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Abstract Little is known about how variation in

landscape mosaics affects genetic differentiation. The

goal of this paper is to quantify the relative importance

of habitat area and configuration, as well as the

contrast in resistance between habitat and non-habitat,

on genetic differentiation. We hypothesized that

habitat configuration would be more influential than

habitat area in influencing genetic differentiation.

Population size is positively related to habitat area,

and therefore habitat area should affect genetic drift,

but not gene flow. In contrast, differential rates and

patterns of gene flow across a landscape should be

related to habitat configuration. Using spatially

explicit, individual-based simulation modeling, we

found that habitat configuration had stronger relation-

ships with genetic differentiation than did habitat area,

but there was a high degree of confounding between

the effects of habitat area and configuration. We

evaluated the predictive ability of six widely used

landscape metrics and found that patch cohesion and

correlation length of habitat are among the strongest

individual predictors of genetic differentiation. Cor-

relation length, patch density and clumpy are the most

parsimonious set of variables to predict the magnitude

of genetic differentiation in complex landscapes.

Keywords Landscape genetics � Area �
Configuration � Fragmentation � Limiting factors �
CDPOP � Simulation � Thresholds

Introduction

Quantifying the effects of habitat area and fragmen-

tation on ecological processes has emerged as one of

the central questions in landscape ecology. Population

connectivity is central to many ecological processes

and conservation goals. For example connectivity is a

key factor affecting regional viability of animal

populations (Hanski and Ovaskainen 2000; Flather

and Bevers 2002; Cushman 2006). Habitat loss and

fragmentation affect population density (Wiegand

et al. 1999, 2005; Revilla and Wiegand 2008) and

distribution (Fahrig and Merriam 1985; Fahrig and

Paloheimo 1988; Hanski and Ovaskainen 2000), and

can decrease dispersal (Gibbs 1998), reduce genetic

diversity (Reh and Seitz 1990; Keyghobadi 2007), and
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increase mortality (Fahrig et al. 1995). Populations

may not be recolonized following local extinction if

immigration is prevented (Brown and Kodric-Brown

1977; Harrison 1991; Semlitsch and Bodie 1998).

Thus, the ability of individual animals to move across

landscapes is critical for maintaining populations

(Fahrig 2003; Cushman 2006; Lindenmayer and

Fischer 2007).

Considerable debate has recently focused on the

relative importance of habitat area versus habitat

configuration in driving population processes. Empir-

ical and simulation studies generally suggested that

the effects of fragmentation on species occurrence and

extinction risk are generally weaker than the effects of

habitat loss (Fahrig 2003). Theoretical studies have

shown that landscape composition is more important

than configuration in determining landscape occu-

pancy, and that configuration becomes important only

at low levels of habitat area (With and Crist 1995;

Fahrig 1997, 1998; Hill and Caswell 1999; With and

King 1999; Fahrig 2001, 2002; Flather and Bevers

2002). Results of empirical studies, mostly on birds,

have been generally consistent with these theoretical

findings (Andren 1994; McGarigal and McComb

1995; Trzcinski et al. 1999; Villard et al. 1999;

Cushman and McGarigal 2002; Schmiegelow and

Monkkonen 2002; Cushman and McGarigal 2004).

Some studies have modeled movement in an

individual-based, spatially explicit framework to

evaluate fragmentation thresholds and connectivity

of landscape mosaics (e.g. Schumaker 1996; With and

King 1999). However, few studies have addressed the

effects of habitat loss and fragmentation on gene flow

in complex landscapes. Ezard and Travis (2006)

quantified thresholds for fixation time of selectively

neutral genotypes by genetic drift in complex land-

scapes. They found that fixation time was determined

by habitat shape and spatial correlation of habitat loss.

Bruggeman et al. (2010) used simulation modeling to

quantify both the influence of patch size and isolation

on abundance, effective population size and Fst in red-

cockaded woodpecker. Their results suggest that

population genetic structure is more strongly affected

by habitat fragmentation than habitat patch size.

There are theoretical reasons to expect that pro-

cesses governing extinction risk should be more

related to habitat area than configuration, because

population size is positively related to habitat area, and

extinction risk is highly related to population size. In

addition, patterns of occurrence and abundance in

mobile species should be more highly related to

habitat area than configuration because mobile ani-

mals can integrate a fractured landscape such that it

behaves as functionally connected habitat. However,

this does not suggest that habitat area will be more

important than configuration in driving genetic differ-

entiation. Changing habitat area without changing

habitat configuration should have no effect on spatial

patterns of gene flow. Gene flow is driven by patterns

of mating and dispersal, which in homogenous land-

scapes are driven by isotropic isolation by distance

processes (Landguth and Cushman 2010). Non-iso-

tropic spatial genetic structure will only emerge when

landscape structure differentially affects gene flow

(Ezard and Travis 2006; Landguth et al. 2010). For

example, Short Bull et al. (2011) found that landscape

features such as forest cover, roads and elevation have

strong influences on population connectivity of Amer-

ican black bear (Ursus americanus), but only affect

genetic differentiation when their high heterogeneity

limits gene flow across the landscape. Therefore, it is

important to directly investigate the mechanisms that

drive population connectivity (Cushman 2006; Lin-

denmayer and Fischer 2007), and quantify the relative

influence of changes in habitat area and configuration

on genetic differentiation.

Simulation modeling provides explicit control over

pattern–process relationships (Epperson et al. 2010).

This enables rigorous attribution of the causes of

genetic differentiation, evaluation of factor complexes

that would be impossible to directly investigate in the

field (Balkenhol et al. 2009; Epperson et al. 2010;

Segelbacher et al. 2010). Specifically, simulation

provides a means to rigorously evaluate the relative

effects of habitat area and configuration on genetic

differentiation, which is only possible when habitat

area can be varied independently of configuration

(McGarigal and Cushman 2002; Fahrig 2003).

In this paper we use spatially explicit, individual-

based simulations of genetic exchange to evaluate the

relative effects of habitat area and fragmentation on

genetic differentiation in complex landscapes. Our

major goals were to quantify the relative importance of

habitat area and fragmentation on landscape genetic

patterns and evaluate a range of fragmentation metrics

in terms of their influence on genetic differentiation.

We expected that habitat area and fragmentation

would both affect the apparent strength of landscape
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genetic patterns, but that variation in habitat config-

uration would have larger effects than habitat area.

Methods

Factorial modeling

We designed a factorial modeling experiment to

explore how variation in habitat area, fragmentation

and relative resistance of habitat and non-habitat affect

the strength of landscape genetic relationships. We

used the neutral landscape model QRULE (Gardner

1999) to produce simulated binary landscape maps

(habitat vs. non-habitat) which varied in habitat area

and fragmentation (Fig. 1). All maps were 512 9 512

pixels. QRULE controls fragmentation through the H

parameter, which affects the aggregation of pixels into

homogeneous patches. We varied habitat area across

five levels (15%, 35%, 55%, 75%, 95%), and H across

five levels (0.2, 0.4, 0.6, 0.8, 1.0). An H parameter

value of 0 indicates zero fractal aggregation, while a

value of 1 indicates extreme aggregation. We varied

the ratio of resistance of non-habitat relative to habitat

across five levels (1.5, 2, 4, 8, 16) to investigate how

increasing resistance of the matrix affects the strength

and detectability of landscape genetics relationships in

interaction with habitat area and fragmentation.

Finally, we produced five replicates of this factorial,

producing a total of 625 landscapes for analysis.

Selection of landscape fragmentation metrics

We selected a suite of landscape metrics to measure

habitat fragmentation in the simulated maps based on

past work which assessed the strength and functional

shape of relationship between a large number of

landscape metrics and habitat proportion (P) and the H

level in QRULE landscapes (Neel et al. 2004). Also,

several landscape configuration metrics have previ-

ously been shown to be sensitive indicators of the

effects of landscape structure on spatial population

Fig. 1 We evaluated a

three-way factorial of

habitat area (P), habitat

fragmentation (H) and

contrast in landscape

resistance between habitat

and non-habitat. This figure

shows one replicate of the

full combination of P and H.

For each combination, we

evaluated five levels of

relative landscape resistance

(1.5, 2, 4, 8, 16), and

produced five replicates of

each combination of habitat

area and fragmentation

using different random

number seeds
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processes (e.g. patch cohesion, Schumaker 1996) and

gene flow (correlation length, Cushman et al. 2010;

Short Bull et al. 2011). Based on these considerations,

we chose patch density (PD), correlation length

(GYRATE_AM), the clumpy index of class aggrega-

tion (CLUMPY), patch cohesion (Cohesion), and

aggregation index (AI) (McGarigal et al. 2002).

Correlation length quantifies the extensiveness of

patches in spanning the landscape in terms of the

average distance an organism could travel in a random

direction and remain in habitat when dropped ran-

domly in a habitat patch. Patch density quantifies the

spatial density of disjunct habitat patches. The clumpy

index (McGarigal et al. 2002) measures class aggre-

gation independently of class area (Neel et al. 2004).

As such it is a useful metric to quantify the relative

importance of habitat area and fragmentation (Cush-

man et al. 2008). Patch cohesion and aggregation

index are metrics that quantify class aggregation. The

aggregation index is commonly used in fragmentation

studies, and patch cohesion was shown by Schumaker

(1996) to be a strong indicator of habitat fragmentation

effects on population connectivity. Percentage of the

landscape of habitat (PLAND) is the most universal

measure of landscape composition, and is recom-

mended in all landscape pattern analyses (Cushman

et al. 2008), and we included it to enable comparison

of relative magnitude of area versus configuration

effects. All metrics were calculated using FRAG-

STATS (McGarigal et al. 2002).

Landscape genetic simulation with CDPOP

We used CDPOP version 0.84 (Landguth and Cush-

man 2010) to simulate the processes of mating and

dispersal as functions of the spatial patterns of habitat

and non-habitat on these 625 simulated landscapes.

CDPOP is an individual-based, spatially explicit,

landscape genetic model that simulates birth, death,

mating and dispersal of individuals in complex

landscapes as probabilistic functions of movement

cost among them. CDPOP models genetic exchange

for a given resistance surface and n individuals as

functions of individual-based movement through

mating and dispersal, vital dynamics, and mutation.

The model represents landscape structure as a resis-

tance surface whose value represents the step-wise

cost of crossing each location. Mating and dispersal

are modeled as probabilistic functions of cumulative

cost across these resistance surfaces. It provides a

framework for simulating the spatial genetic resulting

from specified landscape resistance governing

movement.

In each of the 625 landscape maps, we randomly

placed 500 individuals in habitat pixels. We simulated

gene flow among these locations for 500 non-over-

lapping generations to ensure genetic equilibrium.

Each individual’s genetic data consisted of ten loci,

each initialized with 10 alleles randomly assigned

within each locus. We used an inverse square mating

and dispersal probability function, with maximum

dispersal cost-weighted distance of 7,680 m (the

diameter of the simulated landscapes) in ideal habitat

(i.e. a resistance value of one). The range of relative

resistance of non-habitat represents different dispersal

distances through non-habitat, (e.g. 5,130 m for r1.5;

3,840 m for r2; 1,920 m for r4; 960 m for r8, and

480 m for r16). Reproduction was sexual with non-

overlapping generations, and the number of offspring

was based on a Poisson distribution with a mean of

four. We ran ten replicate runs in CDPOP to assess

stochastic variability, producing 6,250 CDPOP

simulations.

Mantel tests

CDPOP output included matrices of pairwise genetic

distances between all 500 simulated individuals based

on the proportion of shared alleles at generation 500

(Bowcock et al. 1994). We calculated a matrix of

pairwise effective landscape distances between all

individuals using the COSTDISTANCE function in

ArcGIS (ESRI 1999–2008). To assess the relationship

between genetic and landscape distance matrices, we

used partial Mantel tests (Mantel 1967), implemented

in the ECODIST package in R (Goslee and Urban

2007). We calculated partial Mantel r (Smouse et al.

1986; removing the effect of geographical distance)

for all 6,250 simulated populations at generation 500

and assessed statistical significance based on 9,999

permutations.

Variance partitioning

We used variance partitioning to quantify the relative

effects of habitat amount versus habitat configuration

for each of the five landscape configuration met-

rics (Cushman and McGarigal 2002). Variance
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partitioning quantifies the independent and joint

effects of multiple explanatory variables (Borcard

et al. 1992). In our case we are partitioning the

variance in partial Mantel r values that is explained by

habitat amount alone, the configuration metric alone,

and that is jointly and simultaneously explained by

both habitat amount and the configuration metric. The

variance partitioning is accomplished by computing

simple and partial Pearson correlations between

partial Mantel r, habitat amount and each configura-

tion metric (Borcard et al. 1992). We also wished to

evaluate if the relative effect size of habitat amount

and configuration changed with different levels of

relative matrix resistance. Accordingly, we computed

variance partitioning for each of the five landscape

configuration metrics, at each of the five relative

matrix resistance values (r1.5, r2, r4, r8, r16).

Mantel r and partial Mantel r as functions

of habitat area and fragmentation

We used generalized linear models to predict simple

and partial Mantel r values as functions of habitat area,

fragmentation and relative landscape resistance (R

Development Core Team 2009). We screened vari-

ables for inter-correlation, given the sensitivity of

regression analysis to colinearity of predictor vari-

ables. Correlation length (GYRATE_AM), aggrega-

tion index (AI) and patch cohesion (COHESION)

were highly correlated with percentage of the land-

scape occupied by habitat (PLAND). We proposed a

suite of candidate models that excluded pairs of highly

inter-correlated variables.

We adopted an information theoretic approach

(Burnham and Anderson 2002). A priori, we identified

25 candidate models (Table 2). The candidate model

pool includes all variables individually, and all

combinations of variables that are not highly inter-

correlated (less than Pearson r 0.7). We used AIC to

rank models and used model averaging to produce

final models predicting partial Mantel r as a function

of habitat area, fragmentation and relative landscape

resistance. We estimated variable importance in three

ways. First, we calculated the AIC importance weight

by summing the AIC weights of all models including

each variable. Second, Smith et al. (2009) suggested

that standardized regression coefficients are among

the best measures of effects size in studies comparing

the relative effects of habitat area and configuration.

Additionally, we calculated the predicted change in

the dependent variable as each variable changed from

the 10th to the 90th percentile of the distribution of the

simulated landscapes, while holding all other inde-

pendent variables constant at their medians.

Results

Variance partitioning

We produced 25 partitionings of variance in partial

Mantel r value explained by habitat amount and each

of the configuration metrics, across the five levels of

relative matrix resistance (Table 1). At the lowest

level of relative matrix resistance (r1.5), neither

habitat amount nor configuration explained any var-

iance in partial Mantel r (Table 1; Fig. 2). The total

amount of variance explained by habitat amount and

each configuration metric increased with increasing

relative matrix resistance up to resistance r8, before

decreasing at resistance r16 (Table 1; Fig. 2). The

independent influence of patch cohesion was greater

than habitat amount at resistance levels r2, r4 and r8

(Fig. 2a). At resistance level r16 the independent

effects of habitat area were greater than those of patch

cohesion. A similar pattern was seen for aggregation

index (Fig. 2b).There was no shared explained vari-

ance between CLUMPY and PLAND at any level of

relative matrix resistance, and habitat amount always

explained a larger portion of variance in partial Mantel

r than CLUMPY (Fig. 2c).There was very little

independent influence of habitat amount after remov-

ing the effect of habitat correlation length across all

levels of relative matrix resistance (Fig. 2d). In

contrast, across all levels of matrix resistance, habitat

correlation length had substantial explanatory power

independent of habitat area (Fig. 2d).

Univariate regression

Habitat correlation length and patch cohesion were

tied as the most important predictors of partial Mantel

r based on the magnitude of standardized regression

coefficients (Table 2). Conversely, Clumpy was the

least important variable, and patch density the second

least important, based on this criteria. Based on change

in predicted Mantel r from the 10th to the 100th

percentile, patch cohesion had the largest effect size
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(0.208; Table 2), followed by aggregation index (AI),

and correlation length of habitat (GYRATE_AM).

The clumpy index of aggregation was the least

powerful predictor, with a decrease in equilibrium

partial Mantel r of 0.032 as CLUMPY changed from

the 10th to the 100th percentile. The percentage of

habitat in the landscape was the third most influential

variable based on standardized regression coefficients,

and fourth most influential based on effect size, with

the predicted equilibrium partial Mantel r decreasing

by 0.133 as habitat increased from 10 to 100% of the

landscape.

Multivariate regression

Three models had non-zero AIC weights (Table 3).

The final averaged model includes correlation length

(GYRATE_AM), clumpy, patch density and relative

resistance value (Table 4). Correlation length was the

most influential variable, based on all three measures

of variable importance (Table 4). Relative landscape

resistance of habitat compared with non-habitat was

the second most important variable. Based on the

magnitude of the standardized regression coefficient,

correlation length had a 42% larger effect size than

relative landscape resistance, while it had 19.8%

larger effects size when calculated based on change in

predicted Mantel r from 10th to 90th percentile

holding the other variables constant at their medians.

Patch density and clumpy had much weaker effects

than either correlation length or relative landscape

resistance. For example, based on standardized

regression coefficients, correlation length of habitat

had 8.3 times greater influence on equilibrium Mantel

r than patch density, and 16.8 times greater influence

than CLUMPY. The relative importance of these two

variables was similar based on the percentage change

in partial Mantel r from the 10th to the 90th percentile,

with correlation length predicted to have 3.13 times

and 4.76 times the influence of patch density and

CLUMPY, respectively.

Table 1 Variance partitioning results for separating the effects of habitat area from each of the configuration metrics, across the five

levels of relative matrix resistance (1.59, 29, 49, 89, 169)

r1.5 r2 r4 r8 r16

% total % exp % total % exp % total % exp % total % exp % total % exp

p 0.003 0.710 0.011 0.047 0.007 0.030 0.012 0.031 0.066 0.265

cohesion 0.001 0.290 0.070 0.317 0.057 0.254 0.143 0.386 0.023 0.092

P*cohesion 0.000 0.000 0.141 0.635 0.160 0.717 0.215 0.582 0.161 0.643

p 0.002 0.941 0.160 0.850 0.176 0.633 0.242 0.841 0.228 0.991

clumpy 0.000 0.036 0.028 0.150 0.102 0.367 0.046 0.159 0.002 0.009

p*clumpy 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

p 0.005 0.589 0.001 0.003 0.009 0.038 0.005 0.015 0.001 0.003

gyrate_am 0.004 0.411 0.035 0.189 0.074 0.308 0.078 0.257 0.032 0.123

p*gyrate_am 0.000 0.000 0.151 0.808 0.157 0.654 0.222 0.728 0.226 0.874

p 0.002 0.930 0.107 0.629 0.118 0.632 0.162 0.610 0.195 0.856

pd 0.000 0.011 0.019 0.111 0.021 0.113 0.040 0.148 0.001 0.004

p*pd 0.000 0.058 0.044 0.260 0.048 0.255 0.064 0.242 0.032 0.139

p 0.002 0.913 0.049 0.226 0.057 0.243 0.080 0.240 0.146 0.624

ai 0.000 0.087 0.064 0.297 0.066 0.285 0.107 0.321 0.006 0.028

p*ai 0.000 0.000 0.103 0.477 0.110 0.472 0.147 0.439 0.081 0.348

% total is the proportion of variance in partial Mantel r values that is explainable by that variance component. % exp is the proportion

of the variance in partial Mantel r values explained by all three components that is explained by that variance component

p amount of variance in partial Mantel r values independently explained by habitat amount alone, ‘‘metric’’ amount of variance in

partial Mantel r values independently explained by that configuration metric alone, p*‘‘metric’’ amount of variance in partial Mantel

r values jointly and simultaneously explained by both habitat amount and that metric, r1.5 matrix 1.59 as resistant as habitat, r2
matrix 29 as resistant as habitat, r4 matrix 49 as resistant as habitat, r8 matrix 89 as resistant as habitat, r16 matrix 169 as resistant

as habitat
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Discussion

There are theoretical reasons to expect habitat config-

uration to be more important than habitat area in

driving genetic differentiation. Within a homogeneous

habitat patch gene flow will be governed by isotropic

isolation by distance processes (Landguth et al. 2010).

Under isotropic isolation by distance genetic differ-

entiation between individuals will increase with

distance. The rate at which genetic distance increases

and the variance in genetic distance among individuals

will be a function of the dispersal ability of the species.

The range and functional shape of the dispersal

function will drive the range of significant genetic

autocorrelation and the rate at which genetic differ-

entiation increases with distance (Landguth and

Cushman 2010). However, simply changing the extent

of the patch will not change spatial genetic structure.

Increasing the size of a homogeneous habitat patch in

which genetic differentiation is governed by isolation

by distance will have little effect on genetic differen-

tiation, because it does not change the rate of genetic

Fig. 2 Change in amount of variance in each of the three

variance partitioning components resulting from partitioning the

variance in partial Mantel r explained by habitat area (p), each

individual configuration metric (a patch cohesion [cohesion];

b correlation length [gyrate_am]; c clumpy index of aggregation

[clumpy]; d aggregation index [ai]), across the five levels of

relative matrix resistance (matrix 1.59 as resistant as habitat

[r1.5]; matrix 29 as resistant as habitat [r2]; matrix 49 as

resistant as habitat [r4]; matrix 89 as resistant as habitat [r8];

matrix 169 as resistant as habitat [r16]. P amount of variance in

partial Mantel r values independently explained by habitat

amount alone, ‘‘metric’’ amount of variance in partial Mantel

r values independently explained by that configuration metric

alone, p*‘‘metric’’ amount of variance in partial Mantel r values

jointly and simultaneously explained by both habitat amount

and that metric

Table 2 Univariate effect sizes for all independent variables

PLAND GYRATE_AM PD CLUMPY COHESION AI

Standardized Coefficient -0.047 -0.052 0.027 -0.01 -0.052 -0.042

Change in predicted equilibrium Mantel r -0.133 -0.138 -0.082 -0.032 -0.208 -0.149

Three measures of effect size (AIC variable importance, standardized regression coefficient, and change in predicted equilibrium

Mantel r when the predictor variable changes from the 10th to the 90th percentile of simulated landscapes) for univariate regression

models predicting equilibrium Mantel r as functions of each of the six independent variables alone
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differentiation with distance or the spatial range of

significant autocorrelation. In contrast, the pattern of

habitat in a landscape will affect the distribution of the

population and the degree of connectivity across it,

resulting in differential patterns of gene flow (Ezard

and Travis 2006). Changes in the configuration of the

landscape will directly affect genetic differentiation

because it directly affects the spatial pattern of mating

and dispersal, which drives genetic differentiation.

Thus, strength of spatial genetic structure in a

population should be strongly influenced by the

complexity of the landscape mosaic and the degree

of contrast in resistance to gene flow of the different

elements making up that mosaic. Thus we predicted

Table 3 AIC, delta AIC

and AIC weights for the 25

candidate models predicting

partial Mantel r as functions

of relative resistance of

habitat (R) and non-habitat,

habitat area (pland), the

clumpy index (clumpy),

patch density (PD),

correlation length of habitat

(GYRATE_AM), patch

cohesion (cohesion) and

aggregation index (AI)

Model AIC delta AIC w

GYRATE_AM ? clumpy ? PD ? R -9304.8 0 0.52

GYRATE_AM ? PD ? R -9304 0.8 0.35

GYRATE_AM ? clumpy ? R -9302.1 2.7 0.13

cohesion ? clumpy ? PD ? R -9289.3 15.5 0.00

cohesion ? clumpy ? R -9286.3 18.5 0.00

GYRATE_AM ? R -9282 22.8 0.00

cohesion ? R -9266.7 38.1 0.00

AI ? clumpy ? PD ? R -9266.6 38.2 0.00

cohesion ? PD ? R -9266.4 38.4 0.00

AI ? PD ? R -9170.2 134.6 0.00

pland ? clumpy ? R -9145.6 159.2 0.00

pland ? PD ? R -9145.6 159.2 0.00

pland ? R -9145.6 159.2 0.00

pland ? clumpy ? pd ? R -9145.5 159.3 0.00

AI ? clumpy ? R -9088 216.8 0.00

AI ? R -8872.9 431.9 0.00

GYRATE_AM -8740 564.8 0.00

cohesion -8726 578.8 0.00

pland -8548.5 756.3 0.00

AI ? R -8440.2 864.6 0.00

AI -8364 940.8 0.00

clumpy ? R -8178.9 1125.9 0.00

R -8140.2 1164.6 0.00

PD -7964.2 1340.6 0.00

clumpy -7721.7 1583.1 0.00

Table 4 Model averaged parameter estimates for prediction of partial Mantel r values as functions of landscape fragmentation, and

two measures of variable importance

Intercept Correlation length Patch density Clumpy R

Coefficient 0.048522 -0.04925 -0.00276 0.005274 0.034698

Standard error 0.001453 0.001617 0.001288 0.001745 0.001453

AIC variable importance 1.00 0.87 0.65 1.00

Change in Mantel r from 10th to 100th percentile -0.10856 0.018834 0.026237 0.0906

The variables included in the model are: correlation length of habitat (GYRATE_AM), patch density (PD), clumpy index

(CLUMPY), and relative resistance of matrix compared to habitat (R). Change in estimated Mantel r given change from 10th to 90th

percentile of each variable, holding the other variables constant at their medians. AIC variable importance is the sum of AIC weights

of models including that variable
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that there would be strong relationships between

habitat configuration, landscape resistance and genetic

differentiation, and weaker relationships between

habitat area and genetic differentiation.

Separating the effects of habitat loss and fragmen-

tation is difficult as habitat amount and configuration

are inextricably linked (Fahrig 2003; Smith et al.

2009). Population responses to habitat loss and

fragmentation are related to the percolation properties

of the landscape (With and King 1997, 1999). The

potential range of landscape configuration becomes

truncated at both very high and very low habitat areas

(Gardner et al. 1989; Neel et al. 2004). For example, it

is impossible to have high habitat fragmentation in a

landscape that is covered in a very high proportion of

habitat, given that there are few ways to break up

patches that cover nearly the entire landscape (Gard-

ner et al. 1987; With and King 1997). Neutral

landscape models (Gardner et al. 1989) coupled with

individual-based genetic simulation provides a unique

means to control the pattern–process relationships and

isolate the relative effects of habitat area versus habitat

configuration.

By simulating across a broad factorial of habitat

composition and configuration, we were able to

evaluate the relative importance and interaction of

habitat area, habitat fragmentation and contrast in

landscape resistance on effects size and power to

detect relationships. The neutral models we employed

(QURLE, Gardner 1999) enable control of two

attributes of landscape structure, including habitat

area and the fractal aggregation parameter H. How-

ever, many aspects of the configuration of the

landscapes produced by QRULE are not directly a

function of H and are not independent of P. In our

analysis we found that levels of H poorly explained

genetic differentiation, while several configuration

metrics, such as correlation length, aggregation index

and patch cohesion, had strong relationships with

genetic differentiation. The variance partitioning also

showed that these landscape configuration metrics

were substantially correlated with habitat area. The

relatively high confounding of habitat area and

landscape configuration metrics in terms of their

ability to explain genetic differentiation makes it

impossible to formally separate relative influence of

habitat area and fragmentation on genetic differenti-

ation. However, the larger marginal and independent

explanatory ability of single configuration metrics

compared to habitat area, and the dominance of the

multivariate model by configuration metrics suggests

that habitat configuration is more important than

habitat area in driving genetic differentiation.

Our results contrast somewhat with several other

studies that evaluated the effects of landscape struc-

ture on genetic differentiation. Ezard and Travis

(2006) used neutral landscape models and genetic

simulation to evaluate how habitat loss and fragmen-

tation affected time to fixation. Our analysis differs

from that f Ezard and Travis (2006) in several

important ways. Our goal was not to quantify global

time to fixation, but rather the strength of correlation

between genetic distances and cost distances among

individuals distributed across complex landscapes as

functions of habitat area, fragmentation and relative

landscape resistance. This enabled us to evaluate the

effect of landscape structure on the strength and

detectability of genetic heterogeneity in the popula-

tion. Bruggeman et al. (2010) used simulation mod-

eling to quantify both the influence of patch size and

patch isolation on abundance, effective population

size and Fst in red-cockaded woodpecker. Their

results suggested that population genetic structure is

more strongly affected by habitat fragmentation than

habitat patch size. Our results confirmed that habitat

configuration is more important than composition in

predicting genetic differentiation.

We extended this by evaluating the predictive

ability of six widely used landscape metrics. Putting

our analysis directly in terms of well understood

landscape metrics helps link landscape genetics

directly with landscape pattern analysis and assess-

ment of the relative effects of habitat loss and

fragmentation. Showing that patch cohesion, correla-

tion length and aggregation index are strong single

predictors of genetic differentiation, and that correla-

tion length, patch density and clumpy are the most

parsimonious set of predictor variables, provides

valuable guidance to scientists in selecting landscape

metrics for use in landscape genetic analyses.

The clumpy index of habitat aggregation was

formulated to explicitly quantify class aggregation

independently from habitat amount (McGarigal et al.

2002). This theoretically would make it an ideal metric

to evaluate the independent relationship between

habitat configuration and genetic differentiation. It is

interesting that the clumpy index of aggregation

(CLUMPY) was the least powerful predictor, given
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it was specifically formulated to be an unbiased

measure of habitat aggregation across all amounts of

habitat area (McGarigal et al. 2002; Neel et al. 2004).

This suggests that the attributes of landscape config-

uration this metric quantifies, while independent of

habitat area, are relatively unimportant in predicting

gene flow in complex landscapes. In contrast patch

cohesion, correlation length and aggregation index

had large independent explanatory abilities after

removing the effect of habitat area. Importantly, the

observation that the components of variance explained

by these metrics that are independent of habitat area

are much larger than the components of variance

explained by habitat area independent of these metrics

shows that habitat the attributes of habitat configura-

tion measured by correlation length, patch cohesion

and aggregation index have substantially stronger

relationships with genetic differentiation than does

habitat area.

Schumaker (1996) found that patch cohesion was

an effective landscape configuration metrics in

predicting population connectivity in simulation of

spotted owl (Strix occidentalis) population dynam-

ics in fragmented landscapes. Similarly, Short Bull

et al. (2011) showed that the correlation length of

habitat in a landscape is a strong predictor of the

strength of genetic differentiation in American

black bear (U. americanus). Our results confirm

that patch cohesion and correlation length are

among the best single metrics for studies that aim

to quantify functional habitat configuration relative

to movement and gene flow. Our multivariate

model suggests that correlation length in combina-

tion with patch density and clumpy provide the

most parsimonious set of landscape metrics for

predicting genetic differentiation in complex

landscapes.

Habitat configuration results in genetic differenti-

ation by creating spatially heterogeneous patterns of

local gene flow (Landguth et al. 2010). Heterogeneous

patterns of gene flow, in turn, are driven by differential

connectivity across the landscape as functions of

landscape heterogeneity and the relative cost of

movement through habitat and matrix. Thus, increas-

ing landscape complexity, in terms of correlation

length, patch cohesion, or aggregation index, is

strongly related to the strength of correlation between

genetic differentiation and cost distance between pairs

of individuals in a population.

Scope and limitations

The results of this study should be interpreted within

the scope of inference enabled by the analysis. First,

using neutral landscape models to produce study

landscapes across combined gradients of habitat

extent and fractal aggregation is critical to formally

separate the effects of habitat area and fragmentation

(Fahrig 2003; With and King 1999). However, the

neutral model controlled only these two properties.

Importantly, much of the variation in landscape

configuration in the simulated landscapes varied

independently of H and was in part dependent on P.

Thus, even using netural landscape models, such as

QRULE, it is impossible to fully separate the effects of

habitat area and configuration. As a result, our analysis

shows a high degree of confounding between habitat

area and configuration. Most of the configuration

metrics we tested have larger marginal and indepen-

dent explanatory power than does habitat area (con-

sistent with our expectation). However, most

explained variance is shared between habitat area

and configuration, meaning that it is not possible to

formally ascertain the true relative effect. In cases of

such confounding the magnitudes of marginal and

independent explanatory power are typically used,

which in our case suggests that configuration is has

more influence on genetic differentiation than does

habitat area.

An additional limitation of this study is that we

chose a fixed population size across all simulations.

The reason for this was to control for the effects of

differential effective population size on the rate of

genetic drift. By holding population size constant we

eliminated the effects of differential rates of genetic

drift on the strength of genetic differentiation. How-

ever, this also means that our study is unable to fully

explore the interactions of variable population size and

density with habitat area and configuration in influ-

encing genetic differentiation. This is a topic for future

research. However, given our goal of quantifying the

relative effects of habitat area and configuration on

genetic differentiation, we feel it was appropriate to

control for the effects of variable population size.

A final limitation of our approach is how we

quantify genetic differentiation. Our study, like others

before it (Cushman and Landguth 2010; Landguth and

Cushman 2010; Landguth et al. 2010), used the

strength of the partial Mantel correlation between
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genetic distance and cost distance, partialling out

geographic distance, as our measure of the strength of

genetic differentiation. The strength of the partial

Mantel correlation is a good indicator of how closely

genetic differentiation varies as a function of cost

distance. Observing increased correlation between

genetic distance and cost distance in landscapes with

high fragmentation compared to those with low

fragmentation is an indication that genetic differenti-

ation is more strongly related to landscape structure

when landscapes are fragmented than when they are

not. However, the strength of the partial Mantel

correlation does not describe the degree of genetic

differentiation as a function of cost distance or the

extent of genetic correlation. Wasserman et al.

(2010) found that genetic neighborhood size is

reduced in fragmented landscapes resulting in a

shortening of the range of significant genetic auto-

correlation and a steepening of the rate of genetic

change as a function of cost distance. It would be

interesting to compare our results which show that

the strength of correlation between genetic distance

and cost distance increases with habitat fragmenta-

tion, with analysis of how the rate of genetic

differentiation and the range of genetic autocorrela-

tion varies with habitat fragmentation. This is an

interesting topic for future research.
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