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Abstract Landscape ecology often adopts a patch

mosaic model of ecological patterns. However, many

ecological attributes are inherently continuous and

classification of species composition into vegetation

communities and discrete patches provides an overly

simplistic view of the landscape. If one adopts a niche-

based, individualistic concept of biotic communities

then it may often be more appropriate to represent

vegetation patterns as continuous measures of site

suitability or probability of occupancy, rather than the

traditional abstraction into categorical community

types represented in a mosaic of discrete patches.

The goal of this paper is to demonstrate the high

effectiveness of species-level, pixel scale prediction of

species occupancy as a continuous landscape variable,

as an alternative to traditional classified community

type vegetation maps. We use a Random Forests

ensemble learning approach to predict site-level

probability of occurrence for four conifer species

based on climatic, topographic and spectral predictor

variables across a 3,883 km2 landscape in northern

Idaho, USA. Our method uses a new permutated

sample-downscaling approach to equalize sample

sizes in the presence and absence classes, a model

selection method to optimize parsimony, and inde-

pendent validation using prediction to 10% bootstrap

data withhold. The models exhibited very high accu-

racy, with AUC and kappa values over 0.86 and 0.95,

respectively, for all four species. The spatial predic-

tions produced by the models will be of great use to

managers and scientists, as they provide vastly more

accurate spatial depiction of vegetation structure

across this landscape than has previously been pro-

vided by traditional categorical classified community

type maps.

Keywords Predictive modeling �
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Introduction

The analysis of landscape pattern to infer process is the

underlying tenant in the field of landscape ecology

(Forman and Godron 1986; Forman 1995; Turner et al.

2001). One’s ability to effectively explain ecological

processes therefore depends on correctly representing

ecological patterns. Landscape ecology traditionally

adopts a patch mosaic model of ecological patterns,

implicitly assuming discretely bounded and categor-

ically defined patches are sufficient to explain pattern–

process relationships (McGarigal and Cushman 2005;
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McGarigal et al. 2009). However, most ecological

attributes are inherently continuous and classification

of species composition into vegetation communities

and discrete patches provides an overly simplistic

view of the landscape and limits our ability to explore

the continuous nature of plant distributions (McGari-

gal et al. 2009).

If one adopts a niche-based (Hutchinson 1957),

individualistic concept (Gleason 1926; Whittaker

1967) of biotic communities then it would often be

more appropriate to represent vegetation patterns as

continuous measures of site suitability or probability

of occupancy, rather than the traditional abstraction

into categorical community types represented in a

mosaic of discrete patches (McGarigal and Cushman

2005; Cushman et al. 2007). Although the problem of

categorizations of the landscape failing to represent

continuous ecological patterns has been identified

(McIntyre and Barrett 1992; Manning et al. 2004;

McGarigal and Cushman 2005; Cushman et al. 2007),

few approaches have been proposed on how to predict

gradients in a modeling environment (McGarigal et al.

2009).

Classified, community-level, patch-scale maps of

vegetation have long been the foundation of natural

resources management and the science of landscape

ecology. However, it is unclear the degree to which

these maps represent the true spatial structure of

underlying biotic processes and patterns. A dominant

focus of landscape ecology centers on linking driving

processes at appropriate spatial scales to predict

ecological patterns. It is essential to utilize methods

that are consistent with ecological theory. In complex

systems community classifications have been a useful

tool for representing high dimensional data in a

coherent manner. In the context of vegetation ecology,

it is desirable to utilize methods that are consistent with

niche-based, individualistic species responses to com-

plex environmental gradients (Gleason 1926; Curtis

and McIntosh 1951; Hutchinson 1957; Whittaker

1967). Progress in modeling techniques, computer

processing and storage capacities have made individ-

ualistic modeling approaches a tractable problem. We

can now represent large-numbers of species, individ-

ualistically, and readily explore complex relationships

and high-dimensionality in a multivariate framework.

Predicting probability of occurrence is one

approach for integrating species-level, pixel scale,

niche-based theory into landscape mapping and

analysis. Instead of representing landscape structure

as a mosaic of discrete patches that are implicitly

assumed to be categorically discrete and internally

homogeneous (McGarigal and Cushman 2005;

McGarigal et al. 2009), this approach represents

occurrence for each species occurrence as a separate

probability surface. This greatly reduces a number of

fundamental problems in representing vegetation as

classified mosaics, including errors related to the

reality and stability of community type definitions,

errors in stand delineation and boundary detection,

and omission and commission errors.

The niche modeling community has made consid-

erable headway in predicting species probabilities

using presence only data with algorithmic and

machine learning approaches (Stockwell and Peters

1999; Phillips et al. 2006; Prasad et al. 2006). Machine

learning approaches, however, are often considered

black-box with little inferential value. Cushman et al.

(2007) distinguish between two modeling objectives,

described as the ‘‘pattern-matching paradigm’’ and the

‘‘driver-response paradigm.’’ In the latter, the goal is to

obtain the most parsimonious understanding of the

processes driving ecological responses for use in

developing ecological theory and making predictions

for the future under novel conditions or new locations.

In the former case, however, the goal is to obtain the

strongest possible prediction for a given data set.

Nonparametric procedures like Random Forests (Bri-

eman 2001b) can be used to effectively identify

important associations, and graphical tools can be used

to characterize relationships between predictor vari-

ables and classifications.

In addition, Brieman (2001a) argues that assump-

tions in parametric models, such as independence and

multivariate-normality, are frequently violated

whereas algorithmic approaches are not affected by

these violations and provide more stable and relevant

information. Furthermore, ecological systems often

exhibit complex, non-linear relationships, autocorre-

lation, and variable interaction across temporal and

spatial scales. Nonparametric algorithmic classifiers

often greatly outperform parametric methods in such

cases. The field of ecological informatics is rapidly

developing machine learning approaches to explore

and quantify complex and nonlinear ecological

relationships (Park and Chon 2006). Such ecological

informatics methods can then be a starting point for

inferential statistics, through which variables are
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identified, hypothesis developed, and inferential

methods applied post hoc.

Classification and Regression Tree (CART)

approaches have gained broad usage in ecological

studies (Déath and Fabricius 2000). However, CART

suffers from several problems, such as over-fitting

and difficulty in parameter selection. Several solu-

tions have been proposed that incorporate iterative

approaches (Schapire 1990; Breiman 1996). One

approach in particular, Random Forests (Brieman

2001b), has risen to prominence due to its ability to

handle large numbers of predictor variables and find

signal in noisy data (Cutler et al. 2007). Another

advantage of Random Forests is that, by permutation

of independent variables, it provides local and global

measures of variable importance.

A primary criticism of species distribution models is

the lack of incorporation of ecological theory (i.e.,

expected shape of the species response curve) and

influences of model misspecification (Austin 2002;

Guisan and Zimmermann 2000). In complex ecolog-

ical systems, multiple driving factors acting at different

scales may have critical effects on processes of interest

(Cushman et al. 2007). This hinders model specifica-

tion and the development of sound hypotheses. With

the use of non-parametric, algorithmic modeling

approaches these limitations are somewhat mitigated.

The goal of this analysis is to predict the probability

of occurrence of common forest trees across a large

and complex landscape in northern Idaho, USA. We

utilize the nonparametric, algorithmic method Ran-

dom Forests to predict the occurrence of four tree

species based on combinations of multiple topo-

graphic, climatic and spectral predictor variables.

The purpose is to obtain a highly accurate prediction of

current species occurrence for use in management, and

related research in wildlife habitat relationships and

effects of climate change. Through the prediction of

each species’ occurrence probability, we demonstrate

a method for representing vegetation gradients suit-

able for an integrated analytical framework for

exploring continuous landscape processes.

Methods

Study area

We utilized 411 field plots collected in 2000–2001 as

part of a USDA Forest Service pilot project to

intensify the Forest Inventory and Analysis grid on

the Bonners Ferry Ranger District, Panhandle

National Forests. Our study area covers 3,883 km2

in northern Idaho, USA (Fig. 1), encompassing a

wide range of environmental, anthropogenic, and

vegetation conditions. Tree species are relatively

diverse for temperate conifer forest, with Western

redcedar (Thuja plicata), Western hemlock (Tsuga

hetrophylla), and grand fir (Abies grandis) at lower

elevation sites with high moisture availability;

Fig. 1 Study area

orientation map. Cross-

hatching is USDA-Forest

Service Idaho Panhandle

National Forests, Bonners

Ferry Ranger District lands
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Ponderosa pine (Pinus ponderosa), at low elevation

dry sites; Douglas fir (Pseudotsuga menziesii), lodge-

pole pine (Pinus contorta), and Western larch (Larix

occidentalis) at intermediate elevations; and Engle-

mann spruce (Picea engelmannii) and subalpine fir

(Abies lasiocarpa) occupying colder, higher elevation

conditions. Management history includes over

100 years of active timber harvest, resulting in a

diverse patch mosaic of vegetation across the full

range of age and canopy cover (Fig. 2).

Forest inventory and analysis intensification

The FIA program (http://fia.fs.fed.us/) is a national

program that gathers annual inventory data on a

4.8 km grid across all forested areas. In our study

area, a spatial intensification was appended to the

original FIA grid providing a systematic sample of

one plot per 1.7 km. The FIA plot design follows a

four plot cluster containing one 0.10 ha (17.95 m

radius) plot with three 0.01 ha (7.32 m radius) plots

in three directions (360�, 120�, and 240�) and three

120’ transects between primary plot and sub-plots.

Recorded variables include measured species (spp),

crown width (CW), diameter at breast height (DBH),

and crown base height (CBH) on all trees [0.9 dbh.

For this analysis we calculated species proportion,

utilizing only the primary plot and focusing on four

species: Abies lasiocarpa, Pinus ponderosa, Thuja

plicata, and Pseudotsuga menziesii. These four

species were selected to represent the widest range

of environmental optima across the temperature/

moisture and elevational gradients among species

extant in the study area. One generalist (Pseudotsuga

menziesii) was specifically selected to test the models

efficiency in predicting a species that is equally

opportunistic across its range of variability.

Independent variables

We selected 40 independent (x) variables (Table 1) to

represent abiotic (topographic and climate) and

Fig. 2 Maps of predicted probabilities of species occurrences; a A. lasiocarpa, b P. ponderosa, c P. menziesii, d T. plicata
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phenological conditions. The abiotic variables

included topographic variables derived from digital

elevation models, and climate variables from the

spline model presented in Rehfeldt et al. (2006).

Phenological variables were derived from atmospher-

ically corrected (Chavez 1988) bands 1–6 and 7

Landsat ETM?7 spectral data (at-sensor reflectance),

and mid-infrared corrected normalized vegetation

difference index (NDVIc) (Nemani et al. 1993). We

calculated topographic-based variables in Worksta-

tion ArcInfo using Arc Macro Language (AML)

programs developed by the authors. Our elevation

source data was from the 30 m2 Shuttle Topographic

Radar Mission (Rabus et al. 2003) downloaded from

the USGS national map (http://nationalmap.gov). We

applied atmospheric correction with dark-object

subtraction (Chavez 1988) to a 07/28/2000 ETM?7

Landsat image and calculated NDVIc in ERDAS

Imagine v9.0 using Spatial Modeler Language

(SML). We assigned values from rasters to each plot

location in ArcInfo using AML to create a database

of y, x1…xn used in the model.

The suite of 40 independent variables (Table 1)

together include the major factors likely to influ-

ence vegetation response, such as temperature/

moisture gradient, direct topographic effects (i.e.,

slope, slope position, elevation), climate influences

(i.e., precipitation, temperature), and vegetation

phenology. The Random Forests method utilized

in this study is robust in dealing with large

Table 1 Predictor variable names, descriptions, and references in the ecological literature

Variable Description Reference

ELEV Elevation from shuttle topographic radar mission Rabus et al. (2003)

SLP Slope in radians using dinf model Tarboton (1997)

SPCOSAP [Slope 9 COS(Aspect)] Stage (1976)

SPSINAP [Slope 9 SIN(Aspect)] Stage (1976)

CTI Compound topographic index (wetness) Moore et al. (1993)

INSO Solar insolation (KWH m2) Fu and Rich (1999)

HLI Heat load index McCune and Keon (2002)

TRASP Topographic radiation index Roberts and Cooper (1989)

SP Relative slope position Murphy et al. (2009)

HSP Hierarchical slope position Murphy et al. (2009)

CRV Slope curvature

ROUGH (3, 15, 27) Variance of elevation (n size window) Murphy et al. (2009)

ERR (3, 15, 27) Elevation relief ratio (n size window) Evans (1972)

MAT Mean annual temperature Rehfeldt et al. (2006)

MTCM Mean temperature in coldest month Rehfeldt et al. (2006)

MMIN Minimum temp in coldest month Rehfeldt et al. (2006)

MTWM Mean temperature in warmest month Rehfeldt et al. (2006)

MMAX Minimum temp in warmest month Rehfeldt et al. (2006)

MAP Mean annual precipitation Rehfeldt et al. (2006)

GSP Growing season precipitation Rehfeldt et al. (2006)

TDIFF Summer–winter temperature differential Rehfeldt et al. (2006)

DD5 Number degree-days [5�C Rehfeldt et al. (2006)

DD0 Number degree-days \0�C Rehfeldt et al. (2006)

FFP Length of frost free period Rehfeldt et al. (2006)

AMI Annual moisture index [DD5/MAP] Rehfeldt et al. (2006)

PRATIO Ratio of summer to total precipitation [GSP/MAP] Rehfeldt et al. (2006)

B1–B6 and B7 Landsat ETM?7 Bands 1–6 and 7 (reflectance) Chavez (1988)

NDVIc MIR corrected normalized difference vegetation index Nemani et al. (1993)
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numbers of independent variables (Brieman 2001b;

Cutler et al. 2007).

Random forests

We predicted occurrence probabilities for the four

selected species using the Random Forests method

(Brieman 2001b; Cutler et al. 2007) as implemented in

R (R development core 2007; Liaw and Wiener 2002).

Random Forests is a classification and regression tree

(CART) (Déath and Fabricius 2000) based bootstrap

method that corrects many of the known issues in

CART, such as over-fitting (Brieman 2001b; Cutler

et al. 2007), and provides very well-supported predic-

tions with large numbers of independent variables

(Cutler et al. 2007). We ran 5,000 bootstrap replicates

(k) with replacement using a 36% data-withhold [out-

of-bag (OOB)] sample. The number of bootstrap

replicates was initially selected based on the number of

replicates where the OOB error ceases to improve. In

our analysis, this OOB error stabilization occurs

between k = 1,200 and k = 2,500 replicates. How-

ever, variable interaction is thought to stabilize at a

slower rate than OOB error (Adele Cutler, personnel

communication). A heuristic to account for variable

interaction with a large set of independent variables

was defined as [2 9 (ky for OOB stabilization)]. Since

the only loss in running more k than necessary is

processing time (Brieman 2001b), we selected

k = 5,000 as an adequate number to account for

stabilization in both error and interaction. The m

parameter, number of variables permutated at each

node, was defined as m = [SQRT(number of x vari-

ables)], with a minimum of m = 2 (Brieman 2001b).

The response variable (y) was defined as a binary

response, presence (1)/absence (0), by applying the

rule spp = [IF proportion [0.10 = 1 ELSEIF 0].

Previous studies (Chawla et al. 2003; Chen et al.

2004) demonstrated that imbalance between the

proportion of presence and absence classes can cause

bias in the prediction and model-fit. When an

imbalanced sample is present the bootstrap of the

data is biased towards the majority class, thus over-

predicting the majority-class and under-predicting the

minority. The resulting model fit can be deceptive,

exhibiting very small overall OOB error due to very

small errors in the majority as a result of extremely

high cross-classification error from the minority-

class. An alternative solution that is often used when

there are many more absences than presences in a

classification dataset is to shift the cutoff for the

probability of present from 0.5 to something smaller.

However, this approach does not work in our case

because of our interest in stable and comparable

probabilities of presence among species.

To correct for the imbalance between number or

presences and absences we developed an approach

that iteratively down-sampled the majority class by

randomly drawing 2 9 [n of minority] and running a

new Random Forests model using different random

subsets while holding the sample-size of the minor-

ity-class constant. To ensure that the sample

distributions of the independent variables were cap-

tured, we calculated a covariance matrix of the

independent variables in the full data. As data was

subset for each model, we tested the covariance of the

cumulative subset data covariance matrix against the

covariance matrix of the full data’s covariance until

equalevancy (P-value of \0.0001) was satisfied, at

which point we cease iterating models. The conver-

gence of the covariance matrices was tested using the

equivalence statistic introduced in Morrison (2002).

Since the underlying theory of Random Forests is

ensemble learning, it is possible to combine trees

from different models that are based on the same

underlying data (Brieman 2001b). We ran a new

Random Forests model, with the model parameters

defined above, for each random sub-sample of the

majority class. The final model was an ensemble

derived from combining trees from all the indepen-

dent models of randomly sub-sampled majority data.

In most cases, it is not necessary to retain all

variables in a given model. Often, removing variables

can not only result in more parsimonious models that

exhibit less noise, but can also improve OOB error

(Murphy et al. 2009). To identify the most parsimo-

nious model we applied the Model Improvement

Ratio (MIR) (Murphy et al. 2009). The MIR uses the

permuted variable importance, represented by the

mean decrease in OOB error, standardized from zero

to one. The variables are subset using 0.10 threshold

increments, with all variables above the threshold

retained for each model. This subset is always

performed on the original model’s variable impor-

tance to avoid over-fitting (Svetnik et al. 2004). We

compare each subset model and select the model that

exhibits the lowest total OOB and lowest maximum

within-class error. We nested this procedure in the
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down-sampling approach. The selected model is

assessed using the median error across the ensemble

of all down-sampled models.

We made model predictions in two ways. First, a

presence/absence prediction was based on majority

votes across all trees. Second, species probabilities

were predicted using a ratio of the Random Forests

majority votes-matrix to create a probability distri-

bution. Random Forests makes predictions based on

the plurality of votes across all bootstrap trees and not

on a single rule set. This vote’s matrix can be scaled

and treated as a probability given the error distribu-

tion of the model. A function was added to

GridAsciiPredect (Crookston and Finley 2008) that

uses the votes-probability function to write the

probabilities to ASCII grid(s).

Validation

We approached model validation utilizing model fit,

randomization test, sensitivity (proportion of

observed positives correctly predicted), specificity

(proportion of observed negatives correctly pre-

dicted), Kappa, and the area under the ROC curve

(AUC) (DeLong et al. 1988). The model fit was

assessed using the OOB error estimate. We addressed

model significance (P) by running the model 1,000

times with a randomization of y (Murphy et al. 2009).

To achieve a balanced sample, the down-sampling

method randomly sub-samples the majority data. A

random sub-sample does not ensure a well repre-

sented sample of the majority class, thus potentially

degrading predictive-power. The OOB error is the

median taken from an error distribution across the

randomized trees. Multiple trees with extremely high

error can change the variance of the error distribution.

To more accurately assess the error in the prediction

we performed a n independent data withhold of 10%

(for each class). Using the final set of subset

independent variables identified in the final selected

model we ran Random Forests 1,000 times and, at

each replicate, made a prediction to the (10%)

withheld data. Error was quantified as the cumulative

error rate across bootstrap replicates. Using the

bootstrapped observed versus predicted we calculate

model error (percent incorrectly classified), AUC,

sensitivity, specificity, and Kappa values using the

PresenceAbsence package in R (Freeman and Moisen

2008).

Results

All four models were very well supported (Table 2)

and significant at P \ 0.001 with very low model-fit

error rates. All four models had kappa statistics over

0.86, and very high sensitivity/specificity values

(Table 2), indicating excellent predictions with very

little cross-classification error. In addition, the area

under the ROC curve (AUC) was over 0.98 in all

cases (Table 2). As a general rule, AUC values over

0.9 indicate excellent model performance; the values

reported here indicate that these models very suc-

cessfully predict the occurrence patterns of the four

focal species.

Models for all four species performed well based on

model error (Table 2). The P. menziesii and T. plicata

models were the best of the four models based on

model-fit error (with 0.1 and 0.96% respectively) with

A. lasiocarpa (1%) exhibiting very low error as well.

P. ponderosa exhibited the highest model-fit error

(8.3%).

For all four species, climatic variables are the most

important predictors of occurrence. The models are

primarily influenced by variables that measure the

temperature regime. The variables in the A. lasiocarpa

model, with the exception of Landsat band-4, are all

indicators of cold, moist, high-elevation environments

(Table 2). The near-infrared spectral range of band-4

is strongly representative of vegetation condition and

is indicative of moisture-stress in colder environments.

The model predicts that the probability of A. lasio-

carpa occurrence is highest at high elevations with

high precipitation and very-low average temperatures.

Conversely, the P. ponderosa model is strongly

related to high temperatures and low water availabil-

ity, with TRASP being the top variable (Table 2).

The TRASP variable represents the effect of aspect

on incoming solar radiation, where large values of

TRASP reflect steep south-facing slopes which are

both hot and dry. The model predicts the highest

probability of ponderosa pine occurrence at low

elevation hot sites with high incident solar radiation.

Factors driving the occurrence of T. plicata are

similar to P. ponderosa, only with opposite effects.

Geomorphology also plays a role in this model. The

HSP, CTI, and GSP variables are all indicators of

moisture availability. We hypothesize that ROUGH3

reflects topographic influence on cold-air drainage

and ROUGH15 represents the general geomorphology

Landscape Ecol (2009) 24:673–683 679
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(alluvial deposits in drainage bottoms) where T. plicata

is most prevalent. The model predicts that T. plicata is

most common on mesic sites in broad alluvial valleys

at middle elevations.

Distribution of P. menziesii is controlled primarily

by temperature/moisture gradients in a mid-elevation

range. Variables indicating moisture are GSP and

FFP. Temperature is indicated by HLI, MAT,

MTCM, HSP, and SCOSA. Elevation (ELEV) is

most likely redundant with some of the direct

measures of the temperature gradient, however,

P. menziesii in this study area is limited to lower to

mid-elevations. ERR15 and ROUGH27 represent

general geological characteristics such as subsurface

water flow and weathering (soil recruitment through

erosion of bedrock) (Evans 1972).

Where the T. plicata and P. ponderosa overlap is

where P. ponderosa is mixed with P. menziesii, in the

cooler portion of its distribution. All four species are

strongly influenced by the elevational gradient and

had elevation in the final selected model(s). The

variables in all the final selected models are consis-

tent with the current ecological knowledge of each

species.

Discussion

Random Forests was exceptionally effective in pre-

dicting the probability of presence in response to

complex gradients of topography and inferred micro-

climate. These results indicate that species-level,

gradient prediction of vegetation across complex

mountain landscapes can be highly effective. The

variables of most importance in all four species’

models reflect the primary climatologically limiting

factors that one would expect to have dominant

influence on the topographical distribution of tree

species. The combination of very high prediction

success with inclusion of variables known to be

important drivers suggests that these models tightly

reflect the realized niche space of each of these four

species. This, in turn, indicates that the Random

Forests method can be highly effective at describing

realized niches and mapping them across complex

landscapes, accounting for both local and global

effects occurring across scales.

Class imbalance can have a profound effect on

model performance (Chawla et al. 2003; Chen et al.

2004). With the development of the down-sampling

approach we have found an effective means of

addressing the problem and significantly improving

our models. Previous approaches have applied over-

sampling methods (Chawla et al. 2003; Chen et al.

2004), where the minority class is duplicated or

synthesized to increase the number of observations.

The presence of duplicate observations of the minor-

ity data present a potentially serious problem in that

the bootstrap no longer represents an independent

random draw of data. This leads to both a model bias

and a large inflation of accuracy in the minority class.

In applying a down sampling approach we avoid this

potentially serious issue while still addressing the

issues of imbalance in classes.

The model improvement ratio (Murphy et al.

2009) has demonstrated an effective means of

identifying a parsimonious set of variables and

selecting a model that minimizes noise and improves

model performance. The OOB error statistic provided

in Random Forests is indicative of model fit, but not

necessarily predictive performance or power. We

chose not to sacrifice data for an independent

validation; instead we conducted a bootstrap of the

bootstrap, providing a qusai-independent measure of

Table 2 Selected variables (in order of importance), model error, sensitivity, specificity, Kappa (k), ROC area under curve (AUC),

and significance (P), for each model

Model Selected variables Model

error (%)

Sensitivity Specificity k AUC P

A. lasiocarpa SPSINAP, B4, GSP, MTCM, FFP, MAT, ELEV 1.11 0.98 1 0.97 0.98 0.001

P. ponderosa TRASP, MTCM, FFP, ELEV, MAT 8.30 1 0.85 0.86 0.98 0.001

P. menziesii GSP, HSP, ERR15, SCOSA, DISS27,

ROUGH27, FFP, MTCM, ELEV, MAT, HLI

0.1 0.99 0.99 0.99 0.99 0.001

T. plicata ROUGH3, HSP, ROUGH15, SPCOSAP, CTI,

B5, NDVIc, GSP, B7, MTCM, MAT, ELEV, FFP

0.96 1 0.97 0.98 0.99 0.001
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model performance. We believe that, even though all

the data was used in the final model, the validation

statistics provided are a true representation of model

performance.

For all the merits of Random Forests in prediction,

its interpretability is somewhat limited. In a classi-

fication, for instance, one is not provided with an

equation that provides the interpretation of slope and

intercept coefficients. Unlike CART, Random Forests

does not provide a rule-set but rather predicts based

on a vote majority. Even though Random Forests

solves many of the problems in CART, the interpret-

ability of a set of rules is desirable. Random Forests is

somewhat of a black-box, as are many other effective

machine learning classifiers, such as support vector

machines, artificial neural networks, adaboost and

gradient modeling machines. However, Random

Forests excels at identifying important independent

variables and 2- and 3-dimensional partial depen-

dence plots may be used to visually characterize

relationships between predictor variables and pre-

dicted classes (Hastie et al. 2001).

The very high model prediction success suggests

training very tightly to the nuances of this data set.

This makes generalization to these species in other

landscapes less likely to succeed. However, our goal

in this analysis is to obtain the highest possible

predictive accuracy for discriminating locations

where each species is present from those where each

species is absent, and to produce species-level, pixel

scale maps of occurrence probability. Given that

goal, we feel this method is highly effective and

limitations on the generalization to other landscapes

is not a problem given the scope of our objectives.

In our study area, natural resources agencies

typically base management decisions on estimates

of current vegetation conditions taken from classified

maps. These maps represent vegetation as categorical

‘‘types’’, or ‘‘communities’’ in a discrete mosaic of

patches. Such maps differ from those presented here

in three critical respects. First, they are based on

classifications into species community assemblages

rather than prediction of individual species. Second,

they are based on assigning locations into discrete

patches in which a given patch is believed to share

the same ‘‘community type’’, rather than a continuous

gradient of proportion or suitability. Third, they

predict to a discrete group membership rather than a

continuous probability of occurrence.

Such classified, community-level, patch-scale

maps of vegetation have long been the foundation

of natural resources management and the science of

landscape ecology. However, the question remains to

what degree they reflect the underlying patterns and

processes that drive ecological systems. A major

rallying cry of contemporary landscape ecology is the

central importance of linking key processes at

appropriate spatial scales to predict ecological pat-

terns. Thus, in vegetation modeling and mapping it is

essential to utilize methods that are most in accord

with ecological theory; specifically, it is important to

utilize methods that are consistent with niche-based,

individualistic species responses to complex environ-

mental gradients, which has been the core of

community ecology for decades (Gleason 1926;

Curtis and McIntosh 1951; Hutchinson 1957; Whit-

taker 1967).

The approach adopted here is explicitly niche-

based and individualistic. It predicts the occurrence

probability of individual species continuously across

the landscape based on combinations of limiting

environmental gradients. An obvious question is how

well this individual species, continuous mapping

approach performs in comparison to the classified

vegetation maps so commonly used. The most direct

comparison is of the stated accuracy of the classified

maps to the accuracy of these models. When this

comparison is made it is clear that the individual

species models produced in this analysis appear to be

substantially more effective (Cushman SA, Evans JS,

McGarigal K, Do classified maps predict the compo-

sition of plant communities? The need for Gleasonian

landscape ecology, unpublished data).

Comparison of prediction accuracy between indi-

vidual-species based maps and classified community

type maps is informative, but does not provide a full

evaluation. If one’s goal is to understand the factors

governing the distribution of tree species in a

landscape and to produce the most accurate map of

their occurrence, then a better comparison would be to

evaluate how well the classified maps can predict the

occurrence patterns of individual tree species among a

large sample of vegetation plots, and compare it to

how well species distribution is predicted based on

environmental gradients. Comparison of variance

explained and model accuracy would provide a means

to evaluate how well the classified maps represent the

major patterns of tree species distribution and how
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well they reflect the action of dominant limiting

processes such as climate, disturbance and succession.

Such an analysis is beyond the scope of this paper, but

would provide an objective measure of the relative

success of species-level, pixel scale species models,

such as produced here, and patch-scale, community-

level maps, such as typically used by managers and

landscape scientists, in their ability to describe the

patterns of tree species in complex landscapes (see

Cushman SA, Evans JS, McGarigal K, Do classified

maps predict the composition of plant communities?

The need for Gleasonian landscape ecology, unpub-

lished data).

Conclusion

When one adopts a niche-based, individualistic con-

cept of biotic communities it is more appropriate to

represent vegetation patterns as continuous measures

of site suitability or probability of occupancy, rather

than the traditional classification of community types

represented in a mosaic of discrete patches Although

the problem of categorizations of the landscape failing

to represent continuous ecological patterns has been

identified, few approaches have been proposed on how

to predict gradients in a modeling environment. This

analysis shows that a Random Forests ensemble

learning approach has very high power to predict

site-level probability of occurrence for four tree

species based on climatic, topographic and spectral

predictor variables. We believe the predictions of these

models will be of great use to managers and scientists,

as they provide vastly more accurate spatial depiction

of vegetation structure across this landscape than has

previously been provided by traditional categorical

classified community type maps.
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