hectare 321.21 313.22

ED_LS Edge density, the total length of all patches per hectare 3131.58 3282.66

PARAMN_Build Mean of PARA of all building patches 1.50 10.63

PARAMN_LS Mean of PARA of all patches 2.38 3.22

PARASD_Build Standard deviation of PARA of all building patches 1.67 11.74

PARASD_LS Standard deviation of PARA of all patches 5.54 14.79

SHAPEMN_Build Mean of SHAPE of all building patches 1.54 0.64

SHAPE MN_LS Mean of SHAPE of all patches 1.99 0.29

SHAPE SD_Build Standard deviation of SHAPE of all building patches 0.27 0.50

SHAPESD_LS Standard deviation of SHAPE of all patches 1.07 0.33

FRACMN_Build Mean of FRAC of all building patches 1.15 0.15

FRACMN_LS Mean of FRAC of all patches 1.29 0.06

FRACSD_Build Standard deviation of FRAC of all building patches 0.073 0.11

FRACSD_LS Standard deviation of FRAC of all patches 0.21 0.05

ENN_MN_Build Mean of Euclidean nearest neighboring distance, an isolation metric 29.72 30.34

ENN_SD_Build Standard deviation of Euclidean nearest neighbor distance 9.35 13.80

CI_Build Patch cohesion index at the feature level for building patches 77.76 37.88
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correct classification when the predictor variable

increases. For continuous predictor variables, the

magnitude of bn is interpreted as the additive effect

on the log odds ratio for a unit change in the predictor

variable xn, holding all else constant (Agresti 1996).

Multi-model inferential procedures were used for

model comparisons to determine which of the whole-

patch or within-patch variables, or some combination,

best predicts the variance in each response variable

(i.e., correct/incorrect classification of each feature)

(Burnham and Anderson 2002). This procedure, which

is based on minimization of Akaike’s Information

Criterion (AIC) (Akaike 1973), selects the model that

best explains the data with the fewest parameters. We

also calculated the Akaike weight for each model, or

the probability of a given model being the best one

among a number of candidate models. Akaike weights

are especially useful when the difference of AIC values

between two models is small (Burnham and Anderson

2002; Wagenmakers and Farrell 2004). Separate

comparisons were run for each response variable.

Results

Five models were compared for each response vari-

able, and we present the model parameters, pseudo R2

value, AIC value, and Akaike weight for each model

(Tables 4, 5, 6, 7, 8). The pseudo R2 value is a measure

of the strength of association for regression models

containing a categorical dependent variable (Nage-

lkerke 1991). It is similar to the coefficient of

determination, R2, for linear regression models. For

all models within each model group (i.e., the same

binary response variable), we ranked each model on

the basis of its AIC value. Below, we first present the

results from model comparisons for each of the five

features. We then discuss the effects of whole-patch

characteristics and within-patch composition and

configuration of features on the accuracy of cover

estimates.

Model comparison: the best model for each land

cover feature

Building, coarse-textured vegetation, and bare soil

The best models for these three features are the most

complex models which combine variables of whole-

patch characteristics, and within-patch composition

and configuration (Tables 4, 5, 8). For example, the best

model to predict the accuracy of estimating the cover of

buildings, Build5, combined a whole-patch character-

istic (patch perimeter), within-patch composition

Table 3 Logistic regression models compared for each of the five land cover features

Model number Model Description

1 aþ b1X1 Whole-patch characteristics

2 aþ b2X2 Within-patch composition

3 aþ b3X3 Within-patch configuration

4 aþ b2X2 þ b3X3 Within-patch composition ? within-patch configuration

5 aþ b1X1 þ b2X2 þ b3X3 Whole-patch characteristics ? within-patch composition ? within-patch configuration

For each land cover feature, the response variable was binary, with value of one or zero indicating whether or not the proportion cover

estimates from visual interpretation were in the same category as those generated from the object-based approach. X1 is the vector of

whole-patch characteristics variables, X2 is the vector of within-patch composition variables, X3 is the vector of within-patch

configuration variables, a is the intercept, and each b represents a coefficient vector

Table 2 continued

Variable Description Mean SD

CI_LS Patch cohesion index at the landscape level 99.22 0.44

The building feature is used as an example in this table. These metrics were used as predictor variables. For each feature, the

predictors of whole-patch characteristics, within-patch composition, and within-patch configuration at the whole patch level were the

same as listed in the table, but the predictors of within-patch configuration at the feature level are different. For example, for CV, the

patch density of CV (PD_CV), rather than that of Building (PD_Build), was used
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(percent of CV, percent of building, and percent of FV)

and within-patch configuration (e.g., connectivity

among buildings, building density and shape complex)

(Table 4). Approximately 32 % of the variation in the

response variable of building cover accuracy was

explained by this model.

Fine-textured vegetation

The best model (FV4) for this feature combines

variables of within-patch composition and configura-

tion (Table 6). The second best model (FV5) com-

bines variables of whole-patch characteristics and

Table 4 Summary results of logistic regression models for the building land cover, including AIC scores, Akaike weights, model

ranking and pseudo R2 values

Model Explanatory variables/Parameter estimates AIC
Akaike 
Weights

Rank
Pseudo

R-Square

Build1
SHAPE

2721 0.00% 5 0.006
0.346

Build2
Per_Build Per_Pave Per_BS SIDI

2326 0.00% 4 0.236
-4.650 -1.667 -1.076 -0.3073

Build3
CI_Build ED_Build EMN_Build FRACMN_Build CI_LS AMN_LS PD_LS

2220 0.00% 3 0.295
-0.039 -0.001 -0.003 1.539 -0.762 0.001 -1.0E-6

Build4
Per_CV Per_Build Per_FV CI_Build EMN_Build LPI_Build AMN_LS CI_LS FRACSD_LS

2187 4.74% 2 0.313
1.591 -2.591 1.067 -0.036 -0.001 0.020 0.001 -0.522 2.833

Build5
PERIM Per_CV Per_Build Per_FV CI_Build EMN_Build LPI_Build PD_Build AMN_LS CI_LS FRACSD_LS SHAPEMN_LS

2181 95.26% 1 0.319
7.8E-5 1.465 -3.236 1.078 -0.037 -0.002 0.026 -3.5E-4 0.001 -0.823 3.059 -0.650

Only significant predictor variables were kept in the models

Table 5 Summary results of logistic regression models for the coarse textured vegetation land cover, excluding insignificant terms

Model Explanatory variables/Parameter estimates AIC
Akaike 
Weights

Rank
Pseudo

R-Square

CV1
PARA PERIM

2961 0.00% 5 0.031
-10.22 1.01E-4

CV2
SIDI Per_FV Per_Build

2897 0.00% 4 0.069
-2.63 -1.12 2.24

CV3
AMN_CV ENNMN_CV PD_CV ED_CV ASD_CV EMN_CV ASD_LS LPI_LS EMN_LS SHAPEMN_LS

2762 0.05% 3 0.1524.04E-4 -0.021 -0.001 -0.001 -5.5E-5 -0.003 9.9E-5 -0.007 -0.003 -0.521

CV4
Per_CV Per_Build ENNMN_CV ED_CV ESD_CV PD_CV AMN_CV LPI_CV ASD_LS SHAPEMN_LS

2756 1.10% 2 0.155
3.08 1.83 -0.024 -0.001 -4.62E-4 -0.001 1.41E-4 -0.018 7.3E-5 -0.573

CV5
PARA PA SIDI Per_Build Per_CV Per_Pave ENNMN_CV ED_CV ESD_CV AMN_CV PD_CV ED_LS

2747 98.85% 1 0.162
-14.055 1E-6 -2.065 2.145 1.818 0.683 -0.024 -0.001 -4.73E-4 1.31E-4 -4.25E-4 2.45E-4

Table 6 Summary results of logistic regression models for the fine textured vegetation land cover, excluding insignificant terms

setamitseretemaraP/selbairavyrotanalpxEledoM AIC 
Akaike 
Weights 

Rank 
Pseudo 

R-Square 

FV1 
PARA 

3086 0.00% 5 0.007 
-6.81 

FV2 
IDISVF_rePVC_rePdliuB_reP

2984 0.00% 4 0.069 
499.0-398.0829.0-765.3

FV3 
AMN_FV ED_FV EMN_FV LPI_LS EMN_LS 

2972 0.00% 3 0.077 
300.0-910.0-200.0-100.0-4-E22.5

FV4 
Per_CV Per_Build SIDI AMN_FV EMN_FV LPI_LS ASD_LS 

2921 62.25% 1 0.107 
-1.264 2.416 -2.176 4.28E-4 -0.003 -0.022 3.0E-5 

FV5 
PARA PERIM Per_CV Per_Build AMN_FV EMN_FV ESD_LS 

2922 37.75% 2 0.107 
-11.124 1.6E-4 -1.145 1.974 4.2E-4 -0.003 -0.001 
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within-patch composition and configuration. Though

AIC and Akaike weights indicate that FV4 is slightly

better than FV5, support for FV4 being the best

relative to FV5 is weak.

Pavement

The model that best explains pavement (Pave4)

combines variables of within-patch composition and

configuration (Table 7). After adjusting for the effects

of within-patch composition and configuration, no

whole-patch characteristic significantly contributes to

the explanation of variance in pavement cover

estimates (Pave5). Therefore, the model Pave4 was

identical to the model Pave5.

The best model for each of the five land cover

features provides a better prediction than that by the

baseline or intercept-only model (Table 9). The inter-

cept-only model classifies all cases simply by using

the most numerous category (i.e., the category 0). For

example, the best model for pavement (Pave5) clas-

sifies 68.7 % correctly compared to 52.5 % classified

correctly by the intercept-only model. For each land

cover feature, combining within-patch composition

variables with those of within-patch configuration

(model group 4) provides better prediction than those

models using variables of within-patch composition or

configuration alone (model group 2 or 3).

The effects of whole-patch characteristics

on the accuracy of cover estimates

Whole-patch characteristics are significant predictors

for all five land cover features. Models using patch

characteristics alone (i.e., model group 1) provide

statistically significant improvement over the inter-

cept-only models, except for bare soil (model BS1,

Table 8). However, little variance in estimation accu-

racy was explained by this model group, suggesting

that whole-patch characteristics alone do not provide

adequate explanation.

Among the five indicators of whole-patch charac-

teristics, perimeter–area ratio (PARA) and perimeter

(PERIM) are the most significant. PARA was a

significant predictor for CV and FV when adjusting

for the effects of variables of within-patch composition

Table 7 Summary results of logistic regression models for the pavement land cover, excluding insignificant terms

Model Explanatory variables/Parameter estimates AIC
Akaike 
Weights

Rank Pseudo
R-Square

Pave1
PARA SHAPE

3085 0.00% 5 0.020
-9.282 0.287

Pave2
SIDI Per_BS

2974 0.00% 4 0.083
-2.953 -1.504

Pave3
ED_Pave LPI_Pave SHAPESD_Pave CI_Pave ENNSD_Pave FRACMN_Pave CI_LS ESD_LS

2810 0.00% 3 0.177
-0.002 0.030 -0.221 -0.024 0.014 1.023 -0.532 -8.65E-4

Pave4
Per_Pave Per_BS Per_Build SIDI ED_Pave PD_Pave FRACMN_Pave CI_Pave FRACSD_LS FRACMN_LS

2773 50.00% 1 0.1993.531 -2.164 1.907 -1.195 -0.003 -5.22E-4 0.894 -0.020 -5.498 3.461

Pave5
Per_Pave Per_BS Per_Build SIDI ED_Pave PD_Pave FRACMN_Pave CI_Pave FRACSD_LS FRACMN_LS

2773 50.00% 1 0.199
3.531 -2.164 1.907 -1.195 -0.003 -5.22E-4 0.894 -0.020 -5.498 3.461

Table 8 Summary results of logistic regression models for the bare soil land cover, excluding insignificant terms

Model Explanatory variables/Parameter estimates AIC
Akaike 
Weights

Rank
Pseudo

R-Square

BS1
None of the variables is significant

2206 0.00% 5 0
N/A

BS2
Per_Build Per_CV Per_Pave Per_BS SIDI

2084 0.00% 4 0.091
2.955 1.427 -1.257 -2.448 -1.34

BS3
ED_BS SHAPEMN_BS ENN_MN_BS ENN_SD_BS AMN_BS

2051 0.00% 3 0.113
-0.002 -0.244 -0.003 -0.012 2.2E-5

BS4
Per_Pave Per_FV ED_BS SHAPEMN_BS ENN_MN_BS ENN_SD_BS

1988 2.93% 2 0.155
-2.687 -1.361 -0.002 -0.267 -0.003 -0.013

BS5
PERIM Per_pave Per_FV ED_BS SHAPEMN_BS ENN_MN_BS ENN_SD_BS

1981 97.7% 1 0.161
1.18E-4 -2.649 -1.270 -0.002 -0.303 -0.003 -0.017
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and configuration (CV5 and FV5). The negative

coefficients of PARA indicated that the odds of a

correct estimation decrease with the increase of patch

PARA. Patch perimeter (PERIM) was a significant

predictor for building, FV, and bare soil, when the

effects of variables of within-patch composition and

configuration were adjusted (Build5, FV5, and BS5).

The positive parameters of PERIM in the three best

models indicated that the odds of a correct estimation

for those three features increase with the increase of

PERIM.

The effects of within-patch composition

on the accuracy of cover estimates

Variables of within-patch composition are better

predictors of estimation accuracy than those of

whole-patch characteristics for all of the five land

cover features. Among the six variables of within-

patch composition, the cover of buildings (Per_Build)

and the Simpson’s diversity index (SIDI) are the most

significant metrics predicting the accuracy. SIDI was

significant in all five models, but SIDI was only

significant for pavement when the effects of whole-

patch characteristics and within-patch configuration

were adjusted. The general effects of SIDI were

consistent for all five land cover features meaning that

the odds of correctly estimating cover decrease with

the increase of the diversity of land cover features.

However, the estimated coefficients, or the magni-

tudes of the impacts of SIDI, varied broadly among

features.

Proportion cover of buildings within the patch

(Per_Build) significantly affected the prediction of

accuracy for all of the land cover features except for

bare soil. It remained significant in all the best models

Table 9 Classification table for the best models and baseline or intercept-only models summarized by land cover features

Landscape feature Model Observed Predicted Percent

correct (%)

Overall

percent correct (%)
1 0

Building Best 1 1,413 176 88.9 73.6

0 417 244 36.9

Intercept-only 1 1,589 0 100 70.6

0 662 0 0

CV Best 1 1,156 219 64.0 64.8

0 572 303 72.9

Intercept-only 1 1,375 0 100 61.1

0 875 0 0

FV Best 1 935 310 75.1 61.6

0 555 450 44.8

Intercept-only 1 1,245 0 100 55.3

0 1,005 0 0

Pavement Best 1 683 385 64.0 68.7

0 320 862 72.9

Intercept-only 1 0 1,068 0 52.5

0 0 1,182 100

Bare soil Best 1 1,769 48 97.4 81.4

0 371 62 14.3

Intercept-only 1 1,817 0 100 80.8

0 433 0 0

The columns are the two predicted values of the dependent, while the rows are the two observed (actual) values of the dependent. One

means that the cover of the feature was correctly estimated, while zero represents misclassification. The values on the diagonal of the

two columns under ‘predicted’ (e.g., 1413 and 244, marked in grey) are the number of cases correctly classified by the models. The

column ‘‘percent correct’’ is the percentage of cases correctly classified for a specific category (i.e., 1 or 0), while the ‘‘overall percent

correct’’ is the total percentage of cases correctly classified
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for FV, CV, pavement and building features, when

effects of whole-patch characteristics and within-

patch configuration were adjusted. The effects of

Per_Build on the accuracy, however, varied by

feature. While the negative coefficient of Per_Build

indicated that the increase of building cover within a

patch decreased the odds of a correct estimation for

building cover, the positive coefficients of Per_Build

for CV, FV and pavement indicated that the odds of a

correct estimation for those land cover features

increased with the increase of building cover within

a patch.

The effects of within-patch configuration

on the accuracy of cover estimates

Models using variables of configuration (model group

3) are superior to those using composition variables

alone (model group 2), as well as models only using

variables of whole-patch characteristics (model group

1). Configuration metrics, both at the feature level and

the whole-patch level, affected the accuracy of cover

estimates (e.g., cohesion index at both levels,

CI_Build and CI_LS in model Build3, Table 4). The

significance of configuration variables varied broadly

among features, with only a very few variables being

significant for all or most of the five land cover

features. Significant variables included edge density,

mean patch size, and mean edge length, all at the

feature level. While the significance of configuration

variables varied by features, the effects of the same

configuration variable were generally consistent

across all land cover features. For example, in the

model group using only within-patch configuration

variables as predictors (model group 3), variables of

edge density (e.g., ED_Build) were significant for all

of the five land cover features, and had consistent

negative effects on the accuracy. This suggests that for

each of the five features, the odds of the cover of that

feature being correctly estimated decreased with an

increase of edge density.

Discussion

The results indicate that, though the accuracy of

visually estimating the cover of features within

patches is significantly affected by both whole-patch

characteristics and within-patch composition and

configuration of features, within-patch configuration

is the most significant factor. In addition, within-patch

composition is a better predictor than whole-patch

characteristics. Most frequently, however, a combina-

tion of whole-patch and within-patch characteristics

provides the best prediction of accuracy of cover

estimates. The relative importance of whole-patch

characteristics, and within-patch composition and

configuration on the accuracy of cover estimates will

be discussed in order of increasing importance.

Whole-patch characteristics

Characteristics, such as perimeter and perimeter–area

ratio, are useful predictors of accuracy of cover

estimates through visual interpretation, even after the

effects of within-patch composition and configuration

were adjusted. The statistical importance of these

whole-patch variables indicates that some of the

variability in the accuracy of cover estimates that is

not explained by within-patch composition and con-

figuration can be attributed to whole-patch character-

istics. A very small proportion of the variance in the

accuracy of cover estimates, however, can be

explained by whole-patch characteristics alone. Our

results suggest errors in cover estimates are more

likely to occur for smaller patches with more complex

shapes, which have larger perimeter to area ratios.

This is similar to previous research that digitized

individual landscape features and found that mis-

classification was more likely to occur for smaller

features with higher perimeter to area ratios (Ellis and

Wang 2006).

Within-patch composition

Composition of land cover features within a patch is a

better predictor of accuracy through visual interpreta-

tion than whole-patch characteristics. Both the pro-

portion abundance of each land cover feature and the

diversity of features within a patch significantly affect

the accuracy of cover estimates. The most important

composition variable in predicting this accuracy is the

percent cover of buildings. As the percent cover of

buildings increases, the accuracy of estimating build-

ing cover decreases, but the accuracy of estimating

coarse-textured vegetation (CV), fine-textured vege-

tation (FV), and pavement increases. Our results

suggest that errors in estimating cover are more likely
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to occur when within-patch composition is more

diverse. This is consistent with findings from previous

studies that visual estimates of woody crown cover

from aerial photography may be influenced by land

type (Fensham et al. 2002; Fensham and Fairfax

2007), and that the accuracy of digital land cover

classification tends to decrease with the increase of

diversity in land cover features (Smith et al. 2003).

Effects of the relative cover of different land cover

features on the accuracy of estimating the cover of

those features vary by feature types. For example,

errors in estimating cover of CV are more likely to

occur as the relative amount of CV within a patch

decreases. Errors in estimating building cover, how-

ever, are more likely to occur with higher building

cover. This difference may suggest that interpreters

perceive and react to patterns of built (i.e., building)

and non-built (e.g. CV) components in different ways.

Within-patch configuration

Within-patch configuration is the most significant

predictor of accuracy of cover estimates through

visual interpretation. A large number of variables

contribute to this significance. While the significance

and magnitudes of effects of the variables vary broadly

among different types of land cover features, the

effects were generally consistent. Our results suggest

that errors of cover estimates are more likely to occur

when land cover features within a patch are (1) more

fragmented (e.g., higher patch density, higher edge

density, smaller averaged patch size, and smaller

largest patch index); (2) more complex in shape (e.g.,

patches are more irregular, with larger values of shape

index), and (3) physically less connected (e.g., larger

averaged nearest neighbor distance). These results

may be due to how interpreters perceive and react to

landscape patterns by applying many of the Gestalt-

laws simultaneously during the process of visual

interpretation (Antrop and Van Eetvelde 2000). For

example, interpreters generally reduce the complexity

of pattern they observe by transforming irregular

shapes into geometric shapes and grouping them

according to similarity and proximity (Antrop and Van

Eetvelde 2000). Consequently, this simplification and

interpretation may lead to the decrease in accurately

estimating cover, with the increase in complexity of

features configuration within a patch. Because the

urban landscape is strikingly heterogeneous, with

complex fine-scale spatial patterning of individual

features such as buildings, driveways and lawns,

visual interpretation may not be an effective way to

accurately estimate cover of land cover features within

a patch (Zhou et al. 2010). This limitation suggests that

other approaches, for example object-based image

analysis, that can accurately estimate cover of features

within a patch are desirable (Benz et al. 2004; Zhou

and Troy 2008; Blaschke 2010).

Whole-patch and within-patch characteristics are

important predictors of the accuracy of cover esti-

mates based on visual interpretation. The relatively

low pseudo R2 values of the regression models,

however, suggest that models using variables of

whole-patch and within-patch characteristics as pre-

dictors alone are incomplete, and more factors should

be considered for better predictions on the accuracy of

cover estimates. For example, shadows that frequently

occur in high-spatial resolution imagery might con-

tribute significantly to errors in cover estimates

(Fensham et al. 2002; Zhou et al. 2009). Therefore,

the application of radiometric enhancement (or resto-

ration) methods for shadow removal may alleviate the

shadow problem, and thus improve the accuracy of

cover estimates (Zhou et al. 2009).

It is important to note that the accuracy of

estimating the cover of features within a patch may

be affected by the spatial resolution of imagery. For

example, previous studies indicated that the exagger-

ation of crown cover was scale dependent, decreasing

with the increase of scale of photography (Fensham

and Fairfax 2002; Fensham et al. 2002). In this study,

we only used the 0.6 m aerial imagery. Therefore,

cross-scale (i.e., multiple spatial resolution) evalua-

tion is recommended in future studies. In addition, it

should be noted that there are classification errors

associated with the reference land cover map. There-

fore, some of the ‘‘errors’’ occurring in the visually

interpreted classification map were in fact due to errors

in the reference map.

Summary and conclusions

Pattern analysis of landscapes is frequently conducted

in an effort to link pattern to ecological processes. As a

consequence, the accuracy of that pattern analysis is

critical (Wu and Hobbs 2002; Iverson 2007). Knowl-

edge of the magnitude of the errors in pattern analysis,
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and the factors that affect the generation of errors, is

needed (Li and Wu 2007; Shao and Wu 2008). This

research examines the quantitative relationships of

whole-patch characteristics and within-patch compo-

sition and configuration of land cover features with the

accuracy of estimating, by visual interpretation, the

cover of those features. The results indicate that,

though all factors significantly affected the accuracy

of cover estimates, within-patch configuration of the

features is the most significant. Most frequently,

however, a combination of indicators of whole-patch

and within-patch characteristics provides the best

prediction of accuracy of cover estimates. In general,

errors of cover estimates based on visual interpretation

are more likely to occur when patches are smaller or

have more complex shapes, and land cover features

within a patch are (1) more diverse; (2) more

fragmented; (3) more complex in shape; and (4)

physically less connected.

Though we used a land cover layer created by a new

classification, HERCULES, for this analysis, the

approach and results are applicable for any analysis

using thematic maps based on visual estimation of

land cover features to describe landscape pattern. Our

results provide insights into increasing understanding

of the link between the accuracy of thematic maps

based on visual interpretation and the heterogeneity of

land cover features. In addition, the logistic regression

models provide a useful, predictive tool for determin-

ing under what circumstances estimation error is most

likely to occur. This provides an important first step

towards a quantitative, spatially explicit model for

error prediction of cover estimates based on visual

interpretation.
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