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Abstract The spatial distribution of soil carbon

(C) is controlled by ecological processes that evolve

and interact over a range of spatial scales across the

landscape. The relationships between hydrologic and

biotic processes and soil C patterns and spatial

behavior are still poorly understood. Our objectives

were to (i) identify the appropriate spatial scale to

observe soil total C (TC) in a subtropical landscape

with pronounced hydrologic and biotic variation, and

(ii) investigate the spatial behavior and relationships

between TC and ecological landscape variables which

aggregate various hydrologic and biotic processes.

The study was conducted in Florida, USA, character-

ized by extreme hydrologic (poorly to excessively

drained soils), and vegetation/land use gradients

ranging from natural uplands and wetlands to inten-

sively managed forest, agricultural, and urban sys-

tems. We used semivariogram and landscape indices

to compare the spatial dependence structures of TC

and 19 ecological landscape variables, identifying

similarities and establishing pattern–process relation-

ships. Soil, hydrologic, and biotic ecological variables

mirrored the spatial behavior of TC at fine (few

kilometers), and coarse (hundreds of kilometers)

spatial scales. Specifically, soil available water capac-

ity resembled the spatial dependence structure of TC at

escalating scales, supporting a multi-scale soil hydrol-

ogy-soil C process–pattern relationship in Florida. Our

findings suggest two appropriate scales to observe TC,

one at a short range (autocorrelation range of 5.6 km),

representing local soil-landscape variation, and

another at a longer range (119 km), accounting for

regional variation. Moreover, our results provide

further guidance to measure ecological variables

influencing C dynamics.

Keywords Soil carbon � Scale � Variogram �
Spatial variation � Spatial autocorrelation

Introduction

Soil and ecological processes and spatial patterns are

linked across many scales, mutually influencing the

spatial and temporal distribution of one another. In
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order to understand regional soil patterns it is neces-

sary to identify the underlying ecological processes

responsible for those patterns. This requires assessing

multiple scales of variation in soil and ecological

variables representing those underlying processes and

elucidating how they interact in space and time.

This type of scaling analysis requires assessing

factors that may affect observations and conclusions

about the spatial behavior of soil and ecological

variables. Some of the commonly recognized scale

factors are grain (or resolution), extent, observation

density and arrangement (sampling design), and

sample dimensions (support). Additional factors to

consider are range, magnitude, and distribution of

attribute values, and spatial auto- and cross-correla-

tions among soil-ecological variables. These factors

were included in the broad definition of scale proposed

by Blöschl (1999), and have been used in various

contexts, including up- and downscaling, investiga-

tions of scale-dependent behavior, and scaling within

different domains of space and time (e.g., Blöschl and

Sivapalan 1995; Moody and Woodcock 1995;

McBratney 1998; Hay et al. 2001).

Geostatistics, more specifically variogram analysis,

has been used to describe the spatial dependence

structure of many soil and ecological variables,

including soil carbon (C) (e.g., Vasques et al. 2010a,

b). The semivariogram (or simply variogram) charac-

terizes this spatial dependence structure by modeling

the semivariance as a function of lag distance (Eq. 1)

(Chilès and Delfiner 1999; Grunwald 2006).

c hð Þ ¼ 1

2m hð Þ
Xm hð Þ

i¼1

z xið Þ � z xi þ hð Þ½ �2 ð1Þ

where c(h) is the observed semivariance at lag distance

h; m(h) the number of paired data at lag distance h; and

z(xi), z(xi ? h) the measurements separated by a lag

distance h.

The spatial dependence of an ecological variable

can be characterized by the parameters of variogram

models, i.e., the nugget and sill variances, and the

range (or autocorrelation range), and also by their

shapes. These parameters depend on the magnitude

and spatial distribution of the variable, sampling

design (including the number of observations), and

landscape configuration. Importantly, the variogram

parameters are the result of the processes that gener-

ated the spatial dependence structure.

Many studies have quantified the spatial depen-

dence of soil C using variogram analysis. McBratney

and Pringle (1999), for example, identified an average

spatial autocorrelation range of 310 m among nine

investigations of soil C in agricultural fields. Mueller

and Pierce (2003) found ranges for soil total C (TC)

between 118 and 249 m within a 13-ha field (corn-

soybean rotation) in Michigan, USA, depending on the

number of samples. Terra et al. (2004) identified

ranges for soil organic C (SOC) varying from 63 to

73 m, also depending on the number of samples, in a

9-ha field (cotton and other crops) in central Alabama,

USA. And more recently Simbahan et al. (2006)

identified ranges for SOC varying from 89 to 450 m at

three fields (diverse crops) of 49 to 65 ha in Nebraska,

USA. Commonly spatial autocorrelations have been

documented for SOC or TC, but studies do not explain

the spatial behavior and cross-relationships with other

ecological landscape variables.

Along with the given examples, the majority of

investigations of the spatial dependence of soil C were

conducted at the field scale. However, some investi-

gations have identified the spatial dependence of

soil C at larger extents, including van Meirvenne

et al. (1996) (3,164 km2) in Belgium, McGrath and

Zhang (2003) (41,462 km2), and Zhang and McGrath

(2004) (15,460 km2) in Ireland, Hengl et al. (2004)

(2,500 km2) in Croatia, and Vasques et al. (2010a, b)

(3,585 km2) in the USA. These studies identified

spatial autocorrelation ranges for SOC or soil organic

matter (SOM) in the order of 3–100 km. This large

span in spatial autocorrelation ranges may be explained

by differences in geology, soils, ecosystem types, and

topographic and climatic gradients within these large

systems. At these regional to continental scales, the

spatial dependence of soil C is not sufficiently char-

acterized, and still subject to investigation.

Investigations relating soil C (or SOM) to ecological

landscape variables have been conducted in different

regions and environments throughout the world. For

example, Pei et al. (2010) used a topographic wetness

index as a covariate to map SOM across a 52-km2

agricultural area (soybean and wheat) in northeastern

China. Hancock et al. (2010) observed TC patterns in a

50-ha mixed area (forest and grassland) in northern
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Australia to be linked to vegetative biomass, which was

in turn controlled by topography. Several studies have

quantified soil C stock and change as a function of land

use and management (e.g., Post and Kwon 2000; Guo

and Gifford 2002; Murty et al. 2002; Ostle et al. 2009).

Examples over larger extents include: Phachom-

phon et al. (2010), who modeled SOC across Laos

(230,566 km2, mostly forested) as a function of

elevation, precipitation, and soil clay content, obtain-

ing a R2 of 0.36; and Zhou et al. (2008), who mapped

SOC across China (*9.60 million km2) based on a

process-based model that used remotely sensed nor-

malized difference vegetation index (NDVI), and

other soil, and climatic variables.

Specifically in Florida, USA, three studies have

recently related soil and ecological patterns in a vast

wetland area—the Everglades. Corstanje et al. (2006),

and Bruland et al. (2006) observed main TC patterns at

0–10, and 10–20-cm depths to be associated with

predominant hydrologic patterns in Water Conserva-

tion Areas 1 (559 km2), and 3 (2,330 km2), respec-

tively. In Water Conservation Area 2A (433 km2),

Rivero et al. (2007) characterized the spatial variation

of TC (0–10 cm), relating the observed patterns to

vegetation and organic matter dynamics and hydro-

logic patterns at the fine scale, and to the slough-ridge

topography at a coarser scale.

In a 3,585-km2 watershed with mixed land uses and

natural environments in Florida, Vasques et al.

(2010a) demonstrated that TC was significantly higher

in Histosols (organic soils) in wetlands than in other

land uses or better drained areas. Although their study

suggested that soil hydrology, and land use controlled

soil C sequestration and decomposition, there are other

ecological variables, such as topography and vegeta-

tion, which may confound C dynamics. However, it is

still unknown how strongly these ecological variables

control C dynamics in Florida or if they do at all.

Furthermore, our knowledge on the spatial behavior of

soil C as influenced by ecological landscape variables

in this type of environment (flat topography, wide-

spread presence of wetlands, and predominantly sandy

soils) is still limited.

Our objectives were to (i) identify the appropriate

spatial scale to observe TC in a subtropical landscape

with pronounced hydrologic and biotic variation, and

(ii) investigate the spatial behavior and relationships

between TC and ecological landscape variables which

aggregate various hydrologic and biotic processes.

Materials and methods

Study area

The study was conducted in Florida, which spans

about 150,000 km2 between latitudes 24.55 and

31.00� N, and longitudes 80.03 and 87.63� W

(Fig. 1). Mean annual precipitation is 1,373 mm, and

mean annual temperature is 22.3�C (National Climatic

Data Center 2008). Florida soils are mainly Spodosols

(32%), Entisols (22%), Ultisols (19%), Alfisols (13%),

and Histosols (11%) (Natural Resources Conservation

Service 2006), and land uses/land covers are predom-

inantly wetlands (28%), pinelands (18%), croplands

(9%), rangelands (9%), improved pasture (8%), and

urban or barren lands (15%) (Florida Fish and Wildlife

Conservation Commission 2003).

Topography is flat, with elevations below 114 m,

and 0–5% slopes in most of the state (United States

Geological Survey 1984). Limestone bedrock origi-

nating from marine sediments is present throughout

most of Florida. In the south, these materials are

overlain by partially decomposed organic materials

and/or secondary carbonates (marl), while in the north

they received sandy and loamy materials of marine

and continental origin.

Field sampling and laboratory analysis

Field sampling was conducted at three nested regions

within Florida (Fig. 1). The broadest region encom-

passed the whole state (*150,000 km2), the second

region had an intermediate extent (*3,585 km2),

delimited by the Santa Fe River watershed, and the

third and smallest region was the University of Florida

Beef Cattle Station (*5.58 km2), nested inside the

Santa Fe River watershed. The dimensions of these

three areas were orders of magnitude different,

reflecting a progressively increasing variability of

TC from the field to the state extent.

Soil samples were collected at multiple depths,

obeying to either a horizon-based sampling to 2 m or

more across the state (1,193 soil profiles) (Florida Soil

Characterization Database 2009), or a stratified

random sampling design using soil-land use strata

across the watershed (141 profiles), and cattle station

(152 profiles), respectively, with samples collected at

fixed depth intervals (0–30, 30–60, 60–120, and

120–180 cm).
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Laboratory analysis of TC was conducted using air-

dried and sieved (2 mm) samples and involved three

methods: (i) high temperature combustion (FlashEA

1112 Elemental Analyzer) (Thermo Electron Corp.,

Waltham, MA) for samples collected at the watershed;

(ii) loss on ignition (Natural Resources Conservation

Service 1996) for samples collected at the cattle station,

and samples from organic horizons collected from the

state; and (iii) Walkley–Black modified acid–dichro-

mate oxidation (Walkley and Black 1934; Natural

Resources Conservation Service 1996) for samples

from mineral horizons from the state. For the latter two

methods, which measure SOM, SOC was calculated by

multiplying SOM by the van Bemmelen factor (0.58)

(Natural Resources Conservation Service 1996).

Soil C measurements from the different methods

were standardized to high temperature combustion

units using linear conversion factors between loss on

ignition and Walkley–Black SOC, respectively, and

high temperature combustion TC. The conversion

factors were derived based on 144 samples from the

state dataset, and are shown in Eq. 2 (R2 = 0.97) for

loss on ignition, and Eq. 3 (R2 = 0.94) for Walkley–

Black measurements, respectively.

TCHTC ¼ 0:90� SOCLOI ð2Þ
TCHTC ¼ 0:98� SOCWB ð3Þ

where TCHTC is TC measured by high temperature

combustion, in %; SOCLOI SOC measured by loss on

ignition, in %; and SOCWB SOC measured by Walk-

ley–Black, in %.

Soil total C concentration (in %) was calculated for

the first 1 m as the depth-weighted average TC across

all depth or horizon intervals to 1 m, and then

transformed using natural logarithm (ln) to approxi-

mate a normal distribution. After standardizing the

unit and depth (support), samples from the cattle

station, watershed, and state were grouped together to

form a pooled dataset comprising 1,486 samples.

Fig. 1 Three nested regions

in Florida, with their

respective sample

distributions of TC.

Latitude/longitude

coordinates correspond to

each map individually
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Variogram analysis of soil total carbon

and ecological variables

We used variogram analysis to characterize the spatial

dependence of ln-transformed soil total carbon (LnTC)

within 1 m using the pooled dataset, and of 19 selected

ecological variables that could potentially generate or

explain the spatial patterns of TC. The 19 ecological

variables included six soil, three topographic, and 10

Landsat Enhanced Thematic Mapper Plus (ETM?)

reflectance and derived variables (Table 1). For LnTC

and each ecological variable, respectively, two empir-

ical variograms were derived: one using 30 lags (bins)

of 210 m, spanning a total of 6.3 km; and another using

24 lags of 15.5 km, spanning 372 km. The objective

was to characterize their individual spatial dependence

structures over the short and long ranges (distances). In

addition, we derived cross-variograms (Eq. 4) (Chilès

and Delfiner 1999; Grunwald 2006) for all ecological

variables with LnTC, also over the short and long

ranges. Finally, we modeled the empirical variograms/

cross-variograms using either exponential (Eq. 5) or

Gaussian (Eq. 6) models (Chilès and Delfiner 1999) to

obtain variogram parameters, i.e., the nugget variance,

sill variance, and range of spatial autocorrelation, for

all variables.

cij hð Þ¼ 1

2m hð Þ
Xm hð Þ

i¼1

zu xð Þ� zu xþhð Þ½ � zv xð Þ� zv xþhð Þ½ �

ð4Þ

ĉ hð Þ ¼ c0 þ c 1� e�3 h=rð Þ
h i

ð5Þ

ĉ hð Þ ¼ c0 þ c 1� e�3 h=að Þ2
h i

ð6Þ

where cij(h) is the observed cross-semivariance at lag

distance h; m(h) the number of paired data at lag

distance h; zu(x), zu(x ? h) the measurements of

variable u separated by a lag distance h;

zv(x), zv(x ? h) the measurements of variable v sep-

arated by a lag distance h; ĉ hð Þ the estimated

semivariance at lag distance h; c0 the nugget variance;

c the partial sill variance; e the natural exponential

base; h the lag distance; r the effective range, where

c(h) achieves 95% of the total sill variance (c0 ? c), at

about 3a; and a the range.

Variograms for the 19 ecological variables were

derived using data extracted from raster maps (30-m

resolution) co-located spatially with the 1,486 TC

samples that comprised the pooled dataset. This

ensured that the comparisons of spatial structures

between ecological variables and LnTC were based on

the same sampling design, and thus, were consistent

across all ecological variables.

Landscape structure analysis of ecological

variables

We also calculated two metrics of landscape structure

based on three other categorical ecological variables:

land use, soil drainage class, and soil hydrologic group.

The two landscape metrics used were the area-weighted

mean radius of gyration of patches of the same class

(GYRATE_AM; Eq. 7), and the mean Euclidean dis-

tance between nearest neighboring patches of the same

class (ENN_MN; Eq. 8) (McGarigal et al. 2002).

GYRATE AM ¼
Xn

j¼1

Xz

r¼1

hijr

z

� �
aijPn
j¼1 aij

 !" #
ð7Þ

ENN MN ¼
Xn

j¼1

hij=n ð8Þ

where hijr is the distance between cell ijr (located

within patch ij) and the centroid of patch ij; z the

number of cells in patch ij, where r = 1, …, z; aij the

area of patch ij; n the number of patches of the same

class, where j = 1, …, n; and hij the distance from

patch ij to nearest neighboring patch of the same class.

As a measure of landscape connectivity, the

GYRATE_AM can be interpreted as the average

traversable distance within a patch, i.e., the average

distance between a random position inside a patch and

a patch edge. Thus, it corresponds to a correlation

length (Keitt et al. 1997) analogous to the range of

spatial autocorrelation given by the variogram. The

ENN_MN complements the GYRATE_AM by giving

the expected distance between patches of the same

class that are disconnected on the landscape.

Results

Descriptive statistics and correlation of soil total

carbon with ecological variables

Soil total C varied from 0.03 to 54.59%, with a mean of

1.87%, and showed a positively skewed distribution,

which approached a normal distribution after natural
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logarithm transformation (Table 1). The ecological

variable most strongly correlated with LnTC was soil

available water capacity (AWC), with a Pearson’s

product-moment correlation coefficient of 0.58

(Table 1). The second highest correlation with LnTC

was observed for soil saturated hydraulic conductivity

(KSAT) (-0.30), another soil hydrologic variable.

Among the 19 ecological variables selected for this

study, only slope, and Landsat ETM? band 4 were not

significantly correlated with LnTC at the 0.05 signif-

icance level.

Variogram analysis of soil total carbon

Over the short range (30 lags 9 210 m), LnTC

exhibited Gaussian spatial dependence structure

(Fig. 2a), with nugget, sill, and range of 0.24 ln%2,

0.94 ln%2, and 5.56 km, respectively. Over the long

range (24 lags 9 15.5 km), LnTC exhibited exponen-

tial spatial dependence (Fig. 2b), with nugget, sill, and

range of 0.42 ln%2, 1.29 ln%2, and 119.42 km,

respectively (Table 2).

The modeled LnTC variograms had good agree-

ment with the empirical variograms over both the short

and long ranges (Fig. 2). The spatial autocorrelation of

LnTC was stronger (smaller nugget-to-sill ratio) over

the short range, which also captured the short-range

Gaussian-like variation of LnTC not observed in the

long-range variogram, thus decreasing the nugget

variance. This suggests nested scales of variation for

TC, which is not surprising given the multi-scale

nature of soil–ecological relationships.

Table 1 Descriptive statistics of TC and ecological landscape variables at the 1,486 sampling sites

Variable Data source Mean SD Min Max Skewness Correlation

with LnTCa

TC (%) Field sampling 1.87 5.92 0.03 54.59 5.81

LnTC (ln%) Field sampling -0.50 1.14 -3.56 4.00 1.41

Soil clay content (%) NRCS (2009) 8.22 9.61 0.23 69.90 2.42 0.21*

Soil silt content (%) NRCS (2009) 5.71 8.33 0.15 82.82 5.16 0.25*

Soil sand content (%) NRCS (2009) 86.05 15.80 1.92 99.27 -2.50 -0.26*

Soil pH NRCS (2009) 5.59 0.83 4.35 8.50 1.20 0.12*

Soil AWC (cm cm-1) NRCS (2009) 0.08 0.05 0.02 0.42 2.46 0.58*

Soil KSAT (lm s-1) NRCS (2009) 82.88 50.17 0.41 383.28 1.72 -0.30*

Elevation (m) USGS (1999) 22.26 18.25 0.00 104.00 1.02 -0.15*

Slope (%) USGS (1999) 1.46 2.07 0.00 13.87 2.18 -0.02

CTI USGS (1999) 13.41 5.52 5.39 28.24 0.14 0.14*

ETM? band 1 (DN) FWC (2003) 55.47 8.92 0.00 118.00 -0.80 -0.12*

ETM? band 2 (DN) FWC (2003) 42.41 8.94 0.00 113.00 2.52 -0.15*

ETM? band 3 (DN) FWC (2003) 40.65 14.58 0.00 142.00 1.79 -0.19*

ETM? band 4 (DN) FWC (2003) 68.64 12.90 14.00 131.00 0.14 0.02

ETM? band 5 (DN) FWC (2003) 61.42 24.71 10.00 152.00 0.71 -0.12*

ETM? band 7 (DN) FWC (2003) 37.48 17.97 9.00 120.00 1.27 -0.15*

NDVI FWC (2003) 0.27 0.16 -0.47 1.00 -0.74 0.16*

Tasseled cap 1 (DN) FWC (2003) 128.58 27.18 42.77 269.45 0.89 -0.13*

Tasseled cap 2 (DN) FWC (2003) 0.42 14.15 -68.79 55.72 -0.75 0.17*

Tasseled cap 3 (DN) FWC (2003) -4.91 16.07 -73.79 54.10 -0.84 0.11*

AWC available water capacity; CTI compound topographic index; DN digital number; ETM? Landsat Enhanced Thematic Mapper

Plus; FWC Florida Fish and Wildlife Conservation Commission; KSAT saturated hydraulic conductivity; LnTC ln-transformed soil

total carbon; Max maximum; Min minimum; NDVI normalized difference vegetation index; NRCS Natural Resources Conservation

Service; SD standard deviation; TC soil total carbon; USGS United States Geological Survey

* Significant correlation at the 0.05 significance level
a Pearson’s product-moment correlation coefficient
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Variogram analysis of ecological variables

Over the short range, only 10 out of the 19 ecological

variables had well-defined positive spatial autocorre-

lation that could be modeled by an exponential or

Gaussian function. Over the long range, 16 ecological

variables had well-defined positive spatial autocorre-

lation (Table 2).

The empirical variograms of LnTC and ecological

variables showed some similarities in the shape and

position of semivariogram structures (Fig. 3). Over

both the short and long ranges, the general shapes of

LnTC’s empirical variograms were reproduced by the

variograms of soil KSAT, and soil pH (Fig. 3a, c), and

had some agreement with those from Landsat ETM?

band 3, and NDVI (Fig. 3b, d). For example, similar-

ities between LnTC’s and Landsat ETM? band 3 and

NDVI’s variograms included, in the short range, a

relatively leveled variogram at distances up to about

3,500 m, and the position of positive peaks (e.g.,

around 4,000, and 5,000 m) (Fig. 3b). In the long

range, similarities included a steep raise over short

distances, and the presence of positive peaks around

250, and 350 km, respectively (Fig. 3d).

In the short range alone, empirical variograms of

Landsat ETM? bands 1 and 2 also had similarities

with LnTC’s, including the position of two peaks

around 3.5 and 4.5 km, respectively (not shown). In

the long range alone, LnTC’s variogram showed

similar structures to those from elevation, and com-

pound topographic index (CTI) (Fig. 3e), both asso-

ciated with the distribution of Florida’s wetlands and

uplands.

In the empirical variograms, one position of interest

is where the maximum semivariance is achieved. For

LnTC, this position was close to 4.8 km in the short

range (Fig. 2a), and 326 km in the long range

(Fig. 2b). Variables with maximum semivariance

close to these positions included: (i) in the short

range, soil AWC, soil KSAT, and Landsat ETM?

bands 1, 2, 3 and 7, NDVI, and tasseled cap 1; and (ii)

in the long range, soil pH, CTI, and elevation.

Remarkably, the variograms of soil AWC showed

very similar shapes to the variograms of LnTC (Fig. 4a,

b), especially over the long range. In the short range, soil

AWC’s variogram approached a Gaussian model,

exhibiting a range of autocorrelation (6.2 km; Table 2)

close to LnTC’s (5.6 km). In the long range, soil AWC’s

variogram approached an exponential model, also

having a similar range of autocorrelation (124 km;

Table 2) to LnTC’s (119 km). This indicates that the

spatial dependence structures of LnTC and soil AWC

are closely related at these two scales.

Cross-variogram analysis of soil total carbon

and ecological variables

Over the short range, among the 10 ecological

landscape variables that exhibited well-defined posi-

tive spatial autocorrelation, only three had positive

and well-defined spatial cross-correlation with LnTC

(Table 3). Ecological variables that exhibited negative

spatial cross-correlation with LnTC over the short

range included CTI, and Landsat ETM? bands 5 and

7, and tasseled cap 1.

Over the long range, only seven ecological vari-

ables had positive spatial cross-correlation with LnTC

(Table 3). Variables that exhibited negative spatial

cross-correlation with LnTC over the long range

included soil sand content, soil KSAT, elevation, and

Fig. 2 Empirical and

modeled variograms of

LnTC over the a short and

b long range, respectively
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Landsat ETM? bands 2, 3, 5 and 7, and tasseled cap 1;

slope exhibited negative spatial autocorrelation. Over

the long range, spatial patterns of LnTC and ecological

variables are in better agreement than at the short

range, indicating that overall spatial patterns of TC

across Florida are governed more strongly by long-

range soil-landscape patterns correlated as far as

170 km apart.

Not surprisingly, soil AWC exhibited the most

well-structured spatial dependence with LnTC among

all ecological variables, both at the short and long

ranges (Fig. 4c, d; Table 3), indicating the presence of

a coupled soil C-soil hydrology landscape pattern.

Landscape structure analysis of ecological

variables

Among land use classes, the GYRATE_AM varied

from 3,177 to 7,916 m (Table 4), placing the edges

between different land uses in the region where

LnTC’s semivariance raises and reaches its maximum

(sill) in the short range (*4–6 km). Overall, soil

drainage classes and hydrologic groups had GYRA-

TE_AM values beyond 2.5 km, indicating that these

water-related variables can also contribute to the

observed raise of LnTC variation at this range.

Noticeably, very high GYRATE_AM values were

Table 2 Modeled

variogram parameters of

LnTC and select ecological

variables over short and

long ranges

AWC available water

capacity; CTI compound

topographic index; ETM?

Landsat Enhanced

Thematic Mapper Plus;

KSAT saturated hydraulic

conductivity; LnTC ln-

transformed soil total

carbon; NDVI normalized

difference vegetation index
a Only those ecological

variables that had positive

spatial autocorrelation and a

well-defined empirical

variogram were modeled

Variablea Model Nugget Sill Range (km)

Short range

LnTC Gaussian 0.24 0.94 5.56

Soil pH Gaussian 0.05 0.32 5.26

Soil AWC Gaussian *0.00 *0.00 6.19

Elevation Exponential 0.50 109.85 2.98

CTI Exponential 4.45 25.98 2.39

ETM? band 5 Exponential 83.02 494.34 1.05

ETM? band 7 Exponential 45.92 239.33 0.99

NDVI Gaussian *0.00 0.03 5.22

Tasseled cap 1 Exponential 121.25 559.73 1.83

Tasseled cap 2 Exponential 45.37 201.10 1.24

Tasseled cap 3 Exponential 31.11 217.70 0.97

Long range

LnTC Exponential 0.42 1.29 119.42

Soil clay content Exponential 77.43 92.53 109.59

Soil silt content Gaussian 17.18 47.78 255.56

Soil sand content Gaussian 152.48 230.87 283.26

Soil pH Exponential 0.16 0.65 171.32

Soil AWC Exponential *0.00 *0.00 124.34

Soil KSAT Exponential 1,058.35 2,604.48 201.32

Elevation Exponential 73.76 293.37 125.15

CTI Exponential 21.45 29.84 158.74

ETM? band 2 Exponential 41.49 79.55 50.14

ETM? band 3 Exponential 135.06 209.36 57.99

ETM? band 5 Exponential 510.23 609.94 57.06

ETM? band 7 Exponential 230.41 321.30 55.91

NDVI Exponential 0.02 0.03 130.48

Tasseled cap 1 Exponential 507.07 731.69 57.06

Tasseled cap 2 Exponential 185.72 199.98 122.85

Tasseled cap 3 Exponential 229.63 257.02 145.93
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observed for poorly drained soils, and soil hydrologic

groups A, and B, which have high, and moderate

infiltration rates, respectively. These high GYRA-

TE_AM values reflect in both cases the relatively large

patches of poorly drained soils, and soil hydrologic

groups A, and B, respectively.

The ENN_MN did not provide information to

explain TC’s spatial patterns, but did confirm the

findings above that areas with similar LnTC values

(i.e., of the same class) would occur less than 2.5 km

apart from each other. Had ENN_MN values gone

beyond the 2.5-km threshold, one would probably see

smaller LnTC semivariance values beyond 3 km in the

short-range variogram.

Discussion

Variogram analysis coupled with landscape metrics

offered a framework to understand and connect

Fig. 3 Empirical

variograms of select

ecological variables in

comparison with LnTC:

a soil KSAT, and soil pH

over the short range;

b Landsat ETM? band 3

(B3), and NDVI over the

short range; c soil KSAT,

and soil pH over the long

range; d B3, and NDVI over

the long range; and e CTI,

and elevation over the long

range. All variograms were

transformed ([c -

minimum]/range) to fit

within a 0–1 interval

Landscape Ecol (2012) 27:355–367 363

123



landscape patterns. They were confirmatory pointing

to hydrologic and biotic processes controlling the

spatial behavior of TC in Florida.

The similar variograms (Fig. 4a, b; Table 2) and

well-structured cross-variograms (Fig. 4c, d; Table 3)

of LnTC and soil AWC indicate that processes

influenced by the amount of water which can be stored

in the soil (as represented by the AWC) could explain

the spatial patterns of LnTC across Florida. In a region

with constantly high water supply through rainfall, it is

likely that the AWC correlates with the amount of

water present in the soil profile. Because Florida is a

region of high rainfall, the AWC is more likely to be

filled. This in turn reduces organic matter decompo-

sition rates, and increases net primary productivity.

Thus, the capacity of soils to store water is likely to

control the amount of C. By extension, processes

related to the accumulation of water in soils dictate TC

dynamics. Albeit having similar spatial dependence

structures does not necessarily guarantee that AWC

solely controls the spatial patterns of TC, it offers

evidence of a pattern–process linkage between them.

Fig. 4 Empirical

variograms of soil AWC in

comparison with LnTC over

the a short and b long range,

respectively, and empirical

and modeled variograms of

soil AWC (left axis) in

comparison with cross-

variograms of soil AWC and

LnTC (right axis) over the

c short and d long range,

respectively. The soil AWC

and LnTC variograms (a,

b) were transformed

([c - minimum]/range) to

fit within a 0–1 interval.

(Color figure online)

Table 3 Modeled cross-

variogram parameters of

LnTC with select ecological

variables over short and

long ranges

AWC available water

capacity; CTI compound

topographic index; NDVI
normalized difference

vegetation index
a Only those ecological

variables that had positive

spatial cross-correlation and

a well-defined empirical

cross-variogram with LnTC

were modeled

Variablea Covariance

with LnTC

Model Nugget Sill Range (km)

Short range

Soil pH 0.12 Gaussian *0.00 0.07 5.26

Soil AWC 0.03 Gaussian *0.00 0.02 6.19

NDVI 0.03 Gaussian *0.00 0.06 5.22

Long range

Soil clay content 2.28 Exponential 0.34 2.36 109.59

Soil pH 0.12 Exponential *0.00 0.06 171.32

Soil AWC 0.03 Exponential *0.00 0.03 124.34

CTI 0.91 Exponential 0.01 0.93 158.74

NDVI 0.03 Exponential 0.02 0.03 130.48

Tasseled cap 2 2.81 Exponential 2.06 2.86 122.85

Tasseled cap 3 2.06 Exponential 1.44 2.31 145.93
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In effect, the amount of water and redox potential of

the soil ultimately dictate whether plant and animal

residues (organic matter) accumulate over time in the

form of soil C, or degrade, returning to the atmosphere

through soil respiration (e.g., Reddy and Patrick Jr

1975). Our results show that the spatial structure and

process scale of water supply is similar to that of TC.

The topography of Florida is overall leveled, gener-

ating a landscape of wetlands, formed in depressions,

interspersed with upland areas. The depressions accu-

mulate water, creating anaerobic environments that

slow down the decomposition of organic matter,

fostering soil C build-up. On the other hand, in well-

aerated upland soils, the presence of oxygen promotes

faster decomposition of organic matter, favoring soil C

degradation (Reddy and Patrick Jr 1975; Freeman

et al. 2001). The link between TC and hydrologic

processes in Florida is also supported by the associ-

ation of TC with other variables, including soil

drainage class, hydrologic group, KSAT, elevation,

and CTI, a surrogate for water supply.

Short-range associations as identified by the vari-

ograms and cross-variograms suggest that LnTC’s

spatial dependence is connected to hydrologic pro-

cesses operating locally. The relatively small semi-

variance for LnTC until about 2.5 km (Fig. 2a)

indicates that either repetitive patterns or uniform

areas of high or low LnTC, respectively, occur within

this distance. Beyond 2.5 km, the semivariance

increases, indicating that contrasting (high vs. low)

LnTC patterns start to occur. This suggests that one or

more sources of soil-landscape variation have ‘frag-

mented’ TC generation processes, creating homoge-

neous patches of less than 2.5 km in size, or placed

within a distance of less than 2.5 km from one another,

so that beyond this point dissimilar soil-landscapes

and dissimilar LnTC occur. Such fragmentation

effects can be related to socioeconomic or political

decisions that determine the fate (use) of the land, or to

physical processes related to geology, topography/

hydrology and vegetation (Vasques et al. 2010a, b).

Each of these fragmentation effects interact with the

biogeochemical dynamics of TC and soil C pools

(Parton et al. 1987; Ahn et al. 2009).

As discussed previously, the NDVI, which captures

vegetation patterns in a landscape, resembled the

spatial behavior of TC in the short range (Fig. 3b).

This suggests a vegetation or land use control of LnTC

in the short range, corroborated by the two landscape

metrics on land use (Table 4). In effect, differences in

land use and management are similar to differences in

TC content at this finer scale.

Over the long range, it is reasonable to accept that

hydrologic gradients, which occur over hundreds of

kilometers, are the sources of landscape variation most

closely related to TC (Figs. 3c–e; 4b, d). Contrary to

other regions, where the topography exerts a more

direct control over soil forming processes (e.g.,

through transport and deposition), in Florida, the

presence of high water tables and wetlands have

Table 4 Landscape

metrics of three categorical

ecological variables

GYRATE_AM area-

weighted mean radius of

gyration of patches of the

same class; ENN_MN mean

Euclidean distance between

nearest neighboring patches

of the same class
a The letters A, B, C, and D

designate, respectively,

soils with high, moderate,

slow, and very slow

infiltration rates when

thoroughly wet

Variable Class GYRATE_AM (m) ENN_MN (m)

Land use Wetland 7,916 312

Pineland 5,189 311

Upland vegetation 3,177 343

Agriculture 4,999 468

Urban and barren 5,773 328

Grassland 7,787 317

Soil drainage class Excessively drained 13,595 445

Well drained 8,258 427

Moderately well drained 3,291 392

Somewhat poorly drained 1,531 373

Poorly drained 79,314 315

Soil hydrologic groupa A 31,078 379

B 56,928 318

C 1,510 361

D 7,650 319
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created a patchy landscape, with areas of higher and

drier land interspersed with areas of stagnant waters

and saturated terrain with only minor elevation

differences.

Our LnTC variogram results corroborate those

found in the literature. Over the short range, similar

TC autocorrelation ranges to that observed in this study

(5.6 km) were found for SOC at 0–30 cm by Wang

et al. (2002) in a forested region in northeastern Puerto

Rico (110 km2), and also for SOM in the topsoil by

Hengl et al. (2004) in central Croatia (2,500 km2), both

with a range of about 3.1 km. Over the long range,

McGrath and Zhang (2003), and van Meirvenne et al.

(1996) observed autocorrelation ranges for SOC of

about 40 km in southeastern Ireland (41,462 km2,

0–10 cm), and northwestern Belgium (3,164 km2,

topsoil), respectively, whereas Zhang and McGrath

(2004) observed ranges from 58 to 100 km for SOC at

0–10 cm in southeastern Ireland (15,460 km2). These

ranges were closer to that found in this study for TC

(119 km) and more modest than the range of 632 km

observed for SOC at 0–20 cm in a 3,435-km2 region in

northeastern China (Liu et al. 2006).

Conclusions

In Florida, the spatial dependence and patterns of soil

C are closely associated with those of soil AWC at

local and regional scales. In this environment, water-

related soil forming processes, as represented by

AWC, control organic matter decomposition, trans-

formation, and accumulation in the soil, and, along

with other ecological processes, are responsible for the

observed soil C spatial behavior and patterns. This

study provides further guidance to select and assess

variables and processes which control C dynamics,

pointing to the appropriate scale to observe them in

regional C assessments.
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