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Abstract Coastal landscapes with extensive inter-

tidal mudflats provide non-breeding habitat for Arctic

shorebirds. Few attempts have been made to develop

and test landscape-level models predicting the inter-

tidal distribution of these birds. We modelled the

distribution of a Holarctic species, Dunlin (Calidris

alpina), at a hemispherically important non-breeding

site, the Fraser River Delta, British Columbia, Canada,

in seasons with different predator landscapes. We

trained the models during a season when nocturnal

predators were common and tested temporal

transferability of the models on independent datasets

when nocturnal predators were absent. Snowy Owls

(Nyctea scandiaca) influenced Dunlin distribution and

thus model transferability. After accounting for their

presence, models displayed good to excellent discrim-

ination, i.e. prediction of the instantaneous and

cumulative (over low tide period) probability of

mudflat use by Dunlin, in fore- and backcasting

applications. Model calibration was good or else, where

over-prediction was observed, the reason for the bias

was identified. The distribution models may predict

mudflat use by Dunlin and possibly related species

given relevant data describing the intertidal landscape.

The models are amenable to GIS application, describe

the amount of use per hectare of the intertidal zone and

can be used to determine and visualise relative and

absolute suitability of intertidal areas.
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Introduction

Estuaries with extensive intertidal mudflats are glob-

ally threatened biomes due to coastal development

and sea-level rise (Piersma and Lindstrom 2004;

Kirwan and Murray 2008). In the boreal winter, these

environments provide critical foraging habitat for
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Artic-breeding shorebirds, which are globally declin-

ing long-distance migrants (Brown et al. 2001).

Evaluation of landscape-specific effects of coastal

changes on non-breeding shorebirds requires both an

understanding of how physical and biological land-

scape properties shape shorebird distribution (Taft

and Haig 2006; Gillings et al. 2005; Beauchamp

2007a) and the use of temporally and spatially robust

distribution models (Hirzel and Le Lay 2008). Such

models allow assessment and visualisation of how

anthropogenic and natural changes in intertidal

landscapes affect shorebirds and the potential out-

comes of mitigation measures (Durell et al. 2005;

Vanreusel et al. 2007).

While theoretical and empirical advances in distri-

bution modeling have been made, uncertainties in

model derivation, interpretation and application

remain (Vaughan and Ormerod 2005; Barry and Elith

2006). Among the most pressing issues is spatial,

temporal and methodological model transferability,

i.e. models’ ability to perform outside their training

environments. Three issues undermine model trans-

ferability. (i) Models may reflect local spatio-temporal

ecological phenomena (Boyce et al. 2002; Betts et al.

2006). (ii) Models may be overfitted, they may capture

only a restricted range of the organism’s response

curve to a particular predictor, or be missing important

and/or including ‘‘useless’’ variables (Guthery et al.

2005; Barry and Elith 2006; McAlpine et al. 2008).

(iii) Predictors may be too coarse and have uncertain

links to ecological processes driving distribution

(Vanreusel et al. 2007). Although persistent ecological

idiosyncrasies may necessitate development of site- or

time-specific models, overall, distribution models are

more likely to transfer well when the training sample is

large, the sampling frame captures the range of

conditions under which the model will be applied,

the relationship between the response and predictors is

based on explicit direct or mitigated ecological links,

the models represent ecologically plausible hypothe-

ses, and conditions under which the models perform

poorly have been reported (Vaughan and Ormerod

2005; Hirzel and Le Lay 2008).

Here we develop models to predict and visualise

distribution, expressed as the probability of use, for a

shorebird, Dunlin (Calidris alpina), across the full

spatial (intertidal range) and temporal (diel, non-

breeding season) extents of an intertidal landscape at

an important non-breeding site. We assessed the likely

decrease in model performance due to overfitting,

tested model fore- and backcasting transferability at

the original training site using independent data, and

explored the relationship between the predicted

probability and the actual amount of use. While the

physical environment during our study remained

annually constant, the predator landscape changed,

presenting an opportunity to investigate the effect of

nocturnal predators on both shorebird distribution

(Beauchamp 2007a) and model transferability. We

expected that the birds would modulate their distri-

bution to maximise feeding opportunities while

minimising exposure to both diurnal (falcons, Whit-

field 2003; Dekker and Ydenberg 2004) and nocturnal

(owls, Brown et al. 1988; Mouritsen 1992) predators.

Methods

Predictor variables

In intertidal environments shorebirds distribute them-

selves, often in a density-dependent manner, to

optimise a fitness function driven jointly by intake

rate (Gill et al. 2001; Goss-Custard et al. 2006) and

predation danger (Whitfield 2003; Pomeroy 2006).

Unfortunately, these two factors do not easily lend

themselves to spatially explicit high-resolution

mapping.

We chose a priori eight digitally map-able physical

predictors that correlate with food abundance and

availability, and predation danger, grouping them

into three general factors. Sediment organic content

(Org, to 0.001%) (Yates et al. 1993), proportion of

fine sediment (FineSed, to 0.01%) (Yates et al. 1993;

Sewell 1996), proximity to tidal channel (DistChan,

to 0.01 km) (Lourenço et al. 2005) and tidal elevation

(Elev, to 0.1 m relative to zero-water level) (Pomeroy

2006) were assumed to describe food abundance.

Percent of sediment surface covered by water

[0.1 cm (Water, to 1%), surface water depth (Depth,

to 0.1 cm) and distance to tide-line (DistTide, to

0.1 m) were designated as describing food availabil-

ity (Zwarts and Wanink 1993; Taft and Haig 2006).

Distance to cover used by avian predators (saltmarsh,

dike, vegetation; DistCover, 0.01 km) was considered

as a proxy for predation danger (Mouritsen 1992;

Whitfield 2003; Dekker and Ydenberg 2004). Addi-

tionally, we included the temporal factor comprised
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of three variables that can interact with food and

predators to influence shorebird distribution. Julian

date (Julian, 1 December = 1) and position of the

tide-line relative to zero-water level (Tide, to 0.1 m)

at the time of observation accounted for seasonal or

intra-tidal trends in distribution and possible density-

dependent effects (Whitfield 2003). The period of

emersion of a given location (Time, to 1 min)

reflected local depletion and vertical movements of

prey (Yates et al. 2000). Some variables likely

contribute to more than one factor, and assigning

them to a factor was a matter of convenience.

Study landscape

The study was carried out in the southern arm of the

Fraser River Estuary, British Columbia, Canada

(Fig. 1a; 49�030 N, 123�090 W) during the non-breed-

ing seasons 1995–1996, 1997–1998, 2005–2006, and

2006–2007. Over 2 million shorebirds use the estuary

annually, including internationally important numbers

of Dunlin (100,000) and Western Sandpipers (Calidris

mauri, 2 million), making the estuary a key site in the

Western Hemispheric Shorebird Reserve Network

(Shepherd and Lank 2004). The immediate study area,

Roberts Bank, represented a distinct, 7.5 9 4.8 km,

intertidal mudflat (tidal range 0.0–3.8 m) separated

from agricultural fields by dikes. The mudflat sup-

ported ca. 8,000 Dunlin in December–February, and

by early April the population rose to ca. 24,000 due to

an influx of migrants. The mudflat is partitioned by

two causeways supporting a ferry terminal and a port

facility. Up-shore sections of the mudflat are fringed

with saltmarsh and bushes; sediments range from soft

mud to sand. Eelgrass, Zostera marina, occupies parts

of the lower intertidal zone. In December 2005–March

2006 eight Snowy Owls (Nyctea scandiaca) resided in

the study area and hunted over the intertidal at night.

Snowy Owls ‘‘invade’’ the area every 5–10 years and

were absent in the other three winters (pers. obs).

Peregrine and Merlin (Falco peregrinus and

F. columbarius) have been winter residents in the

area since early 1990s (Dekker and Ydenberg 2004).

Bird sampling

Bird occurrence was sampled at 242 random points

C200 m apart and 100–4,500 m seaward from the

shore/saltmarsh edge, spanning the tidal elevation of

0.5–3.6 m (Fig. 1a). Areas below 0.5 m relative to

the zero-water level were rarely exposed; land above

3.6 m was occupied by saltmarsh and dikes. Water-

logged patches (C15 cm depth) were excluded as

inaccessible to Dunlin. Each point was marked with

a small surveyor’s flag. Between 2 December 2005

and 4 April 2006, 2–6 randomly selected points per

low tide, located C400 m apart, were accessed on

foot, using a GPS (Garmin eTrexTM, accuracy

±4 m). Points were sampled within ±2.5 h relative

to the lowest water, and when the predicted tidal

height was B2.0 m (range 0.3–2.0 m), i.e. C40%

(1,250 ha) of the maximum available intertidal area

(2,950 ha) was exposed. Points were accessed day

and night during the natural occurrence of low tides

(in December all tides B2.0 m occurred at night),

except when C15 mm of rainfall and winds

C50 km h-1 were forecast for the field session.

Day was defined as 30 min before sunrise to 30 min

past sunset.

All birds within 100 m of a flag were counted

during a 20-min observation. By day 8 9 30

binoculars were used from a point 200 m from a

flag. At night, a monocular night vision scope

(ITTTM generation III pocketscope, with StarTronTM

catadioptic 4.59 lens) was used from 120 m. Dunlin

evaded a stationary or slowly moving observer at

B100 m by day and B25 m by night. Given the

openness of the landscape, perfect detection proba-

bility was assumed, although some individuals may

have been missed at night. Tidal channels, when

present, were walked following an observation to

flush any shorebirds that may have been screened

from view. Following observations, a dropping

count was made within a 16 m2 quadrat at the flag

to provide an index of cumulative habitat use

(McCurdy et al. 1997; McAlpine et al. 2008).

Droppings of Black-bellied Plover (Pluvialis squata-

rola), the only other common shorebird in the study

area, could be easily distinguished from Dunlin’s

(cf. 25 and 5 cent Canadian coins, respectively). At

each point air temperature (0.1�C), wind-speed

(0.1 m s-1), wind-chill (0.1�C), air pressure

(1 kPa), and illumination (0.01 Lux; night only)

were recorded using a KestrelTM 4000 portable

weather-metre and Extech Instruments Datalogging

Lightmeter (Model 401036), respectively. After

model-fitting (see below), the residuals were

regressed against (i) the environmental variables to

Landscape Ecol (2009) 24:129–144 131

123



test for deviations in distribution due to weather

(Kuwae 2007) and (ii) illumination at night to test

the hypothesis that darkness contributes to predation

danger and affects distribution (Brown et al. 1988).

Residuals were also tested for autocorrelation

(Moran’s I; CrimeStat 3.0, The National Institute

of Justice, Washington, DC).

Sediment sampling and processing

Sediment was sampled in April–May 2006, 2.5 h

around the lowest water. For organic content and grain

size data, at each original random point two 5 cm-

deep sediment cores located 1 m apart were collected

using a 60 cc syringe with a cut off top and pooled in a

Fig. 1 Roberts Bank and

distribution of sampling

points used to train Dunlin

distribution models (a) and

test their forecasting (b) and

backcasting (c)

performance
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zip-lock bag. Sediment organic content was deter-

mined using the standard loss-on-ignition approach:

dried homogenised sub-samples (85�C, 45–60 h; dry

mass ca. 25 g) were combusted in a muffle furnace for

5 h at 550–600�C. Proportion of fine sediment (% dry

mass of particles with diameter \0.125 mm) was

determined by wet-sieving samples across a stack of

sieves with mesh diameters of 0.5, 0.25 and

0.125 mm. Surface water depth was measured using

a ruler at two points 1 m apart, and the mean depth

was used in subsequent analyses. A 4 m2 quadrat was

photographed using a digital camera and subsequently

scored on-screen using a 100-cell grid for percent

water cover (0–100%). Some points fell in eelgrass

(Fig. 1a). Distance to eelgrass and eelgrass density

were not used in modelling since they were strongly

correlated with surface water depth and regionally,

many sites used by Dunlin have no eelgrass.

Generation of landscape variables

To permit digital distribution mapping, the original

physical point-data were interpolated over the entire

study area (Supplementary Table 1). Given the

prevalence of smooth and continuous environmental

gradients in the intertidal zone, kriging was the

interpolation method used (Herman et al. 2001). The

interpolated values were used in modelling. Tidal

channels (C2 m wide) and shoreline were digitized

from aerial photographs taken in 2003 provided

by the Vancouver Port Corporation. Distances

(DistChan and DistCover) were derived from contin-

uous surfaces generated in ArcGIS 9 Spatial Analyst.

Tidal elevation (Elev) was obtained from a LiDAR

tidal elevation model provided by the Geological

Survey of Canada. All spatial data were resolved at

100 m. Distance to tide-line (DistTide) represented

the difference between tidal elevation of a focal

point and position of the tide measured at the near-

by Tsawwassen tidal gauge (http://tbone.biol.sc.edu/

tide/) at the time of observation.

Model selection, testing and implementation

in GIS

Dunlin distribution was modelled using logistic

regression. Data were coded as presence/absence (1/

0) due to pronounced aggregative tendencies in

foraging shorebirds (Yates et al. 2000; Granadeiro

et al. 2004) and thus strong non-independence among

count units. The probability of use by Dunlin of a ca.

3 ha habitat unit during 20 min reflected the

Fig. 1 continued
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instantaneous probability of use. The probability of

dropping deposition in a 16 m2 quadrat between the

emersion of the intertidal location and the end of a

20-min observation captured the cumulative proba-

bility of use (McCurdy et al. 1997) of a location by

Dunlin throughout a receding and mid-low/rising

tide. Day and night data were analysed separately

because the distribution of shorebirds may change

considerably between day and night (Gillings et al.

2005; Beauchamp 2007a).

Thirteen a priori models (Table 1) represented

alternative hypotheses describing Dunlin distribution.

Initially, predictors were explored to remove inter-

correlated (rp [ 0.7) or potentially useless variables

(Guthery et al. 2005) within the four factors (i.e. food

abundance, availability, predation danger and tem-

poral). At least one variable per factor was kept to

distinguish among different hypotheses. Importance

of quadratic terms, standardised by the mean, was

tested for all predictors (Granadeiro et al. 2004).

Interactions between Julian date, Tide, Time and

DistCover and each of the other predictors were

tested to address possible changes in habitat selection

along the temporal and predation danger gradients.

Only those quadratic and interaction terms suggesting

a consistent effect on the response were included in

the final candidate models, which were ranked based

on their AICc and Akaike weights (x) (Burnham and

Anderson 2002). To qualitatively assess the effect of

model complexity on overfitting, we selected two

models for further evaluation from each candidate

confidence set (AICc B 4): the structurally simplest

model and the model with the highest discriminatory

capacity (see below). Importance of predictors was

assessed by summing up respective model weights

across the entire set.

Table 1 Candidate models of intertidal distribution of Dunlin with the number of independent predictors and hypothesis tested

Models Predictorsa Hypothesisb

1 Food abundance 4 Distribution is driven by food abundance

2 Food availability 3 Distribution is driven by food availability

3 Food abundance ? Food availability 7 Food abundance and availability drive distribution

in an additive manner

4 Predation 1 Birds always select safer sitesc

5 Food abundance ? Food availability ?

Predation

8 Birds trade-off richer sites for safer sites or vice versa

depending on individual condition

6 Food abundance ? Predation 6 Distribution is described in terms of a trade-off between

food abundance and predation danger

7 Food availability ? Predation 4 Distribution is described in terms of a trade-off between

food availability and predation danger

8 Food abundance ? Temporal ? Predation 9 Trade-off between food abundance and predation danger

has a temporal (or density-dependent) component

9 Food availability ? Temporal ? Predation 7 Trade-off between food availability and predation danger

has a temporal (or density-dependent) component

10 Food abundance ? Food availability ?

Temporal

10 Food abundance and availability drive distribution in an

additive manner but the pattern changes with season

and/or population density

11 Food abundance ? Food availability ?

Temporal ? Predation

11 All four factors collectively shape distribution

12 Temporal 3 Bird distribution depends on tide movement and total

population

13 Null 1 Distribution co-varies with no predictors

a Not all initial predictors appeared in final models
b All models assume presence of food sufficient to elicit numeric response throughout the study system (Goss-Custard et al. 2006)
c The model assumes that food abundance and availability are high enough to no longer affect intake rates and thus aggregation (Gill

et al. 2001; Goss-Custard et al. 2006)
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Model discriminatory capacity and overfitting

Models were trained using the full training dataset,

i.e. the 242 points collected in 2005–2006. The data-

optimised discriminatory capacity of the models was

evaluated using the area under the curve (AUC) of

the probability threshold-free receiver operating

curves. Boot-strapping was employed to assess the

amount of overfitting and subsequently obtain a more

realistic evaluation of discriminatory capacity

(Vaughan and Ormerod 2005). Parameter coefficients

of each selected structural model were re-trained on a

50% random subset of the data. The AUCtrain value

was calculated, simulating the assessment of the data-

optimised discriminatory capacity. The trained model

was then applied to the set-aside 50% of the data and

the respective AUCtest value was calculated. This

simulated application of the model to independent

data under identical conditions. The amount of

overfitting in model performance due to data optimi-

sation can be expressed as AUCtrain – AUCtest. The

process was repeated 50 times and the mean overfit-

ting estimate was subtracted from the data-optimised

AUC values of the respective models developed from

the full dataset to obtain a more realistic picture of

their performance. Models with AUC = 0.7–0.9 are

considered useful in conservation applications

(Boyce et al. 2002).

Temporal transferability—discrimination

For assessing forecasting capacity, scaled-down bird-

and dropping-sampling using the same field methods

was carried out on Roberts Bank a year later (15

December 2006–5 April 2007, Fig. 1b). Continuous

surfaces of predicted probabilities of use by Dunlin

were generated in ArcGIS 9 Spatial Analyst via

reverse logistic transformation. The respective

response- and period- (i.e. day or night) specific

models were applied to the previously generated

spatial data and temporal variables specific to the

day/tidal stage at which the new records were

obtained. Agreement between the predicted proba-

bility of use and recorded occurrence was assessed

using AUC. If the models transferred well, i.e. could

adequately predict Dunlin distribution in 2006–2007,

the AUC [ 0.7 was expected.

To assess backcasting capacity, Dunlin telemetry

locations collected on Roberts Bank in the boreal

winters of 1995–1996 and 1997–1998 were used (see

Shepherd and Lank 2004 for details) (Fig. 1c). Radio-

tagged Dunlin were tracked throughout a tidal cycle

and their positions were determined to ca. ±100 m.

To be conservative about positional accuracy, we

used only intertidal locations within 2.5 km of a

telemetry station. Because different sample sizes of

locations were available per individual (range 1–24),

locations were weighted to sum to 1 for each Dunlin

(Apps et al. 2004). Model testing was conducted

within a minimum convex polygon encompassing all

telemetry locations buffered by 200 m (Fig. 1c).

Predicted probabilities of use were generated as

above. The area within the polygon was reclassified

into 10 quantiles—equal-area classes of predicted

probability of use. The sum of weights of locations

falling within each quantile was tabulated with the

expectation that progressively more individuals

would occur in higher-ranked quantiles. If the models

transferred well, the ranked probability of use would

be positively correlated with the sum of weights of

individual locations (rs [ 0.7) (Boyce et al. 2002;

Apps et al. 2004). All selected telemetry locations

were used to assess the models of cumulative

probability of use, since they reflect intertidal Dunlin

distribution during all tidal stages. Only locations

detected at tidal height B2.4 m were used to test the

models of instantaneous probability of use, since they

represent Dunlin distribution around mid-low tide.

Temporal transferability—calibration and amount

of use

While AUC and rs are widely used to assess the

performance of distribution models, they measure

discrimination, i.e. the capacity of a model to

correctly rank sites, but not calibration, i.e. whether

the species will be detected eight out of 10 times in

an area with predicted probability of 0.8 and whether

this is twice as much as for a site with probability of

0.4 (Harrell et al. 1996). Accepting the assumption

that modelling output correctly reflects the occur-

rence on the ground without explicitly testing it, may

lead to erroneous conclusions. Model calibration was

assessed only for the forecasting data, since both

presence and absence locations were available (Barry

and Elith 2006). Prevalences (proportions of positive

cases) were regressed against probabilities (break

values) of the 10 quantiles produced as above. A
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perfectly calibrated model, where the predicted

probability of use corresponds to the proportion of

positive observations, would produce a regression

with a slope of 1 and intercept of 0 (Vaughan and

Ormerod 2005).

Finally, while we did not directly model abundance

due to the strong propensity of shorebirds to aggregate,

we did explore the relationship between the probabil-

ity of use and the actual amount of use, to extract more

information from the data. The ten quantiles described

above were used to assess the relationship. Here the

probabilities—quantile break values—were regressed

against either the average density of Dunlin or Dunlin

droppings (forecasting) or against the sums of

weighted telemetry location (backcasting) within a

quantile as appropriate. If predicted probabilities

match the amount of use, a strong positive relationship

between these variables is expected.

Results

Dunlin distribution

By day, Dunlin often congregated in a few large

mobile flocks (mean ± SD bird density 85 ±

264 ha-1, dropping density 10 ± 17 quadrat-1,

n = 83), which tracked the tide-line, although some

birds consistently remained near the shore. By night,

Dunlin foraged in small, broadly dispersed groups

(bird density 12 ± 42 ha-1, dropping density 1 ±

4 quadrat-1, n = 152).

Day-time instantaneous probability of mudflat use

was associated with, in order of importance: lower

percent water cover, intermediate distance from

cover, higher sediment organic content, and closer

distance to tide-line. The best confidence set (2

models, sum of AIC x = 0.95) also included the

position of tide (Tide) with a weak positive effect

(Table 2; Fig. 2a).

At night (2 models, sum of AIC x = 0.98), the

instantaneous probability of detecting a Dunlin

increased with deeper surface water and when the

tide was higher up-shore. It also decreased towards

the end of season, and increased with proximity to

tidal channels and sediment organic content. There

was a weak positive effect of distance from cover.

The effect of surface water depth was confounded

with those of Julian date and tidal height: Dunlin

were more likely to use locations with deeper water

(\15 cm) later in the season, but shallower (more

drained) sites when the tide was higher up-shore

(Table 2; Fig. 2b).

Cumulative probability of mudflat use by day (2

models, sum of AIC x = 0.95), as expressed by

dropping occurrence, was associated with intermedi-

ate distances from cover; it increased with proportion

of fine sediment, lower water cover, greater time

since emersion and proximity to tide-line (Table 2;

Fig. 2c).

There was much uncertainly about the best night

model predicting the cumulative probability of mud-

flat use (5 models, sum of AIC x = 0.88). At night

droppings were more likely to be found in areas with

intermediate surface water cover. Sediment coarse-

ness, time since emersion, and distance to cover were

retained but had uncertain effects on the response

(Table 2; Fig. 2d).

Residual tests and overfitting

No model residuals correlated significantly with the

environmental variables or illumination (rp \ 0.1,

P [ 0.20). Nor was there significant residual auto-

correlation (Moran’s I -0.041 to 0.010, P-values

[0.1; lag 400 m, min 20 point-pairs lag-1). Overfit-

ting (range 0.04–0.13 AUC) strongly increased with

the number of predictors in the model (Table 3;

Fig 3).

Forecasting discriminatory capacity

After correction for overfitting, only the cumulative

night models (i) and (ii) were not expected to yield

acceptable discriminatory capacity. Instantaneous

day models predicted that presence locations would

receive higher ranking than absences in 76% of cases.

When applied to 2006–2007 data, day models

produced AUC values \0.7 (Table 3). Night models

were expected to correctly classify 71–74% of

presence/absence locations, but yielded AUC values

of 0.61 (Table 3). Predicted distribution maps sug-

gested that the failure of night models was associated

with misclassifying apparently suitable locations,

places that were visited by Snowy Owls in 2005–

2006, but not in 2006–2007 (Fig. 2b). This implies

that night distribution in 2006–2007 was broader and

more similar to day than the models (based on 2005–
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2006 data) suggested. To test this hypothesis, day

models (i and ii) were applied to the combined day

and night testing data. In both cases, increased AUC

values (0.71) were obtained. The reverse was not

true: night models performed poorly on the combined

dataset (Table 3).

Fig. 2 Predicted probabilities of habitat use by Dunlin at mid-low tide

Table 3 Predictive capacity of models of instantaneous and cumulative probability of mudflat use by Dunlin

Model Overfitting Corrected AUC Forecasting Backcasting

AUCtrain – AUCtest (AUC) (rs)

Instantaneous, day, i 0.07 0.76 0.68/0.71 0.61/0.72*

Instantaneous, day, ii 0.08 0.76 0.65/0.71 0.69*/0.76*

Instantaneous, night, i 0.05 0.74 0.61/0.57 0.41/0.08

Instantaneous, night, ii 0.10 0.71 0.61/0.52 0.65*/0.60

Cumulative, day, i 0.07 0.75 0.71/0.68 0.79**/0.88**

Cumulative, day, ii 0.07 0.79 0.70/0.73 0.93***/0.94***

Cumulative, night, i 0.05 0.60 0.59/0.52 0.27/-0.22

Cumulative, night, ii 0.13 0.54 0.67/0.68 0.16/-0.27

For backcasting predictive capacity Spearman rank correlation coefficients significant at P \ 0.05,\0.01, and\0.001 given as ‘*’,

‘**’ and ‘***’, respectively. Two forecasting AUC values and rs indicate results of application of the models to respective (day

model to day data) and total (day model to day ? night data) datasets. Values in bold C0.70
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Day models of cumulative probability of use were

expected to correctly classify 75–79% of locations.

Their application to the test dataset indicated a lower,

but still useful discriminatory capacity (Table 3). As

expected both night models failed to clear the 0.7

threshold given their low overfitting-corrected AUCs.

Similar to the instantaneous probability of use, we

applied cumulative day and night models to the

combined dataset with a similar outcome: day models

produced acceptable AUC values; night models did

not (Table 3).

Backcasting discriminatory capacity

In backcasting application, day and night models of

instantaneous probability of use had poor accuracy

(Table 3). Examination of the mapped distribution of

night locations of radio-tagged Dunlin suggested that

the night models under-predicted probability of use

(Fig. 2b). Similar to our approach above, the day and

night models were tested against the combined

dataset of telemetry locations. Day models showed

much improved performance on the combined data-

set, while night models did not. A similar outcome

was obtained for the cumulative probability models

(Table 3).

Model calibration and the relationship between

the probability and amount of use

Since only day models performed well in both fore-

and backcasting and best on combined datasets,

further testing was carried out by applying these

models to the combined day/night data. Instantaneous

probability of use models displayed good calibration:

rp [ 0.8, slope and intercept not significantly differ-

ent from 1 and 0 respectively. The cumulative

probability of use models performed worse, suggest-

ing over-prediction (i) and over-prediction and

overfitting (ii, slope \1) (Fig. 4).
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Asymptotic, exponential, linear, and power

relationships between the predicted probability and

the actual amount of use were explored (Fig. 5).

Asymptotic and exponential regressions produced

best fits between the amount of use and instantaneous

and cumulative probabilities of use, respectively

(Fig. 5a, b).

Discussion

As far as we know, this work is the first to develop

models of shorebird distribution for a non-breeding

site that are amenable to GIS applications, capture a

near-complete range of environmental conditions

across a foraging intertidal landscape, incorporate

factors hitherto shown to be important drivers of

shorebirds distribution, and have been tested using

independent data and display acceptable temporal

transferability.

Dunlin distribution was strongly associated with

landscape physical properties known to influence

food abundance, availability and predation danger

(Model 5—Table 1; Yates et al. 1993; Dekker and

Ydenberg 2004; Granadeiro et al. 2004; Lourenço

et al. 2005; Taft and Haig 2006; Pomeroy 2006) with

a weaker temporal effect. Dunlin distribution differed

between day and night when Snowy Owls invaded

the area (resident nocturnal owls—Barn Owl (Tyto

alba) and Great Horned Owl (Bubo virginianus)—
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were never observed over mudflats). When the

predators were absent the night models developed

from the owl-year data biased the probability of

habitat use low, suggesting that the shorebirds

modulated (shrunk) their distribution in response to

increased predation danger (Brown et al. 1988). In

2005–2006, owls attacked Dunlin from the shoreline,

which provided cover and vantage points for the

predators or when patrolling the mudflats (pers. obs).

This pushed Dunlin away from shore into more

exposed or otherwise safer areas, a typical food-

safety trade-off (Whitfield 2003; Pomeroy 2006). In

1995–1996, 1997–1998 and 2006–2007 Snowy Owls

were absent, and nocturnally active Dunlin utilised

richer up-shore habitat (Pomeroy 2006), making their

distribution pattern more day-like. That Dunlin

modulated their distribution pattern with respect to

predation danger was also evident from their use of

the adjacent agricultural fields. Dunlin were regularly

detected at night in fields in the owl-less years of

1995–1996, 1997–1998 and 2006–2007, but few were

recorded there in 2005–2006 (Shepherd and Lank

2004; pers. obs.). Illumination explained no addi-

tional variance in the night distribution of Dunlin

implying that lighting (artificial from the port and

natural from the moon) did not alter the food-safety

trade-off, as might have been expected if the owls

selectively exploited darker areas to hunt for the
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species with poor night vision (Mouritsen 1992).

Unlike falcons (below) owls did not venture far from

shore and thus Dunlin avoided the shoreline rather

than areas with lower illumination. This pattern is

consistent with the behavioural response of many

other species, including shorebirds, to night predators

(Brown et al. 1988; Mouritsen 1992; Gillings et al.

2005; Beauchamp 2007a).

By day, Dunlin were hunted by falcons over the

entire mudflats, although more successfully near the

shore. In contrast to night, however, the shorebirds

were capable of early visual detection of the preda-

tors (Dekker and Ydenberg 2004). This evidently

lowered their perception of danger as compared to

night, explaining why day-time Dunlin distribution

was broader (closer to shore). This component of the

predator landscape, to which Dunlin responded by

aggregation into larger groups (Beauchamp 2007a),

was annually constant and had no bearing on model

transferability.

Dunlin did not alter habitat use with changes in

forager density. Seasonally, the local population of

Dunlin increases three-fold from ca. 8,000 in Decem-

ber to ca. 24,000 in April. The maximum daily

available mudflat area varied two-fold (1,250–

2,460 ha). These changes could produce six-fold

differences in the mudflat-wide Dunlin density.

Whitfield (2003) found that at increased population

densities more Redshanks (Tringa totanus) were

forced into habitat suboptimal in terms of safety.

We found no positive seasonal and weak positive

tidal effects on the probability of habitat use. Thus, in

the short-term, as the population increased (or area

decreased) Dunlin aggregated at higher densities at

preferred sites (Taft and Haig 2006).

Sites more likely to be used by Dunlin also

afforded a greater amount of use. The asymptotic

relationship with the instantaneous probability of use

suggested that density was limited by factors different

from those defining occurrence. Such factors could

include predators (Beauchamp 2007a) and prey

availability (Gill et al. 2001). The exponential rela-

tionship between dropping density and cumulative

probability of use reflects the slightly sigmoid profile

of the mudflat and the first accelerating and then

decelerating speed of the ebbing tide. Thus, high-

quality areas located up-shore experience dispropor-

tionately greater Dunlin densities, and for longer,

early at a receding tide. This also occurs at slack-tide

when the birds congregate around the tide-line due to

greater food availability (Zwarts and Wanink 1993)

and safety (Dekker and Ydenberg 2004).

No significant residual autocorrelation was

detected, suggesting that the sets of predictors were

‘‘sufficient’’ for model specification and not spurious

(Barry and Elith 2006). The wealth of knowledge

available on non-breeding shorebirds should allow

specification of intertidal distribution models for

many species, including, Western Sandpiper: another

Calidrid that uses Roberts Bank on migration (Elner

et al. 2005; Kuwae et al. 2008).

As did others (Boyce et al. 2002; Betts et al. 2006),

we found that data-optimised AUCs overestimate

model performance. In distribution modelling, the

ratio of C10:1 presence data points to predictor is

thought to be optimal (Barry and Elith 2006). Indeed,

this ratio produced the lowest overfitting values.

However, the ultimate predictive performance of the

models was not related to sample size of presence

locations, suggesting that selection of appropriate

predictors may be more important than prevalence.

When distribution models are visualised in GIS,

predicted probabilities are implied to represent occur-

rence frequencies. However, model calibration has

been rarely tested (Vaughan and Ormerod 2005). Our

models of instantaneous probability of use are well-

calibrated, but cumulative probability models tend to

over-predict the probability of use. The detectability

of Dunlin droppings may be an issue. Over the study

period on average 6 mm of rain fell on 82% of days

and some droppings may have been dissolved. This

inflated the level of uncertainty in the models of

cumulative probability of use and resulted in over-

prediction in the model-testing exercise because in

December 2006–April 2007 70 mm more rain fell

than in the corresponding period of 2005–2006.

Conclusions

Physical and topographic properties of a landscape can

be utilised to predict shorebird distribution. However,

it is important to consider the predator landscape at the

time of model development and application (Gillings

et al. 2005). Once night predators are taken into

account the models display good temporal transfer-

ability in this species with broad habitat affinities. The

models are temporally robust and are not sensitive to
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field methodology (visual observations versus radio-

telemetry). They can predict areas preferred by Dunlin

at mid-low tide, when a broad expanse of habitat is

available (instantaneous probability of use) and iden-

tify areas where birds aggregate at a receding tide

(cumulative probability of use), providing a compre-

hensive picture of habitat use.

Good retroactive performance of the models

implies stable physical conditions in the study area

over the past 12 years. A proposed expansion of the

port on Roberts Bank could change the physical

landscape. Changes such as in mudflat topography,

shoreline extent and configuration can be accurately

modelled in GIS. The models developed in this study

can be adapted to map shorebird areas that could be

directly impacted by the development. Further, they

could be used to assess and visualise in GIS the

indirect impacts of the development on shorebird

distribution on the landscape. For example, lateral port

terminal expansion (Fig. 1a) would effectively

increase the shoreline extent (amount of cover), thus

decreasing the mudflat area available to shorebirds due

to increased predation danger, even if the physical

mudflat extent remained unaltered. According to our

models, Dunlin would respond by redistributing to

‘‘safer’’ parts of the mudflat, thus at least initially

maintaining local population levels. Whether such

habitat alienation could have negative local population

consequences would depend on the extent of habitat

loss, tolerance of Dunlin to crowding, rates of benthic

prey depletion/replenishment (Zharikov and Skilleter

2003; Beauchamp 2007b) and suitability of alternative

sites. Answering this question would require behav-

iour-based modelling (Durell et al. 2005) and such

work is forthcoming. For predictors for which only

relative change can be assessed (e.g. sediment organic

content), a range of scaling factors may be used

uniformly over the impacted area, still yielding

plausible response scenarios.

In the longer term, Roberts Bank, indeed coastal

areas globally, will experience the consequences of

rising sea-level, including erosion and migration of the

shoreline, sediment coarsening and mudflat area

reduction. Some impacts have been modelled at

spatial scales compatible with the scale of the study

(e.g. salt-marsh erosion, Kirwan and Murray 2008).

Other changes, such as relative extent and position of

lower (sandy), mid (mud-sand) and upper (muddy)

intertidal zones may only allow semi-quantitative

predictions (Hill in press). Our models could be used

in conjunction with site-level coastal process models

to assess and visualise impact of these changes on non-

breeding shorebirds, a taxon particularly vulnerable to

climate change impacts (Piersma and Lindstrom

2004), providing input for mitigation planning.
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