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Abstract Spectral analysis allows the characteriza-
tion of temporal (1D) or spatial (2D) patterns in terms
of their scale (frequency) distribution. Cross-spectral
analysis can also be used to conduct independent
correlation analyses at different scales between two
variables, even in the presence of a complex super-
position of structures, such as structures that are
shifted, have different scales or have different levels
of anisotropy. These well-grounded approaches have
rarely been applied to two-dimensional ecological
datasets. In this contribution, we illustrate the
potential of the method. We start by providing a
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basic methodological introduction, and we clarify
some technical points concerning the computation of
two-dimensional coherency and phase spectra and
associated confidence intervals. First, we illustrate the
method using a simple theoretical model. Next, we
present a real world application: the case of patterned
(gapped) vegetation in SW Niger. In this example, we
investigate the functional relationships between
topography and the spatial distribution of two shrub
species, Combretum micranthum G. Don. and Guiera
senegalensis J.F. Gmel. We show that both the global
vegetation pattern and the distribution of C. micrant-
hum are independent at all analyzable scales (i.e.,
from 10 to 50 m) from possible relief-induced
determinisms. Additionally, the two dominant shrub
species form distinct patches, thus suggesting sepa-
rate niches.
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Introduction

When investigating correlations between spatial
variables in ecology, one is generally confronted
with two well-known issues: (i) the nature of the
relationship between variables varies with scale
(Wiens 1989; Levin 1992; Schneider 2001) and
(ii) each variable is more or less spatially autocor-
related (Legendre 1993). If evidencing correlation
remains a key step in the identification of processes
from patterns (MclIntire and Fajardo 2009), a broad
set of ecological examples has been presented in the
literature that show how the scale of investigation
may influence the nature of inter-variable depen-
dence. In landscape ecology, it is often found that
processes influencing the distribution or abundance
of organisms within patches are different than those
acting between patches (Forman and Godron 1986).
However, defining patch boundaries may be diffi-
cult. For instance, the biological variable of interest
may vary continuously through space as is often the
case in arid and semi-arid areas (Puech 1994),
instead of showing sharp ecotones. Furthermore,
analyzing the relationship between two variables
across a set of patches is not straightforward
because values obtained in distinct patches cannot
a priori be assumed to be independent due to the
overall spatial configuration of the patches. It is then
necessary to quantify the correlation structure of the
variables of interest in a spatially explicit manner,
for instance via auto- (cross-) correlation methods or
related geostatistical functions (Cressie 1993;
Wackernagel 1995).

Analyses of spatial correlations using standard
tools of spatial ecology are in some instances very
difficult, as is the case when there are spatial shifts
(lags) between variables, or when structures at
different scales or with different levels of anisotropy
are superposed. Additionally, a well-organized spatial
structure of a biological variable might not reflect the
blueprint of an external driver. For instance, this can

@ Springer

occur when self-organized patterns of biomass or
organisms emerge from local, inter-individual inter-
actions in fairly homogeneous environmental condi-
tions. These self-organized structures are known to
take very peculiar forms at a much larger scale than
the size of the constitutive individuals, such as a
spatially periodic distribution of the vegetation bio-
mass or a power law distribution of patch sizes
(Lefever and Lejeune 1997; Rohani et al. 1997;
Pascual and Guichard 2005; Solé and Bascompte
2006; Rietkerk and van de Koppel 2008). To find
evidence of self-organization in nature, it is necessary
to establish the independence of the biological
structure from potential physical drivers across a
relevant range of scales. In their seminal paper, Platt
and Denman (1975) demonstrated the potential of
cross-spectral and spectral analysis analysis in the
face of the very likely existence of endogenous
structuring processes in ecosystems. Because of data
and computational limitations in the 1970s, they
focused on one-dimensional problems. Yet the need
for bi-dimensional tools has increased with the
rapidly increasing availability of remote sensing
products and other georeferenced information
sources.

Spectral estimates of a signal are closely related
to the autocovariance function (Ripley 1981; Diggle
1989; Wackernagel 1995), as the periodogram is the
Fourier transform of the latter. Fourier (cross-)
spectra, however, possess specific properties and are
widely recognized as a basic tool in many fields of
science, even if mostly in one-dimensional contexts.
Bi-dimensional applications are ubiquitous in the
pattern recognition sciences (Chen et al. 1999; Tang
and Stewart 2000) and are used for industrial
quality control, medical image analysis, character
recognition in document processing and for data
compression. Rayner (1971) presented interesting
bi-dimensional applications in geography. However,
applications to spatial ecology remain very limited,
despite the efficiency of spectral analysis for
characterizing and comparing patterns from either
gridded or mapped-point data (Ford 1976; Renshaw
and Ford 1983, 1984; Mugglestone and Renshaw
1998; Couteron 2002; Renshaw 2002; Couteron
et al. 2005, 2006; Barbier et al. 2006; Proisy et al.
2007).

The principle of spectral analysis is to partition the
variance (also termed power by reference to signal
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processing) of a signal into a finite set of harmonic
frequencies. In other words, the structure present in
the series of observations is re-expressed as the
amount of variability accounted for by different
scales (or frequencies, i.e. the number of repetitions)
over the sampling window. The investigated signal
may be uni- or multi-dimensional, continuous or
discrete. In the latter case, contiguous observations
(grids) can be analyzed, as well as marked point maps
(Renshaw 2002). A substantial amount of non-
stationarity in the data can also be accounted for
(Priestley 1981; Fuentes 2002) inter alia using
windowed (local) approaches related to the short-
term Fourier transform. Pairs of signals can be
compared through cross-spectral analysis to identify
frequencies dominant in both signals, as well as
possible shifts (phase lags/leads) among them. How-
ever, the use of cross-spectral analyses has remained
very limited in ecology (but see Couteron 2001), and
its potential for characterizing or disentangling pat-
terns of spatial dependence at multiple scales has
remained widely ignored.

Our aim here is to illustrate this potential when
looking for scale-specific co-variation between pairs
of ecological variables. Although the method also
applies to the comparison of point patterns (Muggle-
stone and Renshaw 1996a, Couteron 2001), we will
use gridded (two-dimensional) datasets. We use
simulated examples and a field case from our
research on vegetation patterning in SW Niger. In
the latter case, regular vegetation patterns made of
gaps in a shrubland matrix are thought to have
emerged at the landscape scale from plant-plant
interactions in the absence of notable preexisting
substratum heterogeneities (Lefever and Lejeune
1997; HilleRisLambers et al. 2001; von Hardenberg
et al. 2001; Barbier et al. 2008). However, relation-
ships between species and the global pattern, as well
as possible external causalities, need to be investi-
gated. In particular, it has been hypothesized in the
theoretical literature that the gapped patterns may be
due to the existence of a micro-topography that
induces water run-off from bare areas to thickets
(Klausmeier 1999). We will show how these issues,
which amount to comparing pairs of mapped vari-
ables, can efficiently be addressed using the cross-
spectral methodology.

Methods
Analysis of spatial co-variations

The fundamental principle of the Fourier transform is
to decompose a signal in terms of frequencies (i.e.,
the inverse of the wavelength or scale of the pattern)
using a series of convolutions with sine and cosine
functions of varying harmonic frequencies. While all
the original information is preserved, this transfor-
mation from geographic space to frequency space is a
very efficient way to characterize and compare the
structure of periodic and even non-periodic signals.
Consider two discrete signals made of contiguous
sampled data forming rectangular grids of size (m,n),
Viyand Wj; (i = 1,...,m,j = 1,...,n), centered by their
means. We wish to compute their Fourier transform
for a discrete set of integer (harmonic) frequencies,
p=12 .., m2and g =1, 2, ..., n/2, taken along
the two Cartesian axes. We first compute the Fourier
coefficients, a(p,q) and b(p,q), for each combination
of the frequencies:

ay(p,q) = (nm)™" zm: Z Vi cos[2n(pi/m + qj/n)]

and

m

by(p,q) = (nm)™" Z " Vi;sin2n(pi/m + gj/n)].

l

We do the same calculations for the other grid to
obtain homologous coefficients aw(p,q) and by(p,q).
Note that in practice, the Fourier coefficients can be
obtained using the efficient FFT (Fast Fourier Trans-
form) algorithm, available in many programming
environments (e.g., C, R, Matlab and IDL). The value
of the discrete Fourier transform of the signal at
frequencies (p,q) is simply given by the complex sum
of the coefficients:

Fv(p,q) = av(p,q) + iby(p,q) and
Fw(p,q) = aw(p,q) + ibw(p, q)

where i is the imaginary number. The highest
frequency, (p = n/2, g = m/2), that can be discrim-
inated along each Cartesian direction is called the
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Nyquist frequency, and it is conditioned by the
discrete sampling rate of the signal. In other words,
details smaller than two sampling cells cannot be
discriminated.

The periodogram (or sample spectrum) is given by
the squared amplitude of the complex Fourier trans-
form, that is:

Iy(p.q) = (nm)~'(ay(p,q)* + bv(p,q)*) and
Iw(p,q) = (nm) ™" (aw(p,q)” + bw(p,q)°)

Periodogram values express the apportioning of
the signal variance (or power), ¢?, into integer
frequency bins, (p, ¢), which implies that:

) S Y K =

One problem in spectral analysis is controlling for
the variance of the periodogram, I(p,q), which is
necessary to obtain accurate statistical estimates of
the ‘true’ value from a sample of finite size. Indeed,
the variance of each entry in a periodogram does not
tend to zero as n increases (Diggle 1989). Whatever
the length of the signal sampled, I(p,q) is indeed
computed from a unique observation, i.e., the portion
of variance expressed by frequencies (p,q) in a given
signal. However, the periodogram is a discrete
approximation of a theoretically continuous function,
i.e., the variance spectrum, so that the variance can be
controlled by smoothing the periodogram over con-
tiguous frequencies (Jenkins and Watts 1968; Bloom-
field 1976; Diggle 1989). In all analyses performed
here, we applied a moving average of order o = 1
(i.e., a square window of sides 20 + 1 = 3) to the
bi-dimensional periodogram and cross-periodogram
(Fig. 1).

Fourier-based analogues of cross-covariance func-
tions can also be computed on the basis of the cross-
periodogram, Iyy:

Iyw(p, q) =(nm)~"(av(p, q)aw (p. q)
+bv(p,9)bw(p,q))
— i(nm) ™! (bv (p, q)aw (p, q)
+av(p,q)bw(p,q)).

Contrary to the periodogram, the cross-periodo-
gram is complex, with a real part c,,(p,q) and an

imaginary part d,,.(p,q),
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Fig. 1 Methodological flowchart

Iyw(p,q) = cyw(p,q) + idvw (p,q)

or, equivalently, an amplitude:

ovw(p, q) = \/cvw(p, q)*+dvw(p, q)*, called the
cross-amplitude spectrum, and a phase,

CDVW(pv q) = tan”" [dVW( ) q)/CVW(p7 q)]’ called the
phase spectrum.

The terms oyw(p,q) and Pyw(p,q) express the
covariance and the phase shift, respectively, between
structures of identical frequencies existing in the two
signals. For interpretation, it is convenient to com-
pute the coherency spectrum:

ﬁVW(p7('I) = OCVW(p7q)/\/ IV(.p7CI)IW(qu)
with Byw (p,q) € [0, 1],

which is the normalization of oyw(p,q). The coher-
ency spectrum expresses the correlation between the
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frequency components of the two mapped variables,
and it can be used to characterize how the correlation
between the two changes with scale and orientation.
Coherency values are interpreted in a similar way to
the classical Pearson’s correlation coefficient but in
absolute values, where the sign of the correlation is
expressed by the phase spectrum. When the coher-
ency is high, the phase spectrum provides additional
information for investigating spatially shifted inter-
map dependence. A positive linear relationship
corresponds to a null phase shift and a negative
linear relationship to a phase shift of =, but all phase
shifts between —n and 7 are also possible.

Polar representation and simplification

The different spectra discussed above may be repre-
sented as square matrices in which frequencies along
the two Cartesian directions (p, q) form the rows and
columns, with the zero frequency usually appearing
in the middle (Fig. 1). Indeed, frequencies can take
negative values, where the sign indicates the direction
of travel of the wave. Contrary to the phase spectrum,
the periodogram and coherency spectrum are sym-
metric about the origin, as they only contain infor-
mation on the amplitude of the waves. Interpretability
of the spectra can be enhanced by using a polar
representation of the frequency space, using the
wavenumber:

r = /p2+q2

and orientation,

0 = tan™! (B)
q
as a basis.

In other words, each cell of the matrix contains the
spectral or cross-spectral information related to a
given scale (i.e., frequency) and direction. The
Fourier transform is an exhaustive representation of
the original signal, where the original signal can be
reconstructed by the inverse transform. The spectral
and cross-spectral functions, which are simplified
versions, are still very rich in information, and
therefore of somewhat limited interpretability. It is
often desirable to further simplify this information to
focus on the particular feature of interest. For
instance, if one is only interested in the frequency

information (i.e., only the scale at which a process
occurs), the spectra can be simplified by averaging
values within frequency bins r; over all orientations to
obtain an azimuthally averaged version, denoted
r-spectrum (Mugglestone and Renshaw 1998). This
simplification is justified if the pattern of interest is
fairly isotropous, or more generally, if one does not
wish to investigate the variation in pattern properties
for different orientations. The computation of the
r-spectrum requires frequency units (wavenumbers)
to be identical in both Cartesian directions, i.e., the
signal must be sampled using a square window. If a
signal sampled in a rectangular window is to be
analyzed, a solution is to add rows or columns of
average values (or zeros for the centered signal) at the
edges or the grid’s narrowest dimension, prior to
performing the Fourier transform (Fig. 1). This
operation is referred to as padding. For the coherency
spectrum, it is not advisable to compute the
r-spectrum directly from the bi-dimensional coher-
ency spectrum because ratios should not be averaged
(M. Mugglestone, personal communication). A better
procedure is, therefore, to divide the r-spectrum of
the cross-amplitude spectrum, ayw(r), by the
r-spectra of the two smoothed periodograms (i.e.,
I(r) and IyAr)) (Fig. 1):

Pow(r) = oww (r)/ /v (r)lw (r).

Regarding the phase spectrum, all frequency/
orientation bins are attributed a phase value, which
can be confusing if there is low coherency between
the structures. The resulting diagram can be very
complex, as the values for adjacent positions in the
spectrum then take random values. Other difficulties
lie in the circular nature of phase data (for a given
entry), for which shifts of —n and n are equivalent.
Also, phase information is not symmetric about the
origin of the 2D spectrum. For example, if wave A
lags wave B by 7/3 in one direction, it leads it by 2n/
3 in the opposite direction. These properties neces-
sitate a slightly more complex simplification proce-
dure than for the coherency spectrum. It is indeed
impossible to simply average across directions to
produce the phase analogue of the r-spectrum. First of
all, as phase information is only meaningful for
frequencies at which patterns are coherent, we only
consider phase data for specific frequency ranges that
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correspond to peaks in the coherency r-spectrum.
Within these ranges, the phase values are to be
separately averaged within orientation bins (to
account for the symmetry issue). To account for the
circularity of the phase data, circular averaging
(Fisher 1993) is required. We further weight the
phase values within each frequency/orientation bin by
the corresponding value of the coherency spectrum,
following a weighted circular averaging method
(Fig. 1):

Chin = Z f;cos ®; and Sy, = Z p; sin @;,

iebin iebin
where the i’s belong to a bin that is a subset (r, 0) of
the frequency space. The weighted mean phase in the
bin is then given by:

= S in
@y, = tan"! <L> .
Cbin

In the above procedure, the phase entries within
the bin are equivalent to vectors of angle @; and
module f;. The mean phase in the bin is then the
angle of the sum of vectors. Therefore, the resulting
simplified phase spectrum provides information
regarding the phase shift between the two maps in
each direction for a specific scale range over which
the patterns are coherent. The result is a plot for
which phase information is given only for the
frequencies and orientations in which the two maps
are highly coherent.

Information regarding the computation of confi-
dence intervals for cross-spectral estimates can be
found in Appendix.

Fig. 2 Building multiscale simulated structures. a, e Colored
red noise obtained using fractal Brownian motion (fBm);
o > 3. b, f Patterns produced using three periodic components
with a frequency of 6 cycles/hm (i.e., 1 hm = 100 m, the
arbitrary length of the simulated windows), and oriented at 60°
angles from each other. In (b), the three components are in
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Simulated examples

We use simple simulated maps to illustrate the
potential of the cross-spectral approach for interpret-
ing two-dimensional gridded data. Two different
rectangular images (50 x 100 pixels), to which we
shall refer as examples 1 and 2, were created by
superimposing independent components featuring
distinct spatial structures (Fig. 2). To facilitate com-
parison with real-world images, we used an arbitrary
scaling convention of 1 m/pixel.

Two fractal structures were first produced (frac-
tional Brownian motion, Hurst exponent = 0.5, see
Appendix of Keitt 2000) to represent realistic
‘neutral’ landscapes (Fig. 2a,e), in which the ampli-
tude of heterogeneities depends on their scale
(where the log amplitude is linearly proportional
to the log frequency). A second component was then
superimposed for each example: a combination of
three sine functions oriented at 60° angles from each
other with a spatial frequency of 6 cycles/hm (i.e., 6
periods repeated along the image length of 100 m,
or a wavelength of 16.7 m). In example 1, all sine
components had a phase of zero, and the resulting
hexagonal pattern comprised white islands in a
black matrix (hexagons 0, Fig. 2b). In example 2, a
phase shift of = was added to each sine function,
which produced black islands (hexagons =, Fig. 2f).
A third component was then added to each example
in the form of either sine (Fig. 2c) or cosine
(Fig. 2g) functions that were oriented at 45° (trig-
onometric convention) with a frequency of 15
cycles/hm. In the combined structures (Fig. 2d,h),

phase, producing a hexagonal lattice of white gaps. In (f), the
three components are shifted by n. The hexagonal lattice
features black islands, which is the reverse of pattern (b);
g = 1.2. ¢, g Sine (c) and cosine (g) functions oriented at 45°;
o = 0.7. d, h Sum of the three components (red noise 4 hexa-
gons + bands). Signal to noise ratio equals ca. 1/3
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the periodic components (hexagons and bands) were
quite concealed by the fractal noise, as the signal-
to-noise ratio of each periodic pattern of interest
was 1/3.

Field study

As a study case, we applied the cross-spectral
approach to vegetation and topography data collected
in typical gapped vegetation in SW Niger (UTM 31 N
1368540 Northing, 435140 Easting) that was located
on an iron-capped plateau included in the “W’ regional
park (MAB-UNESCO Biosphere Reserve). The veg-
etation pattern was clearly dominated by a periodic
structure with a spatial frequency of 2 cycles/hm, i.e., a
wavelength of 50 m, a patterning scale characterizing
periodic vegetations over an area of at least 3000 km?>
near the site (Barbier et al. 2006). Dominant species
were tall shrubs mainly of the species Combretum
micranthum G. Don. Shallow (30-50 cm) sandy-clay
soils with high gravel content overlaid a moderately
hardened iron pan (Barbier et al. 2008). Both vegeta-
tion and substratum properties were typical of the
spatially regular vegetation patterns found on lateritic
plateaus in Southwestern Niger.

14
Qo
[0
1S
20 40 60 80 100
meters
(o]
10}
o L
E 20
g 30t
40t
50}
20 40 60 80 100
meters

Fig. 3 Vegetation and topographical features in the study area.
a Vertical low altitude aerial picture (bare soil appears in white
and dense vegetation in dark gray). b Mapped biovolume
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One representative area (120 m x 70 m) was
delimited (Fig. 3a), which comprised at least one
wavelength (50 m) of the gapped pattern in all
directions. To avoid edge effects (in particular for the
TMI, see below), only a subset (105 m x 55 m) of
this area was used in the spectral analyses. The plot
was first subdivided into a 10 m grid, where the
nodes of the grid were marked in the field using
painted metallic stakes. Distances and vertical and
horizontal angles between adjacent nodes were
surveyed using a total station, or tacheometer,
consisting of an optical theodolite (Metland
MTXO™) to which was adapted a laser telemeter
(Leica Disto™). Global 3D Cartesian coordinates
were estimated through nonparametric least squares
adjustment (Anderson and Mikhail 1998). According
to the residual errors after adjustment, the horizontal
angles, vertical angles, and distances were assessed
with a standard error of 0.16 grad, 0.064 grad and
14 mm, respectively. The precision of the calculated
location of the mesh points was estimated using
Monte Carlo analysis. Based on this analysis, the
standard deviation of the point locations was 18 mm
horizontally and 8 mm vertically. Supplementary
elevation points were collected between the nodes
of the primary grid every five meters, which

(zw/gW) Ansueq "lonolg

20

INL

40

meters
density (dense vegetation appears in black). ¢ Digital elevation

model interpolated between the nodes on a five-meter grid. d
Topographic Moisture Index computed from the DEM
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determined the actual resolution of the resulting
digital elevation model (DEM). An interpolated DEM
plot is shown in Fig. 3c. This interpolation was used
to aid visual interpretation. However, scales finer than
10 m (corresponding to the actual Nyquist frequency
of the data) were not interpreted in the subsequent
analyses involving topography layers.

To study the dependence between the vegetation
pattern and topography, the relative elevation is not
directly relevant. Rather, we should look at the effect
of elevation on the surface redistribution (run-off) of
water during rainstorms. Therefore, we derived a
topographic moisture index (TMI, Fig. 3d) for each
spatial cell. The TMI was equal to In(o/tan(f)), where
o is the upslope contributing area computed following
the multiple direction flow algorithm of Quinn et al.
(1995), and f is the local slope. This index is a good
approximation of the propensity of a cell to receive
and capture run-off and considers solely local and
global topography (Quinn et al. 1995; Sorensen et al.
2005). The issue of edge effects was addressed by
performing the spectral analyses on a subset of the
initial area (see above).

All shrubs present in the study area with a height
above 1.5 m (n = 1082) were mapped using the
tacheometer. Their heights and two perpendicular
diameters were measured, and a biovolume index was
computed as the height multiplied by the ellipsoidal
approximation of crown area (Couteron and Kokou
1997). A map of cumulated biovolume density
(Fig. 3b) was then computed. A very high-resolution
(16 cm/pixel) vertical digital photograph was taken
during a low altitude (150 m) flight over the study
site. The photograph was georeferenced to the nearest
half meter using previously set painted landmarks.
The portion of the photograph corresponding to the
site is shown (Fig. 3a) after conversion to gray-scale
levels.

aio b
2
o 5
IS
£ © 0
8 3
0 T -2
-5 = -4
-5 0 5 -2 -1 0

Hexa 0

Cos

Results
Simulated example

In simple scatter plots of the pixel values from the
simulated images (Fig. 2), it appears that the two
fractal Brownian motion (fBm) structures do not
show any clear pattern of correlation (Fig. 4a). The
two hexagonal structures present a perfect negative
linear correlation, with one being the exact opposite
pattern of the other (Fig. 4b). The sine and cosine
functions are linearly uncorrelated (they are orthog-
onal by definition), despite their identical scale and
orientation. Interestingly, for a sufficient amplitude of
the red noise (signal-to-noise ratio equals ca. 1/3 in
our example), the combined structures are not
correlated with each other (R2 = 0.04).

The two-dimensional cross-correlogram (Fig. 5a),
a familiar tool to ecologists, presents the spatial
correlation between the two compared structures in a
two-dimensional context, but it is very difficult to
simplify to a few characteristic traits. The correlation
rises and falls with distance lags. It merely repro-
duces the shifted small wavelength sine waves on the
one hand, and the large wavelength spotted/gapped
structures on the other, with limited opportunity for
extracting the main features of the superimposed
patterns. The 2D coherency spectrum, on the con-
trary, directly leads to quantifying the main properties
of the covariation in the patterns. We first recall that
the coherency information is symmetric about the
origin, and therefore we can focus on half of the
spectrum (e.g., the upper half), which displays two
salient features: (i) a patch of high coherency for
frequencies (r) of about 15 cycles/hm with an
approximate 0 angle of 45°, and (ii) a ring of high
coherency values for r = ca. 6 cycless/hm. More
information is available in the phase spectrum, which

1 d o
[aV]
3 °f
0 £ E
a 0
€
3
\\ / O 5 riH
» ..
-1 0 1 -5 0 5 10
Sin Combined 1

Fig. 4 Scatter plots of pixel values for the two simulated examples. a Comparison of the colored noise components. b Comparison of
the hexagonal patterns. ¢ Comparison of the banded patterns. d Comparison of the combined signals
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is not symmetric about the origin (Fig. 5c). The
cross-phase space might seem difficult to interpret
because of large shifts in value due to the circular
nature of the information (a discontinuity in angle
values between — 7 and 7) and because areas where
coherency is low tend to take random phase values.
But if we only focus on the zones that had a high
coherency in the coherency plot (Fig. 5b), we can
easily recover that (i) the two periodic functions that
are coherent around 15 cycles are shifted by n/2 (or
—m/2), while the structures of lower frequency are
shifted by © (or —mn).

After simplification to one-dimensional plots, the
same information is available in a very synthetic form
(Fig. 6). The coherency r-spectrum shows two well-
defined and significant peaks. The first peak, at a
frequency of 6 cycles/hm, corresponds to the two
hexagonal structures, while the second peak, at 15
cycles/hm, is the result of the two nearly identically
banded patterns. We extracted the phase information
(Fig. 6b) for areas of the frequency space for which
coherency between the two signals was higher than
0.5 (that is, the ring-shaped areas corresponding to
the coherency peaks at 6 and 15 cycles/hm in Figs. 5b

welb0[81109-ss01)

Cycles/hm
o
[9)]
ELIIETETNTolo)

(¢}

Cycles/hm
o
aseyd

-3.14

Fig. 5 Two-dimensional characterization of spatial structure.
a Cross-correlogram (lag distances in meters). b Coherency
spectrum, fyw(p,q). ¢ Phase spectrum, @yw(p,q)
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Fig. 6 Cross-spectral analysis of the combined simulated
images. a Coherency r-spectrum. Diamonds: smoothed esti-
mator. Dots: confidence intervals (CI) indicating two standard
deviations (95%) on each side of the smoothed estimator.
Dashes: confidence threshold indicating the 95% test for
difference from null coherency. Note the two significant peaks
around 6 and 15 cycles/hm. b Coherency-weighted average
value of the phase for the frequencies and directions in which
coherency is maximized. Light diamonds: value of the phase at
the first coherency peak (6 cycles/hm). Dark circles: value of
the phase at the second coherency peak (15 cycles/hm)

and 6a) by computing the weighted (by the coherency
values) circular mean of the phase. Using circular
statistics avoids the problem of angular discontinuity.
We see that the phase shift between the two signals at
the frequency of the hexagonal patterns (about 6
cycles/hm, plotted in light gray) has a value of =
(or —m) in the directions of the initial periodic
functions (at 60° of intervals). On the other hand, the
phase shift at the higher frequency of the bands (15
cycles/hm, plotted in dark gray) has a different value
of n/2, towards the direction of the oblique pattern
(45° or w/4).

Field study

As a verification of the consistency of both data and
methods, we first studied the relationship between the
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Fig. 7 Cross-spectral comparison between the biovolume
density map and the vertical aerial view in gray scale. a
Coherency r-spectrum. Diamonds: smoothed estimator. Dots:
confidence intervals (CI) indicating two standard deviations
(95%) on each side of the smoothed estimator. Dashes:
confidence interval indicating the 95% test for difference from
null coherency. b Coherency-weighted average value of the
phase for the frequencies and directions in which coherency is
maximized (approximately 2 cycles/hm)

biovolume density maps (i.e., the vegetation as
mapped in the field) and the gray-scale values of
the aerial view (data shown in Fig. 3a,b). The
coherency r-spectrum shows values above 0.6 for
all considered frequencies and up to 0.9 for frequen-
cies around 2 cycles/hm (Fig. 7a), i.e., those corre-
sponding to the wavelength of the periodic pattern
(i.e., 50 m). Coherency values are significantly
different from zero across the whole spectrum. The
phase spectrum, on the other hand, consistently
presents a phase shift close to zero, which indicates
a good alignment between the two maps (Fig. 7b).
Therefore, the coherency spectrum confirms that a
strong positive correlation exists between the two
representations at all analyzable spatial scales. Note
that the lower correlation for large frequencies
mainly comes from the fact that shrubs below
1.5 m height and the grass layer were not taken into
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consideration in the biovolume survey, while they
clearly influenced the fine-grained details of the aerial
view. This fact does not impair our analysis, but on
the contrary, underscores the importance of a scale-
specific approach. Indeed, the global (Pearson’s)
correlation coefficient between the two processes,
although very significant (Monte Carlo test with
random toroidal translations, P < 0.001), is only
0.51. Nearly identical results were obtained when
considering the biomass density map of Combretum
micranthum, the dominant shrub species, instead of
the total biovolume.

When applied to the study of the relationship
between vegetation density and micro-topography
(DEM, Fig. 3c), the cross-spectral analysis shows a
clear independence (i.e., coherency values not signif-
icantly different from zero) between the two variables
(result not shown). In other words, the vegetation
cover at all scales is independent from topography.
The same result was found when we considered the
relationship between vegetation cover and the topo-
graphic moisture index (TMI, Fig. 3d), which takes
into account both the upslope contributing area and
the local slope for each point (Fig. 8). Coherency
values were near 0.4 throughout the spectrum and not
significantly different from zero according to the
confidence boundaries, even at the scale of the
periodic vegetation pattern (2 cycles/hm). Here again,
C. micranthum, the dominant species, behaved in the
same manner as the total vegetation cover.
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Fig. 8 Cross-spectral comparison between biovolume density
and the topographic moisture index (TMI). Coherency r-spec-
trum. Diamonds: smoothed estimator. Dots: confidence intervals
(CI) indicating two standard deviations (95%) on each side of the
smoothed estimator. Dashes: confidence threshold indicating the
95% test for difference from null coherency
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Fig. 9 Biovolume density maps of two shrub species. a Combretum micranthum. b Guiera senegalensis

To illustrate a case of scale-specific dependence,
we compared the biomass density maps of two
dominant shrub species, Combretum micranthum G.
Don. and Guiera senegalensis J.F. Gmel (Fig. 9).

We observed a significant peak in the coherency
values for frequencies characterizing the general
vegetation pattern (around 2 cycles/hm) (Fig. 10a).
However, the patches dominated by each of the two
species appeared spatially distinct, resulting in a
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Fig. 10 Cross-spectral analysis between the biomass density
maps of Combretum micranthum and Guiera senegalensis. a
Coherency r-spectrum. Diamonds: smoothed estimator. Dots:
confidence intervals (CI) indicating two standard deviations
(95%) on each side of the smoothed estimator. Dashes:
confidence interval indicating the 95% test for difference from
null coherency. b Coherency-weighted average value of the
phase for the frequencies and directions in which coherency is
maximized
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phase shift of 7/2 in most directions at the coherent
frequencies (Fig. 10b). This scale-specific relation-
ship combined with a phase shift produces, as
expected, a very low (ca. 0.1) Pearson’s correlation
between the two processes. Interestingly, G. senegal-
ensis showed a significant coherency with topography
(TMI) around the scale of the periodic pattern (result
not shown). Phase information indicated that patches
of this species were located in the locations of
maximum TMI values.

Discussion

In this paper, we illustrated the operational potential
of two-dimensional cross-spectral analysis for eco-
logical investigation. We applied the method to a
spatially periodic gapped vegetation pattern in SW
Niger, and the results refuted the hypothesis that the
pattern resulted from particular topographic setups,
either directly or via the relief-induced redistribution
(run-off) of water resources, as initially hypothesized
by Klausmeier (1999). Moreover, previous evidence
underscored the need for a scale-specific approach to
this question, as vegetation/run-off relationships have
been shown to vary non-linearly with scale (Wilcox
et al. 2003; Wu 2005). Using cross-spectral analysis,
we showed that the independence between vegetation
and topography held across the considered range of
scales (10-50 m), and therefore also at the scale of
the gapped periodic pattern of interest (50 m). The
only exception was found for patches of the species
Guiera senegalensis, which dominated distinct zones
within the overall pattern (Diouf et al. in press) and
seemed to be favored in locations of relief-induced
water concentration. These results have fundamental
implications for understanding the nature of self-
organization processes in semi-arid patterned land-
scapes (Barbier et al. 2008). Using a classical
(spatially non-explicit) approach would have simply
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led to invalid interpretations for the real-world
examples we have considered. In contrast, the
cross-spectral method was a flexible and efficient
approach to test for scale-specific correlations
between mapped structures.

If either grid or point-map data are available,
cross-spectral techniques are an alternative to more
popular techniques based on cross-covariance func-
tions (or on the closely related covariograms;
(Wackernagel 1995)). Mathematically, the periodo-
gram and cross-periodogram directly derive from,
and are equivalent to, the auto- and cross- covariance
functions, and they are in fact the Fourier transform.
In practice, however, each approach emphasizes
different properties of the struc