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Abstract Pollen dispersal is a critical process

defining connectivity among plant populations. In

the context of genetically modified (GM) crops in

conventional agricultural systems, strategies based on

spatial separation are promoted to reduce functional

connectivity between GM and non-GM crop fields.

Field experiments as well as simulation studies have

stressed the dependence of maize gene flow on

distances between source and receptor fields and on

their spatial configuration. However, the influence of

whole landscape patterns is still poorly understood.

Spatially explicit models, such as MAPOD-maize,

are thus useful tools to address this question. In this

paper we developed a methodological approach to

investigate the sensitivity of cross-pollination rates

among GM and non-GM maize in a landscape

simulated with MAPOD-maize. The influence of

landscape pattern on model output was studied at the

landscape and field scales, including interactions with

other model inputs such as cultivar characteristics

and wind conditions. At the landscape scale, maize

configuration (proportion of and spatial arrangement

in a given field pattern) was shown to be an important

factor influencing cross-pollination rate between GM

and non-GM maize whereas the effect of the field

pattern itself was lower. At the field scale, distance to

the nearest GM maize field was confirmed as a

predominant factor explaining cross-pollination rate.

The metrics describing the pattern of GM maize in

the area surrounding selected non-GM maize fields

appeared as pertinent complementary variables. In

contrast, field geometry and field pattern resulted in

little additional information at this scale.

Keywords Cross-pollination � Global sensitivity

analysis � Landscape metrics � Multi-scale analysis �
Pollen dispersal

Introduction

Pollen movement is a critical process in the func-

tional connectivity among plant populations in patchy
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landscapes (Sork et al. 1999). Connectivity here

refers to gene flow between two populations.

Whereas connectivity plays a fundamental role for

the dynamics of natural population it is problematic

in agriculture where the objective is to maintain the

purity of cultivars. This concern is especially acute in

Europe where an EU regulation (EC 1829/2003)

stresses the necessity to ensure co-existence between

genetically modified (GM) and non-genetically mod-

ified (non-GM) supply chains and establishes a 0.9%

threshold for maximum admissible level of mixing

GM material with conventional material. Maize is a

major crop in Europe and is the only GM crop

commercially grown there. Accurate prediction of

maize gene flow is thus needed to compare coexis-

tence scenarios of GM and non-GM maize under

various production systems and landscape features.

Maize pollen is mainly dispersed by wind (Bat-

eman 1947a), and the basic processes leading to

connectivity between two fields are well understood.

Numerous field experiments have shown that most

pollen is transported over short distances (i.e. less

than a few hundred meters), although longer dispersal

distances (more than 500 m) may occur (Bateman

1947b; Paterniani and Stort 1974; Raynor et al.

1972). Additionally, the spatial arrangement of

individuals and the sizes of donor and receptor

populations have an influence on the probability of

field-to-field cross-pollination (here defined as polli-

nation of non-GM individuals by GM pollen). A

meta-analysis on gene flow data for oilseed rape

indicated that the width of the recipient field relative

to the pollen-source field has a large effect on the

proportion of GM pollen received by the recipient

field (Damgaard and Kjellsson 2005). Recent simu-

lation studies that used a fat-tailed power-law

dispersal kernel between two fields of oilseed rape

also stressed the influence of source width and

recipient depth on cross-pollination rates (Klein

et al. 2006).

Situations are more complex at the landscape scale

with a large number of interacting fields and a

diversity of spatial arrangements of fields. A detailed

understanding of the impact of landscape patterns

on cross-pollination among fields is thus required

to define management strategies to protect the

purity of varieties. However, few datasets are avail-

able to address this question yet. Simulation studies

with spatially explicit gene flow models such as

MAPOD-maize (Angevin et al. 2008; Lavigne et al.

2008) offer an alternative. Those gene flow models

account for factors such as crop characteristics,

agricultural techniques, climatic conditions and the

spatial pattern of crop fields. Global sensitivity

methods are necessary to take into account these

different input variables and parameters as well as

their variability (Saltelli et al. 2000). Applied to

spatially explicit models, such methods can describe

the sensitivity of model output to variation among

landscapes (Crosetto et al. 2000), and determine

which spatial variables have the most influence on

certain predictions (Jager et al. 2005) or their inter-

action with other variables or parameters. Colbach

et al. (2005) used such methodological framework to

address the spatial sensitivity of an oilseed-rape gene

flow model to landscape pattern, considering cross-

pollination to a central non-GM maize field and using

a limited number of field patterns (i.e. the spatial

structure of fields). However, the critical point to fully

capture the relationship between landscape pattern

and cross-pollination is to be able to generate a set of

landscapes reflecting the diversity found in agricul-

tural areas where GM maize is or may be cultivated.

This landscape diversity arises from field patterns and

from the spatial arrangement of GM and non-GM

crops within the field pattern.

The aim of this study was to develop a method-

ology to assess the sensitivity of the gene flow model

MAPOD-maize to landscape characteristics. Land-

scape pattern, here defined as the combination of field

pattern and spatial arrangement of GM and non-GM

crops in the field pattern, was incorporated into the

sensitivity analysis as an explicit input factor. Its

influence on model output at the landscape and the

field scale was investigated, as were its interactions

with other model inputs such as cultivar character-

istics and wind conditions. In addition, the relative

importance of metrics describing the local environ-

ment of individual non-GM maize fields was

investigated.

Material and methods

MAPOD-maize model

MAPOD is a spatially explicit model simulating

cross-pollination in agricultural landscapes on a daily
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time-step with a quasi-mechanistic approach

(Angevin et al. 2008). During the flowering period

pollen is dispersed from each field using an individual

Normal Inverse Gaussian dispersal function (Klein

et al. 2003). The model uses various types of input

data: (1) a landscape pattern delineating the agricul-

tural fields in vector format and transformed into a

regular square grid of ‘GM maize’, ‘non-GM maize’

or ‘non-maize’ pixels; (2) daily climate data such as

wind data; (3) agricultural practices on each field

such as sowing date and density; (4) cultivar char-

acteristics such as the quantity of pollen per plant, the

precocity in growing degree days, the heterozygosity

of GM cultivars, or the difference in height between

male flowers and female flowers of maize. The main

output results are the expected proportion of total

seeds that are hybrid at harvest (cross-pollination

rate) for each non-GM pixel.

Main features considered

A set of contrasting landscapes was generated using

real-world field patterns. They differed in field shapes

and sizes, GM and non-GM maize areas and crop

spatial arrangement. The characteristics of the pollen

dispersal curve were studied indirectly through the

difference in height between male flowers and female

flowers of maize, which influences the distances of

GM pollen dispersal and the probability of its recep-

tion by non-GM individuals (Klein et al. 2003). Wind

speed and direction were also considered. Flowering

dynamics were not varied. Consequently, we simu-

lated the maximum risk of cross-pollination, since GM

and non-GM cultivars were assumed to flower simul-

taneously (Romary 2005).

Factorial simulation design

A complete factorial design (Campolongo and Sal-

telli 2000) was built with the input factors described

below, requiring 5760 simulation runs.

Landscape factors

Field pattern (Map) Six 1500 9 1500 m contrasting

real-world field patterns located in France were

chosen. They differed in the configuration of field

size, shape and arrangement (Table 1).

Maize area (Maiz) and GM-maize area (GM) Total

maize area was set to either 70% or 20% of the

agricultural land, simulating French production areas,

where maize is or is not a major crop. GM maize area

was set to either 10% or 50% of the total maize area,

simulating low or high acceptance of GM maize by

farmers.

Maize spatial arrangement (Aggr) In some

agricultural areas, maize fields are clustered due to

soil constraints, water availability for irrigation or

farm organization. Farmers may either collectively

decide to isolate GM from non-GM maize fields by

allocating them to different areas or to grow GM

crops on an individual basis. Consequently, three

spatial arrangements of maize fields were considered:

(1) random distribution of non-GM and GM maize

fields; (2) aggregated distribution of maize with non-

GM and GM maize fields in different areas; (3)

aggregated distribution of maize with non-GM and

GM maize fields mixed within aggregates (Fig. 1).

The four factors Map, Maiz, GM and Aggr resulted

in 72 (6 9 2 9 2 9 3) combinations. Ten allocations

of GM and non-GM maize to fields were randomly

generated for each combination under the constraints

induced by the factors Maiz (±5%), GM (±5%), and

Aggr. One allocation among the ten was selected after

visual inspection.

Grid cell size (Step)

Two grid cell sizes were considered: field patterns

were divided into either 5 9 5 m or 10 9 10 m

regular square grids.

Ratio between GM and non-GM pollen production

per unit area (Poll)

The ratio between the quantities of pollen produced

by GM and non-GM cultivars per unit area was set to

either 0.33 or 3.75. These values represent the large

range of possible ratios when considering the range of

sowing densities and pollen productivity in France,

according to experts consulted at GEVES (Groupe

d’Etude et de Contrôle des Variétés et des Semences:

French group for the study and inspection of varieties

and seeds) and other technical institutes.
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Difference in height between male flowers

and female flowers of maize (Heig)

According to measurements of 30 cultivars, the

difference in height between male flowers and female

flowers of maize varies between 0.83 and 1.52 m.

Two levels were considered: 0.8 m and 1.75 m,

assumed to be equal for GM and non-GM maize

(GEVES, pers. comm.)

Wind direction (Wdir) and speed (Wspe)

Ten different conditions during pollen dispersal were

studied, combining wind speed and direction: (1) no

wind, implying isotropic dispersion; (2) (3) (4) (5) a

4 ms-1 wind uniformly blowing from each on the

four cardinal points (North, East, South, West); (6) a

4 ms-1 wind blowing from each of the four cardinal

points for equal proportions on each day; (7) (8) (9)

(10) a 14 ms-1 wind uniformly blowing from each of

the four cardinal points. The latter correspond to an

extreme wind speed.

MAPOD-maize simulations and response

variables

MAPOD output was integrated into response vari-

ables at two different scales. At the landscape scale,

the response variables of interest were the average

cross-pollination rate of all non-GM maize cells by

GM pollen and the proportion of non-GM maize

fields whose average cross-pollination rate by GM

pollen was higher than 0.9% (EU threshold) or 0.1%

(detection threshold). At the field scale, the response

variables of interest were the average GM

cross-pollination rates of each non-GM field and a

binary response yx indicating whether average

cross-pollination rate y was higher than a targeted

threshold x% or not: yx = 1 if y [ x, yx = 0 if y B x.

We focused on two values of yx, y01 and y09,

corresponding to the thresholds 0.1% and 0.9%

respectively.

Additionally, geometry and environment of non-

GM maize fields were described for each simulation.

Area (Area), perimeter (Peri), main orientation (Orie)

and elongation (Elon) of the non-GM maize fields

were calculated. The main orientation was defined as

a categorical variable with three modalities: ‘‘no

preferential orientation’’; ‘‘North–South’’; ‘‘East–

West’’. Elongation was defined as the ratio between

the largest and shortest widths of a field.

The environment of non-GM maize fields with

respect to pollen sources was characterized with two

metrics: the surrounding surface area occupied by

GM or non-GM maize and the distances to the

nearest GM or non-GM maize fields.

Fig. 1 Maize spatial

organization simulated on

field map P1. Gray fields

indicate non-GM maize,

black fields indicate GM

maize, and non-shaded

fields indicate non-maize

land uses
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The surface areas of GM and non-GM maize

within 20, 50 and 100 m-wide buffers around each

non-GM maize field, were calculated. The GM and

non-GM maize areas were also calculated within 20,

50 and 100 m-wide ‘‘orientated buffers’’ restricted to

locations within ±45� of lines extending from each

pixel in the field towards the origin of the dominant

wind (Fig. S1). Note that in simulations with no

dominant wind direction, orientated buffers were the

same as non-orientated ones.

Several metrics were then calculated from these

measures. Let be x1 = 20, x2 = 50 and x3 = 100, let

bx0 denote the area of the non-GM maize field F, and

for i = 1, 2 or 3 let bxi denote the total area of F plus

its xi-meter-wide buffer. In addition let bxi.gm and

bxi.ngm denote the corresponding sub-areas occupied

by GM and non-GM maize respectively (so that

bx0.gm = 0 and bx0.ngm = bx0), and let obxi, obxi.gm

and obxi.ngm denote the same quantities for the

orientated buffers. The following quantities were

calculated:

(1) buffer area proportion of GM and non-GM

maize

pbxi:gm ¼ bxi:gm� bxi�1:gm

bxi � bxi�1

and

pbxi:ngm ¼ bxi:ngm� bxi�1:ngm

bxi � bxi�1

;

(2) GM maize ratio within buffers

rxi:gm ¼ bxi:gm

bxi:gmþ bxi:ngm
;

(3) GM maize ratio within orientated buffers

orxi:gm ¼ obxi:gm

obxi:gmþ obxi:ngm
;

where rxi.gm and orxi.gm are more synthetic mea-

sures than pbxi.gm since they give the proportions of

GM area versus total maize area within xi meters

from field F, including F.

Four different euclidean metrics were used to

describe the distance to the nearest GM and non-GM

maize fields: edge-to-edge distance (de.gm), centroid-

to-centroid distance (dc.gm), edge-to-edge ‘‘orien-

tated’’ distance (ode.gm), and centroid-to-centroid

‘‘orientated’’ distance (odc.gm). Like for the buffers,

orientated distance was defined as the distance to the

nearest field in the direction of the dominant wind

±45�. The same variables were calculated for the

distance to the nearest non-GM maize field (de.ngm,

dc.ngm, ode.ngm, odc.ngm).

Statistical analyses

To avoid edge effects only the fields with more than

50% of their area further than 100 m from the map

edge were kept in the statistical analyses, since the

non-GM maize fields located on the borders of the

field map were expected to receive less pollen than

more central fields. The sizes of the non-GM maize

fields kept in the statistical analyses ranged from 0.25

to 11.70 ha. Grid cell size appeared to have negligi-

ble effects on simulated cross-pollination rates.

Hence, analyses were restricted to the 2880 simula-

tions performed with the smaller cell size (5 9 5 m).

Landscape scale

The objectives were to assess the global range of

cross-pollination rates across simulated situations and

to evaluate their sensitivity to the main input factors.

Thus, graphical representations and analyses of

variance (ANOVA) were performed on three

response variables: log-average cross-pollination rate

of non-GM maize fields and proportions of non-GM

maize fields with a cross-pollination rate higher than

either 0.1% or 0.9%. Before log-transformation, the

lowest average cross-pollination rates were truncated

at the minimum value 4.53 9 10-5. The ANOVA

model combined four fixed synthetic input factors:

field pattern (Map, 6 modalities), maize pattern

(combinations of Maiz, GM, Aggr, 12 modalities),

wind condition (combinations of Wdir, Wspe, 10

modalities), and cultivar traits (combinations of Poll,

Heig, 4 modalities). A sensitivity index of each

factorial term was calculated by dividing its sum of

squares by the total sum of squares (Monod et al.

2006).

Field scale

The objectives were to assess the sensitivity of the

field-average cross-pollination rate to local field

characteristics (geometry and maize environment)

and its possible dependence on landscape features

(Map, Maiz, Gm, Aggr), wind (Wdir, Wspe) and
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cultivar traits (Heig, Poll). Thus, we first ranked field

characteristics and input factors with respect to their

influence on the risk that a non-GM field would

exceed the 0.1% or 0.9% thresholds. This was done

by random forest analyses on both y01 and y09, using

the variables for field geometry and environment and

the design factors as potential predictors. Random

forest is a data mining method based on classification

and regression trees (Breiman 2001). It is well suited

to the analysis of complex ecological data (De’ath

and Fabricius 2000). Random forests were grown on

the basis of 1000 bootstrap samples using the R

randomForest package (Breiman and Cutler 2003).

Interpretation was based on the Gini importance

criterion, which measures the decrease in a node’s

impurity every time the variable is used for splitting

(Breiman 2001).

The second step aimed to identify and compare

parsimonious logistic regression models that were

efficient for predicting the average risk that the cross-

pollination calculated by MAPOD would exceed a

given threshold. The candidate predictor variables

were the field characteristics not discarded in random

forest analysis. Model selections were performed

separately at the levels of the input factors that had

been ranked as highly influential in the random forest

procedure. In principle, stepwise selections were

performed with the Akaı̈ke information criterion

(AIC). In practice, the models minimizing AIC

contained highly correlated predictor variables and

their parameter estimates were hardly interpretable

because of confusion effects. Consequently we fur-

ther limited the size of the selected models.

In a third step, the classification performances of

the logistic models and their prediction accuracy were

assessed by Receiver Operating Characteristics

(ROC) analyses, and interactions with the field map

and input factors were introduced in the models to

check how robust they were with respect to landscape

features. Recall that the output of the logistic models

is an estimated probability P that cross-pollination

would exceed the targeted threshold x (0.1% or 0.9%).

When associated with a decision threshold (td), this

output can be used to classify the fields into two

classes: if P [ td, the field is classified as ‘‘positive’’;

otherwise, i.e. P B td, the field is classified as

‘‘negative’’. These predicted classes based on the

output of the logistic model can then be compared to

the true classes as simulated by MAPOD using several

criteria. The sensitivity or true positive rate (TP) is

defined as the number of fields with P [ td and y [ x

divided by the total number of fields with y [ x, while

the specificity or true negative rate (TN) is defined as

the number of fields with P B td and y B x divided by

the total number of fields with y B x. The ROC curve

is obtained by plotting sensitivity against the false

positive rate (1-specificity) when the decision thresh-

old td is varied from 0 to 1. The accuracy of the model

is measured by the area under the ROC curve (AUC),

which is equal to 0.5 for a non-informative model

leading to random decisions and to 1.0 for a perfect

model (Swets 1988; Makowski 2005).

Results

Landscape scale

The factorial simulation design ensured a large

diversity of simulated landscapes with regard to the

geometry and environment of non-GM maize fields

(Table S1) and resulted in a large range of simulated

cross-pollination rates over these landscapes (Fig.

S2). The average rate was null in 16 out of the 2880

scenarios due to the specific locations of non-GM and

GM maize fields and wind direction in two field maps

(maize fields were few, located near the map border,

and GM-maize fields were located leeward of the

non-GM ones, so that GM pollen was mainly

dispersed in the opposite direction). In 150 scenarios,

all non-GM maize fields in the map had cross-

pollination rates higher than 0.9%. GM-maize pro-

portion was high (50%) in all those cases, and the

ratio between GM and non-GM pollen production

was also at the higher level (3.75) in 140 of the 150

scenarios. Similarly, all non-GM maize fields had

cross-pollination rates higher than 0.1% in 402

scenarios, and GM proportion within maize was high

(50%) in most of these scenarios.

Almost all variability at the landscape scale was

explained by an ANOVA model including all main

effects, all two-factor interactions and two three-

factor interactions (Table 2; R2 = 0.99, 0.96, and

0.94 for the three response variables). As expected

from the variability of the input factors, cultivar traits

and maize pattern were the most influential factors.

The ranking of factors was similar for all three

response variables; however the relative influence of
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maize pattern was much larger for the proportion of

non-GM fields with cross-pollination over 0.9% and

even more for those with cross-pollination over 0.1%

than for the log average rate. On the contrary, cultivar

traits had much less influence on the proportions of

non-GM maize fields over a threshold than on the

log-average cross-pollination rate. Effects of maize

pattern were mainly due to the effects of Maiz, Gm,

and Aggr. The influence of field pattern was weak,

but field pattern was involved in non-negligible

interactions with maize pattern and wind factors.

Overall, the sensitivity indices including field pattern

summed to over 0.28, 0.12, and 0.19 for log-average

cross-pollination rate, proportion of non-GM maize

fields with cross-pollination over 0.9% and propor-

tion of non-GM maize fields with cross-pollination

over 0.1% respectively.

Field scale

The cross-pollination rate simulated with MAPOD

was null in 32% (21081 fields) of the non-GM maize

fields. The median cross-pollination rate was 0.003,

the mean was 0.047 and the maximum was 0.97.

Cross-pollination rate was higher than 0.1% in 57%

(38123 fields) of the non-GM maize fields and higher

than 0.9% in 40% of them.

Importance ranking of input factors

and field characteristics

According to the random forest analyses (Fig. 2), the

minimum distance to a GM maize field and the GM

maize ratios within buffers were the most important

field characteristics to predict the risk of exceeding

the 0.9% and 0.1% thresholds of cross-pollination.

The orientated versions of these field characteristics

had more influence, showing the importance of wind

direction. Additionally, edge-to-edge distances were

more relevant than centroid-to-centroid distances. A

second group consisted of the factors in the factorial

design, in particular Poll, but also GM, Wspe, Wdir

and Heig. In contrast, the distances to non-GM maize

fields and the variables describing the non-GM

environment of the fields and field geometry had

low importance. The rank of the top splitting

variables was similar for both dependent variables.

As expected, Poll had a higher Gini importance index

for y09 than for y01: only 15% of the fields had a

cross-pollination rate above 0.9% and, among them,

89% occurred in a scenario with the quantity of

pollen produced by GM maize at its highest level.

The minimum distance to a GM maize field was

more important than orientated ratios for y01, but not

for y09.

Table 2 ANOVA type I sums of squares (fixed effects) and

sensitivity indices (SI) at the landscape scale, associated with

main effects and some interactions of field pattern (Map),

maize pattern (Maiz, Gm, Aggr), wind (Wdir, Wspe), and

cultivar traits (Heig, Poll)

Factorial effects Degrees of

freedom

Log average outcrossing

rate (R2 = 0.99)

Proportion of non-GM

fields [0.009 (R2 = 0.94)

Proportion of non-GM

fields [0.001 (R2 = 0.96)

Sum of Squares SI (%) Sum of Squares SI (%) Sum of Squares SI (%)

Maize pattern 11 7591.7 34.5 313.9 55.6 365.3 62.4

Cultivar 3 6455.5 29.4 100.1 17.7 31.5 5.4

Wind 9 1053.9 4.8 15.1 2.7 25.5 4.4

Map 5 158.9 0.7 2.0 0.4 1.7 0.3

Map 9 Maize pattern 55 2820.0 12.8 18.4 3.3 29.9 5.1

Maize pattern 9 Wind 99 309.7 1.4 12.0 2.1 17.4 3.0

Map 9 Wind 45 261.4 1.2 5.9 1.0 9.6 1.6

Cultivar 9 Wind 27 35.0 0.2 5.1 0.9 4.2 0.7

Maize pattern 9 Cultivar 33 23.2 0.1 17.2 3.1 6.1 1.0

Map 9 Cultivar 15 7.9 0.0 0.3 0.1 0.3 0.1

Map 9 Maize pattern 9 Wind 495 2965.1 13.5 36.3 6.4 67.4 11.5

Map 9 Maize pattern 9 Cultivar 165 75.3 0.3 4.2 0.7 2.7 0.5

SI equals the sum of squares divided by the total sum of squares
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Interactions between the main input factors

and field characteristics

Above, GM orientated factors and the distance to the

nearest GM maize field were identified as the most

important variables to predict cross-pollination. Their

interactions with Poll and Wspe were investigated

graphically through conditioning plots (Venables and

Ripley 2002). The relationship between or100.gm

and the cross-pollination rate was approximately

linear, with a slope highly dependent on the levels of

Poll and Wspe (Fig. 3). For a given ratio of GM

maize inside the 100 m-wide orientated buffer, the

cross-pollination rate was higher and much more

variable when the ratio between GM and non-GM

pollen production was high, and it increased with

wind speed. Similar effects were observed for the

ratios in the 20 and 50 m-wide buffers. Similar but

smaller effects were also observed for interactions

with Heig.

The relationship between or100.gm and the cross-

pollination rate was much less dependent on the

levels of Map and Wdir (Fig. S3). However the slope

was systematically larger with unidirectional wind

than with wind blowing uniformly from all four

cardinal points. In addition, the slopes for an O1 field

pattern were greater between north or south winds

and east or west winds. Note that O1 is made of long

narrow fields, elongated in the east-west direction

(Table 1).

Logistic regression models to predict the risk

of exceeding cross-pollination thresholds

Logistic regression was applied to the binary vari-

ables y01 and y09 as dependent variables and field

characteristics as predictors. Based on the random-

forest results, the field characteristics pbxi.ngm were

discarded, and the orientated (orxi.ngm) rather than

the non-orientated GM maize ratios within buffers

were used. To get a better view of model behaviour,

analyses were performed separately for different

wind speeds (0, 4 or 14 ms-1) and two levels pollen

ratio. Thus, twelve stepwise regressions (2 dependent

variables 9 3 wind speeds 9 2 pollen ratios) were

performed, starting from the null model with no

intercept and limited to three predictors for simplicity

and parsimony (Table 3). In all twelve cases, edge-to-

edge orientated distance (ode.gm) and one of the

(orxi.ngm) characteristics were the first two selected

predictors. Next came either a geometry field

descriptor (Area or Peri) or another distance ratio.

The best models according to AIC included some

additional predictors, but most of the deviance

reduction was obtained by the first three predictors.

The deviance reduction was much larger at null wind

Fig. 2 Random forest

importance rankings for the

dependent variables y09 and

y01. Predictor variables are

ranked according to the

mean decrease in Gini index
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speeds (more than 85%) than at the non-null wind

speeds (less than 70%) (Fig. 4). As a consequence,

the ability to predict the risk for a field to exceed a

threshold was higher when wind speed was null. As

distance to the closest GM maize field increased, the

risk of exceeding a threshold decreased more slowly

as wind speed or GM pollen ratio increased.

Interactions between local field characteristics

and global landscape features

Models including interactions between local predic-

tors and the landscape pattern input factors were

fitted to evaluate whether global landscape features

still had influence after accounting for the local field

environment in the previously selected logistic mod-

els. Gm was the input factor showing the largest

interactions with the local field characteristics (results

not shown). However, ROC analyses showed that

including these interactions helps to predict the risk

of exceeding cross-pollination thresholds only mar-

ginally (Fig. S4).

Discussion

Methodology

Sensitivity analyses are essential complementary

tools to extract information from models such as

MAPOD. In this study, we investigated the influence

of landscape pattern and field environment on cross-

pollination in co-existing GM and non-GM maize

crops. Formalized sensitivity analyses procedures are

not commonly used to test for model sensitivity to

landscape pattern (Delgado and Sendra 2004). How-

ever, similar approaches are used in spatial

uncertainty analyses in order to assess the range of

Fig. 3 Cross-pollination rate versus 100 m-wide orientated GM maize ratio as a function of pollen production ratio Poll (0.33 or

3.75) and wind speed Wspe (0, 4 or 14 ms-1)
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model predictions generated from spatial uncertainty

in landscape data. The methodology described in this

paper offers a way to derive operational rules of

landscape management from simulations with spa-

tially explicit ecological models. However, sensitivity

analyses describe the behaviour of a model and not

the behaviour of the real system under study. Hence,

caution must be exerted when interpreting results.

The use of global sensitivity analysis methods was

justified by the complexity of the MAPOD model and

by the numerous potential interactions of input data

with landscape-pattern and field-environment vari-

ables. Exploring the effect of landscape organization

on cross-pollination rate within the known range of

variability of other input variables and parameters is

indeed relevant since the effects of landscape char-

acteristics were shown to depend on wind conditions

and cultivar traits.

With respect to the global-sensitivity principle,

this study is innovative in two important aspects for

models with landscape features as input data. First,

analysis was based on realistic landscapes designed to

represent the diversity of landscape patterns where

Table 3 Results at the field scale. Estimated parameter values for logistic regressions using y01 and y09 as dependent variables as a

function of pollen ratio (Poll) and wind speed (Wspe). Models are restricted to the best three predictors among the field characteristics

Pollen ratio Dependent

variable

Wind speed 0 ms-1 (3248

fields, null deviance = 4502.7)

Wind speed 4 ms-1 (16240

fields, null deviance = 22513.4)

Wind speed 14 ms-1 (12992

fields, null deviance = 18010.7)

Factor Estimate z-value Factor Estimate z-value Factor Estimate z-value

0.33 y01 ode.gm 0.092 11.3 ode.gm 0.0046 53.6 ode.gm 0.0048 37.5

or20.gm -35.4 -5.2 or20.gm -76.7 -11.1 or100.gm -11.3 -26.5

or50.gm -17.1 -7.0 or100.gm -12.5 -23.9 Peri -0.00060 -11.4

Residual deviance 646.3 Residual deviance 10966.8 Residual deviance 10431.7

y09 ode.gm 0.41 13.3 ode.gm 0.017 25.7 ode.gm 0.0069 32.1

or20.gm -28.5 -16.5 or20.gm -32.0 -33.0 or100.gm -9.31 -33.8

Area 0.00011 2.0 Peri 0.0010 18.5 Peri 0.00084 14.7

Residual deviance 744.8 Residual deviance 7096.7 Residual deviance 7921.1

3.75 y01 ode.gm 0.019 17.8 ode.gm 0.0046 38.5 ode.gm 0.0047 37.5

or20.gm -365.0 -2.1 or100.gm -30.5 -18.6 or100.gm -16.4 -21.0

or100.gm -49.8 -12.8 Peri -0.0017 -29.5 Peri -0.0013 -22.3

Residual deviance 586.4 Residual deviance 11754.9 Residual deviance 10190.4

y09 ode.gm 0.044 8.5 ode.gm 0.0038 50.4 ode.gm 0.0046 37.0

or50.gm -45.8 14.4 or20.gm -85.6 -10.2 or100.gm -11.6 -26.0

Peri 0.0017 7.0 or100.gm -14.7 -24.4 Peri -0.00067 -12.8

Residual deviance 599.5 Residual deviance 11662.4 Residual deviance 10611.2

Fig. 4 Receiver-operating characteristics (ROC) curves for

the logistic model including ore.gm?or100.gm?peri fitted on

the dependent variable y01, when GM pollen ratio equals 3.75.

Null wind speed (AUC = 0.995) (black line); wind speed

4 ms-1 (AUC = 0.902) (broken line); wind speed 14 ms-1

(AUC = 0.899) (dotted line)
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GM maize is cultivated in France and other European

regions. We used real-world field patterns with

contrasting field size, shape, and allocations of GM

and non-GM maize. Second, several metrics were

compared that had been identified in previous two-

field studies (Klein et al. 2006; Kuparinen et al.

2007).

The sensitivity analyses were based on the com-

bined use of classical statistical methods (factorial

design and ANOVA) dedicated to analysis of vari-

ability and of data-mining methods (random forest,

ROC curve analysis). The analyses were associated

with a complete factorial simulation design, which

was simple to implement, facilitated the interpreta-

tion at the landscape scale, and made it possible to

perform analyses at the field scale as a function of the

most influential factors at the landscape scale.

Sensitivity of cross-pollination to landscape

pattern and field environment

Contrasting maize patterns and cultivar traits were

used in the simulations and identified as the most

influential factors at the landscape scale. Maize

pattern had a particularly strong influence on the

number of fields that were cross-pollinated by GM

pollen and on the average risk for a field to exceed the

0.1% or 0.9% thresholds of cross-pollination. This

result confirmed the results of other simulations on

maize (Messéan et al. 2006) and on oilseed rape

(Ceddia et al. 2007). Beyond these major effects,

additional factors such as wind speed and direction or

overall field pattern were shown to have a large

impact on cross-pollination at the landscape scale,

and these impacts depended on the maize and GM

maize proportions at the landscape scale as well as on

their arrangement.

Among the metrics describing landscape patterns

in the local environment of non-GM maize fields,

distance to the nearest GM maize field was confirmed

as a major variable to predict cross-pollination rate.

The ratio of GM maize versus total maize within a

given distance from the target field appeared as a

pertinent complementary variable. It can be consid-

ered as a synthetic measure of the field environment

and the field geometry, as it includes field area in its

denominator and, indirectly, the field perimeter (with

GM maize area) in the buffer surrounding the target

field. The protective effect of a non-GM maize

environment around these fields appeared to be small

compared with the effect of the other factors.

In our simulations, the geometry of the non-GM

maize fields was shown to play a weak role in

predicting the risk of cross-pollination, first, indirectly

through the GM-maize ratio variables, second, directly

through the perimeter variable. However, effects of

elongation, size and perimeter of the non-GM crop

fields were weaker than those in other simulation

studies (Klein et al. 2006; Kuparinen et al. 2007). This

is at least partly due to the focus of other studies on a

single emitting GM crop fields and single recipient

non-GM crop fields. We assume therefore that, when

upscaling from two fields to a landscape, the effect of

field geometry becomes less crucial because of the

spatial interactions among fields and because of other

factors varying at the landscape scale. Field geometry,

for example, had only a small effect as compared to

that of the cropping system in a simulation model for

oilseed rape (Colbach et al. 2005).

For given crop-cultivar properties, local field

characteristics provided efficient predictors of the

risk for a non-GM maize field to exceed a cross-

pollination threshold when wind speed was null, but

they were less efficient when non-null wind speed

was introduced. Our results indicate that the extent to

which a neighbouring area influences cross-pollina-

tion rate depends greatly on wind conditions. This

suggests that the definition of separation distances

between GM and non-GM crop fields should be

adapted to the local climatic context. The effect of

wind conditions on field-to-field cross-pollination

also has been stressed by Hoyle and Cresswell

(2007). However, further work is needed to evaluate

these dynamics; in particular, the influence of the

dispersal kernel used in MAPOD-maize must be

evaluated more closely by specific sensitivity

analyses.

Field pattern and characteristics of the landscape

were not substantially informative for local cross-

pollination rate. On the other hand, our results show

that considering only a non-GM crop field’s topolog-

ical and geometrical relationships with its nearest

GM crop field is not sufficient to explain cross-

pollination observed at the field scale. Our study thus

suggests that considering an intermediate scale, one

between the local and the landscape scale, will be

most relevant when establishing management rules

for controlling cross-pollination from GM crops.
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Spatial aspects of gene flow between rapeseed varieties

and volunteers. Agron Sustain Dev 25:355–368

Crosetto M, Tarantola S, Saltelli A (2000) Sensitivity and

uncertainty analysis in spatial modelling based on GIS.

Agr Ecosyst Environ 81:71–79

Damgaard C, Kjellsson G (2005) Gene flow of oilseed rape

(Brassica napus) according to isolation distance and

buffer zone. Agr Ecosyst Environ 108:291–301

De’ath G, Fabricius KE (2000) Classification and regression

trees: a powerful yet simple technique for ecological data

analysis. Ecology 81:3178–3192

Delgado MG, Sendra JB (2004) Sensitivity analysis in multi-

criteria spatial decision-making: a review. Hum Ecol Risk

Assess 10:1173–1187

Hoyle M, Cresswell JE (2007) The effect of wind direction on

cross-pollination in wind-pollinated GM crops. Ecol Appl

17:1234–1243

Jager HI, Ashwood TL, Jackson BL, King AW (2005) Spatial

uncertainty analysis of population models. Ecol Model

185:13–27

Klein EK, Lavigne C, Foueillassar X, Gouyon PH, Laredo C

(2003) Corn pollen dispersal: quasi-mechanistic models

and field experiments. Ecol Monogr 73:131–150

Klein EK, Lavigne C, Picault H, Michel R, Gouyon PH (2006)

Pollen dispersal of oilseed rape: estimation of the dis-

persal function and effects of field dimension. J Appl Ecol

43:141–151

Kuparinen A, Schurr F, Tackenberg O, O’Hara RB (2007) Air-

mediated pollen flow from genetically modified to con-

ventional crops. Ecol Appl 17:431–440

Lavigne C, Klein EK, Mari JF, Le Ber F, Adamczyk K, Monod

H, Angevin F (2008) How do genetically modified (GM)

crops contribute to background levels of GM pollen in an

agricultural landscape? J Appl Ecol 45:1104–1113

Makowski D (2005) Comparison of risk indicators for Scle-
rotinia control in oilseed rape. Crop Prot 24:527–531

Messéan A, Angevin F, Gomez-Barbero M, Menrad K,

Rodriguez-Cerezo E (2006) New case studies on the

coexistence of GM and non-GM crops in European agri-

culture. Technical Report EUR 22102 EN

Monod H, Naud C, Makowski D (2006) Uncertainty and sen-

sitivity analysis for crop models. In: Wallach D,

Makowski D, Jones JW (eds) Working with dynamic crop

models. Elsevier, Amsterdam, pp 55–99

Paterniani E, Stort AC (1974) Effective maize pollen dispersal

in the field. Euphytica 23:129–134

Raynor GS, Ogden EC, Hayes JV (1972) Dispersion and

deposition of corn pollen from experimental sources.

Agron J 64:420–427

Romary T (2005) Impact de la structure d’un paysage sur les
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