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Abstract The majority of wildfires in Spain are

caused by human activities. However, much wildfire

research has focused on the biological and physical

aspects of wildfire, with comparatively less attention

given to the importance of socio-economic factors.

With recent changes in human activity and settlement

patterns in many parts of Spain, potentially contribut-

ing to the increases in wildfire occurrence recently

observed, the need to consider human activity in

models of wildfire risk for this region are apparent.

Here we use a method from Bayesian statistics, the

weights of evidence (WofE) model, to examine

the causal factors of wildfires in the south west of the

Madrid region for two differently defined wildfire sea-

sons. We also produce predictive maps of wildfire risk.

Our results show that spatial patterns of wildfire

ignition are strongly associated with human access to

the natural landscape, with proximity to urban areas

and roads found to be the most important causal

factors We suggest these characteristics and recent

socio-economic trends in Spain may be producing

landscapes and wildfire ignition risk characteristics

that are increasingly similar to Mediterranean regions

with historically stronger economies, such as Califor-

nia, where the urban-wildland interface is large and

recreation in forested areas is high. We also find that

the WofE model is useful for estimating future wildfire

risk. We suggest the methods presented here will be

useful to optimize time, human resources and fire

management funds in areas where urbanization is

increasing the urban-forest interface and where human

activity is an important cause of wildfire ignition.
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Introduction

Much wildfire research has focused on the biological

and physical aspects of fire, with comparatively less

attention given to the importance of socio-economic

variables. However, previous work in the Iberian

Peninsula has demonstrated that the proportion of

fires started by direct or indirect human causes

surpass the natural causes (Moreno et al. 1998;

Vázquez and Moreno 1995; WWF/Adena 2004,

2005). In Spain, where more than 95% of wildfires

are caused by human activity for example (MMA

2007), estimation of ignition risk must consider the

influence of human activity. The high incidence of
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wildfires in Spain in recent years underlines and

emphasises the importance of understanding the

causes and spatial distribution of this phenomena.

Increases in wildfire frequency and magnitude

observed recently (MMA 2007) may be due, in part,

to the increase of human populations in forested

areas. There are two reasons for this population

increase: (i) urban growth is encroaching upon

forested areas resulting in more people living at the

urban-forest interface; and (ii) recreational activity is

increasing in forested areas.

Despite these findings, human factors have been

given scant regard compared to physical factors

(elevation, slope, temperature, rainfall, vegetation,

etc.) in quantitative analyses of risk (Chou et al.

1990, 1993; de Vasconcelos et al. 2001; Yang et al.

2007). This disregard for the primary cause of

wildfires in the Iberian Peninsula is owed, without

doubt, to the difficulties of spatially evaluating and

modelling the human component of both fire ignition

and spread. However, understanding the spatial

influence of human activities on the distribution of

ignitions is central to managing and mitigating the

ignition risk. If a fire is to be extinguished it is

important to attack it early, whilst it is small, making

it vital to position fire fighting resources near areas

that ignite most frequently.

The seminal work in this area of research by

Chuvieco and Congalton (1989) incorporated human

activity into the assessment of wildfire risk by consid-

ering the proximity of zones of greater human activity

near road networks and recreational areas. In recent

years wildfire risk models that consider other human

variables have become increasingly common (Badia-

Perpinyà and Pallares-Barbera 2006; Cardille et al.

2001; Chou et al. 1993; de Vasconcelos et al. 2001;

Dickson et al. 2006; Yang et al. 2007). These variables

have included Distance to Recreational Areas/camp-

grounds, location of urban areas, population density,

unemployment levels and land tenure. However, there

is still much work to be done to adequately estimate the

risk, and predict the occurrence, of wildfires in regions

where the majority of events are ignited by human

activity. We suggest that these studies have only

considered a small fraction of the large number of

possible socio-economic factors linked with the occur-

rence of wildfires in the Iberian Peninsula.

We propose a novel approach to analyze fire ignition

patterns for an area in the SW of Madrid (Central

Spain). This paper focuses on ignition risk over the

period 2000–2003. In an effort to better understand the

conditions conducive to wildfire ignition two different

spatial models are used for both four- and two-month

fire seasons. Each model considers the relationship

between socio-economic variables and wildfire igni-

tion locations. Weights of evidence (WofE) GIS

(Kemp et al. 2001) is used to gain understanding

regarding the main causes of ignition and to build a

predictive model of wildfire ignition risk.

Methods

Study area

The study area is composed of three forestry admin-

istration areas (Parque Regional del Guadarrama, San

Martı́n de Valdeiglesias and Robledo de Chavela)

situated to the southwest of Madrid (Central Spain—

Fig. 1). It comprises an area of some 1808 km2

(22.5%) of the Madrid Region, encompassing 45

municipalities (25% of Madrid Region).

As with many landscapes in the Mediterranean

Basin, the study area is of both high social and

cultural value and supports multiple land uses,

including agriculture, tourism and recreational activ-

ities, and environmental services. The mountainous

area along the western border has a low population

density and has experienced aging in its farming

population and a consequent abandonment of tradi-

tional agrarian land uses. The abandonment of crops

(e.g. vineyard) and pastures has resulted in ‘old-field’

succession in these areas (Romero-Calcerrada and

Perry 2004). In the east of the study area, nearer the

city of Madrid, population density is greater and the

main industries are secondary and tertiary in nature.

Urban development and a shift from pastureland to

scrubland, as a result of land abandonment and arable

land lying fallow, was the dominant change in the

study area during the period 1984–2006. Urban

growth and recreational land uses have also increased

over recent years due to the aesthetic value of the

landscape, relative low cost of housing and proximity

to Madrid. A probable consequence of land cover and

land use changes is an altered fire risk (Millington

2005; Romero-Calcerrada and Perry 2002; 2004).

The study area is also interesting from the point of

view of wildfire. Analysis of the wildfire database
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used in this study showed that the majority of wildfire

ignitions are caused by human activity (95% of

events between 1996 and 2005). Furthermore, the

number of fires increased but the total burned area

decreased in this period, possibly reflecting increased

fire-fighting efforts in these areas.

Data sources

In this study, we used 11 independent variables

(Table 1), that included five socio-economic vari-

ables and six spatial variables (spatial relationships of

variables). The spatial variables were defined to

represent human access across the study area and the

spatial pattern of human land use. National and

regional statistics were examined to find data on the

main socio-economic aspects that could be used to

characterize ignition risk. All variables were selected

because of their influence on wildfire ignition risk.

Maps of independent variables were categorized

using the Natural Breaks classification and Buffer

Distances function in ArcViewTM 3.2. All maps were

included in ArcViewTM 3.2, at 1:50,000 scales in

UTM projection, and rasterized with a 25 m

resolution.

We used digital reports of fire ignitions occurring

between 2000 and 2005 for the SW of Madrid. We

obtained the database directly from the Sección de

Defensa Contra Incendios Forestales of the Regional

Government of Madrid. In these records, ignition

points are referenced to UTM coordinates and

provide information about the timing (day/month/

year) of events and burned area (tree forest areas,

pastures/bush area, non-forest areas). Ignition point

data were subset (Table 2) to the years 2000–2003 for

a four- (Model 1) and two-month fire season (Model

2). The remaining 2 years in the dataset (2004–2005)

were used as testing data. Model 1 months were June,

July, August and September (‘‘official’’ fire season).

Model 2 considers July and August alone as human

activity is greatest in the countryside, with approx-

imately 55% of all wildfires occurring in this period.

Weights of evidence

Weights of evidence (Kemp et al. 2001) is a data-

driven, discrete multivariate statistical method that

uses Bayesian principles for integrating multiple

evidence (predictor or independent) variables and

Fig. 1 Study area location: SW of Madrid (Central Spain)
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conditional probabilities to determine the relative

importance of these variables on a dependent vari-

able. Particularly, WofE provides a measure of the

spatial association between maps of independent

variables and dependent variable point data by using

Bayes’ probability theorem (Bonham-Carter 1994;

Bonham-Carter and Agterberg 1999; Bonham-Carter

et al. 1989). In the case of the potential distribution of

wildfire ignition, a series of evidence maps consisting

of a set of spatial human datasets (i.e. categorical

maps of Distance of Roads, Urban Areas, etc.) maps

are created for ignition occurrences.

One of the most important concepts used in WofE

is the idea of prior and posterior probability. The

prior probability (P{D}) is the probability of occur-

rence of dependent data variable D studied without

consideration of any known evidence information.

The posterior probability can be calculated from the

prior probability P{D} by:

PfDjBig ¼
PfBi

T
Dg

PfBig
¼ PfDgPfBijDg

PfBig
ð1Þ

PfDjBig ¼
PfBi

T
Dg

PfBig
¼ PfDgPfBijDg

PfBig
ð2Þ

where PfDjBig is the posterior probability of an

occurrence given the class i of a predictor theme B; and

PfDjBig is the posterior probability of an occurrence

given the absence of class i in theme B. The

independent variable maps are combined using Bayes’

rule in a multi-map overlay operation, where the prior

probability (P{D}) of an occurrence is updated by the

addition of independent variables and their weights to

produce a single posterior probability, PfDjBig, map

of occurrence. The posterior probability map produced

is a map of potential ignition distribution that reflects

the spatial distribution of previously observed events

Table 1 Description of socio-economic and spatial variables

Abbreviation Group Description (Units) Sources

Dy_Pop Socio-economic data Density of Population (Inhab/ha of Urban Area) INE (2001). Owner Elaboration

Dy_2Housing Socio-economic data Density of Secondary Housing (Secondary

Housing/ha of Urban Area)

INE (2001) Owner Elaboration

Dy_Cattle Socio-economic data Density of Cattle (Cattle/ha of pastures) INE (1999) Owner Elaboration

Dy_Sheep Socio-economic data Density of Sheep (Sheep/ha of pastures) INE (1999) Owner Elaboration

Dy_Goats Socio-economic data Density of Goats (Goats/ha of pastures) INE (1999) Owner Elaboration

D_Urb Spatial relation Distance to Urban Areas (m) SCR (2000)

D_Ind Spatial relation Distance to Industrial Areas (m) SCR (2000)

D_Roads Spatial relation Distance to Roads (Highways etc.) (m) SCR (2000)

D_Tracks Spatial relation Distance to Tracks: rural path etc. (m) SCR (2000)

D_Camping Spatial relation Distance to Camping (m) D. G. del Medio Natural (1997)

D_Recreat Spatial relation Distance to Recreational Areas (m) D. G. del Medio Natural (2000)

Table 2 Number of Ignition Points 2000–2005 in the study area

Seasons Subset Models Number ignitions

Jun/Jul/Aug/Sep (2000–2003) Known occurrences Model 1 248

Jul/Aug (2000–2003) Known occurrences Model 2 169

Jun/Jul/Aug/Sep (2004) Testing data Holdout sample to validate Model 1 93

Jul/Aug (2004) Testing data Holdout sample to validate Model 2 51

Jun/Jul/Aug/Sep (2005) Testing data Holdout sample to validate Model 1 75

Jul/Aug (2005) Testing data Holdout sample to validate Model 2 50

Jun/Jul/Aug/Sep (2004–2005) Testing data Holdout sample to validate Model 1 168

Jul/Aug (2004–2005) Testing data Holdout sample to validate Model 2 101
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(Aspinall 1992; Aspinall and Veitch 1993; Guisan and

Zimmermann 2000; Milne et al. 1989; Skidmore

1989; Tucker et al. 1997). For a more detailed

description of the mathematical basis of the Bayesian

WofE model, see Agterberg et al. (1990), Bonham-

Carter (1994) and Bonham-Carter and Agterberg

(1999).

The WofE model, implemented previously in

ArcViewTM 3.2 by Kemp et al. (2001), has four

main steps:

1. Calculate weights for each independent variable

(evidence map)

2. Generalize the evidence map

3. Applying a conditional independence test

4. Create a predictive map ignition risk

Calculating weights for each independent variable

Observed ignition locations (occurrence points) are

used to calculate the weights for each independent

variable, one weight per class, using the overlap

relationships between the points and the various

categories in the evidence maps. Socio-economic

data weights were calculated using a ‘categorical

weights’ approach, with categorical weights applied

to each class. In proximity analysis (e.g. distance to

roads), an ‘ascending cumulative’ approach was used

to weight spatial distance classes (cumulative from

low distances to high). These methods were chosen

based on information available from the observed

location(s) of ignition points and the evidence

themes.

The WofE for the class i of predictor variable B

are defined as:

Wþi ¼ loge

PfBijDg
PfBijDg

ð3Þ

and

W�i ¼ loge

PfBijDg
PfBijDg

ð4Þ

If the spatial association is greater than would be

expected at random, W+ is positive and W- is

negative. W+ and W- give a unit-less measure of

spatial association between a set of occurrence points

and an evidence class.

The Contrast (C) for the class i between these

measures is given by:

Ci ¼ Wþi �W�i ð5Þ

A larger C value indicates stronger spatial association

between the evidence and dependent data map. The C

can be used to divide the data into different classes of

spatial association. A high C value is produced by

strong spatial association (i.e. a large number of

occurrences in a given category of an evidence map).

However, the uncertainty in weights increases with a

diminishing number of data points and in some cases

the C value can become meaningless (Carranza and

Hale 2000, 2002). The Studentized value of C (CS) is

a useful measure in this instance (Bonham-Carter

1994). Calculated as the ratio of C to the standard

deviation of C, CS serves as an informal test that C is

significantly different from zero, or that the contrast

is ‘real’ (Bonham-Carter 1994; Carranza and Hale

2000, 2002). The CS is also helpful and more useful

than C for choosing the cut-off when categorising

independent variables into evidence maps (Carranza

and Hale 2000, 2002) because it shows the contrast

relative to the certainty or uncertainty due to the

Contrast (Bonham-Carter 1994).

Generalizing the evidential theme

WofE uses generalize weights C and CS to obtain

binary or a few multi-class evidence themes, as

reduced numbers of independent variable classes

results in more robust estimations (Kemp et al.

1999). Once weights, C, and CS have been calculated

for each class of each categorical evidence map, the

appropriate breaks to generalize the data must be

decided upon. In this study we use multi-class evidence

data, as the use of a few classes in WofE allows more

precise modelling, using values of CS as the cut-off

point for the grouping process. As it was unclear

whether we had ‘small’ or ‘large’ areas of occurrence,

we adopted a conservative attitude using CS. For a

positive spatial association, CS will have a positive

value. Positive spatial association produces high

positive values of CS which in turn means high

predictive power. Values close to 0 mean lower

predictive power. We used the following criteria for

grouping: Group W0 for CS \ 1.96; Group W1 for

Landscape Ecol (2008) 23:341–354 345

123



1.96 B CS \ 3; Group W2 for 3 B CS \ 4; Group W3

for 4 B CS \ 5; and Group W4 for CS C 5. Thus, we

have used CS to aggregate classes in different predic-

tive groups (W0 to W5). This generalization rule is

repeated for each theme used as evidence to obtain the

predictive maps. Also, CS is also used for testing the

hypothesis that C is significantly different to zero.

Applying of conditional independence test

The predictive maps assume the conditional inde-

pendence of the evidence maps. Violation of this

assumption can result in an over- or under-estimation

of the weights. Because of this, the Pairwise Condi-

tional Independence Test and Overall Test of

Conditional Independence (described in Bonham-

Carter 1994) were applied.

Upon examining pairwise conditional indepen-

dence tables, conditional dependence was found

between combinations of evidence maps. Therefore

it was necessary to select only some of the evidence

maps to produce the predictive models. Our criterion

was to select the combination of evidence maps with

greatest CS and to include the greatest number of

evidence maps possible. As an alternative to discard-

ing some independent variables as we have here,

Dickson et al. (2006) attempted the combination of

dependent evidence maps. However, this method

requires further research and was not pursued here.

Creating a predictive map of human-based

ignition risk

A posterior probabilities map is generated by com-

bining the conditionally independent evidence maps.

The resulting predictive map is obtained as results of

the ratio of posterior probabilities (PfDjBg) and

prior probabilities (P{D}). In our case, this means

the predicted to expected wildfire ignition ratio. High

uncertainty areas are masked out because ‘‘Studen-

tized’’ posterior probability (PfDjBg/rTotal) \ 1.5

indicates too much uncertainty (Bonham-Carter et al.

1989). The predictive map was classified into three

categories based on Carranza and Hale (2000):

1. High predictive—when the ratio (PfDjBg:
PfDg) [ 2 and (PfDjBg/rTotal) [ 1.5.

2. Medium predictive—when 1 \ (PfDjBg:PfDg)
\ 2 and (PfDjBg/rTotal) [ 1.5.

3. Low predictive—when (PfDjBg:PfDg) \ 1 and

(PfDjBg/rTotal) [ 1.5.

Models validation

Model evaluation is an essential step when modelling

and, ideally, models should be tested with data

independent of that used to develop the model

(Fielding and Bell 1997; Guisan and Zimmermann

2000). Here we use a three holdout sample approach

for each model (Hooten et al. 2003) to assess the

performance of the models for predicting ignition risk

(Table 2). Model 1 and Model 2 were created from

the 2000–2003 dataset of wildfire ignitions. The

2004, 2005 and 2004–2005 observed ignition point

data were used to evaluate (validate) these predictive

models. The three validation data set were used to

estimate the robustness of models against the inter-

annual variation in ignition occurrence.

We have developed a presence-only model to

avoid the problems of pseudo-absences; in the case of

modelling wildfire ignitions a presence only assess-

ment is a more realistic approach (Boyce et al. 2002;

Elith et al. 2006; Hirzel et al. 2006; Pearce and

Boyce 2006). We applied the area-adjusted frequen-

cies (AAF = Freq. Predicted/Freq. Expected ratio) to

assess our models. For further details, see Hirzel

et al. (2006), Pearce and Boyce (2006) and Boyce

et al. (2002). A useful model is one for which the

predicted probability of occurrence is higher than the

Expected probability of occurrence.

Results

Weights, contrast and studentized C for each

evidence map

We tested our hypotheses by quantifying the spatial

associations between socio-economic data maps and

ignition points. In general, W+[ 2 are extremely

predictive; 1 \ W+ B 2 are strongly predictive;

0.5 \ W+ B 1 are moderately predictive and

0 \ W+ B 0.5 are mildly predictive (Kemp et al.

1999). These statistical values are useful to analyze
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and understand the characteristics of the ignition

points in each period within the study region.

The spatial association of Density of Population

(Table 3) with presence of ignition is mildly and

moderately predictive. These classes are statistically

significant (a = 0.05). The majority of the classes

have negative high values of W+, only the class

14–23 present positive values. For Density of

Secondary Housing, the results suggest that the

presence of Secondary Housing has a direct and

important relationship with the location of wildfire

ignition. In relation to livestock, we find that the

moderate densities of cattle (0.14–0.39) and null

densities of sheep (\0.002) and goats (0) have

positive high values of W+. This means that the

presence of livestock has an inverse relationship with

the ignition points in our study area. The Distance-

buffer from Recreational Areas analysis shows that

wildfire ignition occurs in areas closer to recreational

areas. Only the \4500 m class of Model 1 shows

statistical significance (a = 0.05), but the value of

W+ suggests low predictability.

Distance of Urban Areas shows insignificant

values only for distances up to 50 m (Fig. 2a). The

W+ is moderately predictive in the cumulative classes

0–150 and 0–250. This trend is reversed for distances

[350 m. These results suggest that the ignition

points have a strong relationship with the proximity

to urban areas. For Distance to Industrial Areas, the

results show that the wildfire ignition occurs in areas

Table 3 Summary of W+ for evidence themes in the Model 2000–2003

Classes < 5.84 5.84–8.7 8.7–12.3 12.3–14.37 14.37–23.04 23.04–38.76 38.76–60.8  >60.8

Model 1 −−0.45 −0.04 0.13 −0.56 0.43 −0.25 0.21 −0.69

Dy_Pop

(Inhab / ha of 

Urban area) Model 2 −0.58 0.11 −0.08 −0.52 0.47 −0.31 0.23 −0.87

Classes < 0.87 0.87–1.97 1.97–2.94 2.94–4.24 4.24–5.59 5.59–7.56 7.56–10.12 > 10.12

Model 1 −1.06 −0.31

−0.31

−0.79 0.26 0.20 0.13 −0.28 0.84

Dy_2Housing

(secondary

housing/ ha of 

Urban area)
Model 2 −0.83 −0.86 0.25 0.20 0.15 −0.30 0.78

Classes < 0.04 0.04–0.14 0.14–0.39 0.39–0.75 0.75–1.92 1.92–2.78 2.78–6.83 > 6.83

Model 1 −0.08 −0.13 0.47 −0.26 −0.89 −1.90

Dy_Cattle

(Cattle/ ha of 

Pastures) Model 2 0.02 −0.27 0.53 −0.44 −1.76 −1.51

Classes < 0.02 0.02–0.06 0.06–0.13 0.13–0.22 0.22–0.45 0.45–1.05 1.05–1.71 > 1.71Dy_Sheep

(Sheep/ ha of Model 1 0.48 −0.45 −0.47 −0.15 −0.68 −0.41 −0.58 0.00

Pastures) Model 2 0.46 −0.46 −0.31 −0.11 −0.61 −0.52 0.00 0.00

Classes 0 0 –0.01 0.01–0.02 0.02–0.03 0.03–0.05 0.05–0.17 0.17–0.4 >0.4

Model 1 0.28 0.12 −0.28 −0.20 −1.10 −0.10 −0.55 0.00

Dy_Goats

(Goats/ ha of 

Pastures) Model 2 0.35 −0.02 −0.22 −0.30 −1.28 0.07 -0.86 0.00

Classes 0–500 0–1500 0–2500 0–3500 0–4500
 All 

distances

Model 1 0.80 0.31 0.06 0.12 0.15 0.00

D_Recreat

(m)

Model 2 0.25 0.29 0.08 0.07 0.09 0.00

Strongly predictive classes are marked in Dark Grey; moderately predictive are marked in light Grey. Cs serves as a guide to the

significance of the spatial association. Cs values greater than 1.96 indicate that the hypothesis that C = 0 can be rejected at a = 0.05

(these values are highlighted in bold)
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with a certain distance (\550 m) from the industrial

areas in both models.

With regards to Distance to Roads (Fig. 2b), the

results show significant values for all classes. The

high W+ indicates a strongly spatial association and

statistically significant (a = 0.05). The W+ values for

variable in the cumulative class 0–450 m are [0.5,

indicating moderately predictive values. In relation to

Distance from Tracks, the result shows that ignition

risk is less in areas distant from tracks ([250 m). A

distance \50 m has the most influence on ignition.

The Distance to Camping Areas shows moderate

predictive power in the cumulative class 0–250

(Model 1) and the cumulative classes from up to

250 to 650 m (Model 2).

The comparisons of result between the Model 1

and Model 2 show distinct similarities. The impor-

tance of Distance to Roads and Density of Sheep

does not differ between the Models and do not show

differences greater than ±15% with respect to

Model 1. Densities of Population, Density of

Secondary Housing, Distance of Urban Areas,

Density of Cattle and Distance to Tracks show

minor differences. Only one of the classes, normally

the first class in the distance layers, show differ-

ences greater than ±15% with respect Model 1.

Four of the 11 variables show differences in the

majority of the classes between the Models. The

Density of goats, Distance to Camping areas,

Distance to Recreational Areas, Distance to Indus-

trial Areas show different behavior between the two

and four month models. Especially interesting are

the Distance to Recreational Areas and Distance to

Camping. In that layer, the predictive classes are

different between the models and only some of them

are statistically significant (a = 0.05). For example,

for Distance to Camping Areas all the high values of

W+ are from up to 250 to 950 m. in Model 1. The

most predictive range is 0–350 m. However, the

results of Model 2 show significant differences to

Model 1. The results from Model 2 show that it is

only statistically significant (a = 0.05) at range

0–250 m. In this range, the values are W + = -0.8,

W - = -0.02, CS = -2.1. The value of W+ denotes

a higher predictability than Model 1 in this range.

The Distance-buffer from Recreational Areas analysis

shows that wildfire ignition occurs in areas closer to

recreational areas. Only the range 0–4500 m of

Model 1 shows statistical significance (a = 0.05),

but the value of W+ suggest low predictability

(W + = 0.15). Bonham-Carter et al. (1989) indicated

that if CS is [1.96 the value of C is statistically

significant (a = 0.05), and indicates high confidence.

Methodologically it is important to note how the

WofE method allows the rejection of these layers

from the modelling process at an early stage.

However, a good understanding of the variables and

its reason for rejection from the model is needed.

a

0

5.0

1

llA
059-0058-0057-0056-0055-0054-0053-0052-0051-005-0

secnatsid
llA

secnatsidm

W
+

dnI_D1ledoM dnI_D2ledoM brU_D1ledoM brU_D2ledoM

b

0

5.0

1

5.1

059-0058-0057-0056-0055-0054-0053-0052-0051-005-0

m

W
+

skcarT_D2ledoM skcarT_D1ledoM gnipmaC_D1ledoM

gnipmaC_D2ledoM sdaoR_D2ledoM sdaoR_D1ledoM

Fig. 2 W+ (a) Distance to Urban Areas and industrial areas

(m) and (b) Distance to roads, tracks and camping areas (m) for

2000–2003. CS serves as a guide to the significance of the

spatial association. CS values[1.96 indicate that the hypothesis

that C = 0 can be rejected at a = 0.05 (these significant values

are shown by filled symbols)
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Generalizing the evidence maps and testing

the conditional independence assumption

The results of the generalization of the evidence maps

(Table 4) are useful to analyze and understand the

weight of each layer in relation to the ignition. All

layers considered have an influence on wildfire

ignition and are statistically significant (a = 0.05).

However, not all have the same influence. Only five

and six variables in Model 1 and Model 2, respec-

tively, have a Contrast[0.7. Four of the variables are

the same in both models, but Distance to Industrial

Areas, Distance to Tracks and Distance to Camping

Areas have different contrasts. Distance to Industrial

Areas and Distance to Camping Areas increase in

influence when the number of months considered is

reduced to two. This highlights the importance of

indicating the different behavior of the evidence

maps between the models. Six of the 11 maps show

differences greater than ±15% with respect Model 1.

The statistical validity of the resulting predictive

maps is examined by considering a contingency table

based on all pairs of maps, using a chi-squared test.

For Model 1, five layers were selected; for Model 2

four layers were selected (Table 4). The results of the

Overall Test of Conditional Independence were 0.96

for Model 1 and 1.00 for Model 2. Thus, the Pairwise

Conditional Independence Test and Overall Test of

Conditional Independence suggest that our predictive

maps are statistically valid.

Creating a predictive map of human-based

ignition risk

We show two of the possible predictive maps of

Human-Based Ignition Risk (Fig. 3) as the ratio of

the posterior probability to the prior probability. They

have similar areas of each risk class for both periods

(Table 5). The ‘high’ ignition risk class occupies

9.0% and 9.9% of the study area for maps produced

by Models 1 and 2 respectively. The ‘low’ ignition

risk class occupied 56% in Model 1 and 58% in

Model 2. The values of the AAF show that in the case

of ‘low’ ignition risk the number of wildfire ignitions

observed is less than half of that expected. In the case

of ‘high’ ignition risk, twice the number of wildfire

ignitions occurred than would be expected by chance.

The spatial patterns of ignition risk vary between

predictive maps. In the map from Model 1, the spatial

pattern is defined mainly by distance to roads. In the

Model 2 map, the distance to an urban area has most

of the influence in defining the spatial pattern.

Model validation

The predictive model was compared with ignition

points observed in 2004, 2005 and 2004–2005

(Table 5) showing excellent results. The accuracy

of the Model 1 is similar between known occurrences

and testing data in term of proportion of ignition

point and AAF. The AAF is quite similar between the

Table 4 Contrast and

confidence of evidence

maps

Evidence maps shown in

bold are used to build the

Predictive Map in each

model. Those values in

italic and bold indicate

differences greater than

±15% between the models

with respect to Model 1

Abbreviation Model 1: 4 months Model 2: 2 months Base100 Model 1

Contrast Confidence Contrast Confidence (Model 2 Contrast) * 100/(Model 1

Contrast)

Dy_Pop 0.60 4.45 0.66 4.09 109.96

Dy_2Housing 0.51 3.52 0.48 2.61 95.65

Dy_Cattle 0.74 5.79 0.87 5.61 116.66

Dy_Sheep 0.96 7.26 0.92 5.80 96.21

Dy_Goats 0.45 3.47 0.58 3.72 128.70

D_Recreat 0.35 2.69

D_Urb 1.08 4.79 1.24 4.51 115.48

D_Ind 0.54 1.99 1.96 2.69 364.70

D_Roads 0.85 5.84 0.94 5.29 111.31

D_Tracks 0.73 3.29 0.62 2.34 84.57

D_Camping 0.53 3.07 0.85 2.19 159.47
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known occurrences and the result of testing data.

However, we found that results using test data for

Model 2 are better than the known occurrences. In

Model 2, the prediction map discriminates a higher

number of ignition point in the high ignition risk

class.

Fig. 3 Predictive maps of human-based ignition risk

Table 5 Results of models and validation from the human-based ignition risk

Model 1. Four months Model 2. Two months

Known occurrences Known occurrences

ha % IP % P/ha AAF ha % IP % P/ha AAF

Low 100,920.9 55.8 74 29.8 4.5 0.53 Low 99,549.9 57.7 51 30.2 5.1 0.53

Medium 63,523.0 35.1 121 48.8 13.5 1.39 Medium 56,068.3 32.5 85 50.3 15.2 1.57

High 16,315.4 9.0 53 21.4 22.7 2.37 High 17,007.4 9.9 33 19.5 19.4 1.88

Validate 2004–2005 Validate 2004–2005

Testing data Testing data

ha % IP % P/ha AAF ha % IP % P/ha AAF

Low 100,920.9 55.8 45 26.8 4.5 0.48 Low 99,549.9 57.7 23 22.8 2.3 0.39

Medium 63,523.0 35.1 86 51.2 13.5 1.46 Medium 56,068.3 32.5 38 37.6 6.8 1.16

High 16,315.4 9.0 37 22.0 22.7 2.44 High 17,007.4 9.9 40 39.6 23.5 4.02

Validate 2004 Validate 2004

ha % IP % P/ha AAF ha % IP % P/ha AAF

Low 100,920.9 55.8 24 25.8 2.4 0.46 Low 99,549.9 57.7 13 25.5 1.3 0.44

Medium 63,523.0 35.1 48 51.6 7.6 1.47 Medium 56,068.3 32.5 24 47.1 4.3 1.45

High 16,315.4 9.0 21 22.6 12.9 2.50 High 17,007.4 9.9 14 27.5 8.2 2.79

Validate 2005 Validate 2005

ha % IP % P/ha AAF ha % IP % P/ha AAF

Low 100,920.9 55.8 21 28.0 2.1 0.50 Low 99,549.9 57.7 10 20.0 1.0 0.35

Medium 63,523.0 35.1 38 50.7 6.0 1.44 Medium 56,068.3 32.5 14 28.0 2.5 0.86

High 16,315.4 9.0 16 21.3 9.8 2.36 High 17,007.4 9.9 26 52.0 15.3 5.28

IP: Ignition point; P/ha: Density of ignition points * 10,000; AAF: Area-adjusted frequencies (Predicted/Expected ratio)
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Discussion and conclusion

Socio-economic characteristics and dynamics

Because humans cause the majority of ignitions in the

study area, the measures of accessibility (Roads,

Path, Building, etc.) are important descriptors of the

effects of the ubiquitous human population. The new

lifestyles that are beginning to be led in the study area

are characterized by increased recreation time and

activities and the spread of urbanization into forest

areas, in conjunction with increased human mobility

to distant forest areas. These changes in behavior are

the main factors driving the spatial distribution of

people in forest areas and of the increase in ignition

events (Badia-Perpinyà and Pallares-Barbera 2006;

Venevsky et al. 2002). These changes indicate a

potential shift in the nature of Spanish wildfire risk,

as lifestyles and landscapes become similar to those

found in other Mediterranean regions of the world

with stronger economies, such as California. For

example, Syphard et al. (2007a, b) also found that fire

frequency in California, where mean distance to low-

density housing has decreased recently, was well

modelled by factors such as population density and

distance to the wildland-urban interface (WUI).

The urbanization of rural areas has increased the

WUI. Further, population expansion and recreational

activities has increased ignition risk. Accordingly,

Distance to Urban and Building Areas is the most

predictive variable in our ignition risk model

(Table 4). Prestemon et al. (2002) and Badia-Perp-

inyà and Pallares-Barbera (2006) found similar

results, identifying the WUI as a statistically signif-

icant wildfire risk factor. As others have suggested

(Prestemon et al. 2002; Butry et al. 2001), we believe

that the risk of economic damage from wildfire in the

WUI might be sufficient incentive to further refine

our understanding of the relationship between wild-

fire and human factor. However, as Syphard et al.

(2007a, b) highlight, understanding how the WUI

itself influences wildfire is in itself an important

question for ecologists. Integrated socio-ecological

and ecological-economic models of succession-dis-

turbance dynamics are now being developed and are

likely to become an important area of research in the

future (Perry and Millington 2007).

We have found, as have others (Badia-Perpinyà

and Pallares-Barbera 2006; de Vasconcelos et al.

2001), that the spatial patterns of ignition are strongly

associated with landscape accessibility. The weights

of the classes (Table 3, Fig. 2) and the contrast of

evidence maps (Table 4) confirm this. As ours,

Cardille et al. (2001), Chou et al. (1993), de Va-

sconcelos et al. (2001), Badia-Perpinyà and Pallares-

Barbera (2006) and Dickson et al. (2006) have found

that the proximity to roads and tracks is positively

correlated with ignition. As with Yang et al. (2007),

we have found that \50 m is a key distance and

\450 m is the threshold and upper occurrence limit.

Chuvieco and Salas (1996) also concluded that

distance to Roads, Recreational areas and Trails

was an important predictor of an ignition risk in

Sierra de Gredos (Central Spain).

In our study area, the presence of goats and sheep

has a direct relationship with absence of wildfire

ignition (Table 3). It is likely that the abandonment of

traditional livestock farming and the change to new

uses (e.g. recreational) is involved in ignition

increases. A medium density of cattle is a good

predictor of ignition. However, the discontinuity of

the cattle density classes could be a consequence of

effect of level of data aggregation.

We identified significant interactions between the

same variables within the two-month and four-month

wildfire ignition risk models. However, our results

show that the ignition regime differs depending on the

four-month (Model 1) and two-month (Model 2)

season. Distances from industrial areas have an

influence on ignition risk, and is more important in

Model 2 than Model 1 (Fig. 2). Results for Distance to

Camping Areas indicates that wildfire ignition occurs

closer to these areas and that there are significant

spatial and temporal patterns. In Model 2, the proxim-

ity to these areas has more influence than Model 1 on

the ignition risk. However, the Distance to Recreation

Areas is not found to have a significant influence on

wildfire ignition location. This may be because the

mobility of people is not adequately represented by the

defined buffer classes and because that information is

based on a point layer. This aspect of the modeling

requires further investigation.

As Cardille et al. (2001) found, all the socio-

economic and spatial variables (except Distance to

Recreational Area in Model 2) used in our analysis

are correlated with ignition risk. Our results (Table 4)

emphasize distinct patterns regarding regional

human-based ignition fires in the study area and
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reflect the most important socio-economic variables

in different season periods (Model 1 and Model 2).

The predictive maps (Fig. 3) predict rural munic-

ipalities are at greater risk than metropolitan

municipalities within the study area. In Model 2,

the higher risk areas are situated on the SW-NE axis,

where there is low density urbanization near areas

with aesthetic value and where recreational resources

are greater. These characteristics are likely to attract

more people for their summer holidays in July and

August. Our predictive maps included the majority of

evidence maps with high contrast values. Whilst the

accuracy of the model is excellent, our results are

influenced by the variables included in each predic-

tive map. Using other evidence maps may result in

other spatial patterns of predicted risk. Because of

this, we think that it is necessary to explore the other

possible combinations to ensure our findings are

robust. This aspect requires further research.

We have found that our analysis is useful for

examining different aspects of fire risk and for

assessing the usefulness of variables included in the

model. WofE provides a quantitative tool to relate

socio-economic processes with spatial patterns of

wildfire ignitions. WofE has proven to be a useful

approach here because it explicitly considers the

spatial association between ignition occurrence and

evidence map data, and is relatively straight-forward

to implement and interpret the results (e.g. Dickson

et al. (2006) and Romero-Calcerrada and Luque

(2006)). Our results, together with Dickson et al.

(2006), suggests WofE analysis could be used to

spatially predict and analyze wildfire ignition. The

weights estimated from WofE analysis are useful for

evaluating impacts of different variables on ignition

risk. The prediction map from Model 1 is more robust

statistically than the prediction map from Model 2,

because the AAF show similar validation results

(Table 5). However, these results also suggest that

the predictive capacity of the WofE approach is

robust to small samples sizes at large/medium scales

(Model 2 has a smaller sample size).

Fire management planning implications

Fire management planning, particularly for the long

term, requires an understanding of the relationships

between spatial patterns and causes of wildfire

human-caused ignition risk. These relationships can

be investigated from many perspectives. We suggest

that models such as that presented here (i.e. WofE)

will help to identify in space and time the significant

socio-economic factors causing ignition and in turn

will be useful to optimize time, human resources and

fire management funds. The wildfire ignition risk

maps produced here will be useful in the spatially

explicit assessment of fire risk, for combination with

models such as FARSITE, the planning and coordi-

nation of regional efforts to identify areas at greatest

risk, and for designing large-scale wildfire manage-

ment strategies.

The present study advances the understanding of

the spatial dynamics of human-caused wildfire

occurrence. One overall implication of our research

is that wildfire models estimated for rural regions

could be improved by including socio-economic

factors in addition to biophysical variables (e.g. fuel

type, fuel moisture content, temperature, etc.).

Including the socio-economic factors could clarify

this cartography and define different class of risk. In

this way, Integrated Risk Models can help in the

design of more effective and efficient wildland fire

management and public policy (Mercer and Preste-

mon 2005). Few studies have sought to assess socio-

economic factors that could be affecting wildfire

ignition risk. Consistent with Prestemon et al. (2002)

we believe that the understanding of fire risk must

include socio-economic variables and patterns of

human activity.
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Badia-Perpinyà A, Pallares-Barbera M (2006) Spatial distri-

bution of ignitions in Mediterranean periurban and rural

areas: the case of Catalonia. Int J Wildland Fire 15:

187–196

Bonham-Carter GF (1994) Geographic information systems for

geoscientists, modelling with GIS. Pergamon, Tarrytwon,

New York

Bonham-Carter GF, Agterberg FP, Wright DF (1989) Weights

of evidence modelling: a new approach to mapping min-

eral potential. In: Agterberg FP, Bonham-Carter GF (eds)

Statistical applications in the earth science. Geological

Survey of Canada, pp 171–183

Bonham-Carter GF, Agterberg FP (1999) Arc-WofE: a GIS

tool for statistical integration of mineral exploration

datasets. The 52 Session of the International Statistical

Institute. Bulletin of the International Statistical Institute,

Helsinki, Finland, p 4

Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002)

Evaluating resource selection functions. Ecol Modell

157:281–300

Butry DT, Mercer DE, Prestemon JR, Pye JM, Holmes TP

(2001) What is the price of catastrophic wildfire?. J For-

estry 99:9–17

Cardille JA, Ventura SJ, Turner MG (2001) Environmental and

social factors influencing wildfires in the upper Midwest,

United States. Ecol Appl 11:111–127

Carranza EJM, Hale M (2000) Geologically Constrained

probabilistic mapping of gold potential, Baguio District,

Philippines. Nat Resour Res 9:237–253

Carranza EJM, Hale M (2002) Where are porphyry copper

deposits spatially localized? A case study in Benguet

Province, Philippines. Nat Resour Res 11:45–59

Chou YH, Minnich RA, Salazar LA, Power JD, Dezzani RJ

(1990) Spatial autocorrelation of wildfire distribution

in the Idyllwild Quadrangle, San Jacinto Mountain,

California. Photogramm Eng Remote Sens 56:1507–1513

Chou YH, Minnich RA, Chase RA (1993) Mapping Probability

of fire occurrence in San Jacinto Mountains, California,

USA. Environ Manage 17:129–140

Chuvieco E, Congalton RG (1989) Application of remote-

sensing and GIS to forest fire hazard mapping. Remote

Sens Environ 29:147–159

Chuvieco E, Salas J (1996) Mapping the spatial distribution of

forest fire danger using GIS. Int J Geogr Inf Syst 10:

333–345

D. G. del Medio Natural (1997) Mapa de Vegetación y Ocu-

pación del Suelo. Consejerı́a de Medio Ambiente y

Ordenación del Territorio. Comunidad de Madrid, Madrid

D. G. del Medio Natural (2000) Áreas Recreativas (Cartogra-
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SCR (2000) Mapa Topográfico. Consejerı́a de Obras Públicas,

Urbanismo y Transportes. D. G. de Planificación Terri-

torial. Comunidad de Madrid, Madrid

Skidmore AK (1989) An expert system classifies eucalypt

forest types using Thematic Mapper data and a digital

terrain model. Photogramm Eng Remote Sens 55:

1449–1464

Syphard AD, Clarke KC, Franklin J (2007a) Simulating fire

frequency and urban growth in southern California coastal

shrublands, USA. Landsc Ecol 22:431–445

Syphard AD, Radeloff VC, Keely JE, Hawbaker RJ, Clayton

MK, Stewart SI, Hammer RB (2007b) Human influence

on California Fire Regimes. Ecol Appl 17:1388–1402

Tucker K, Rushton SP, Sanderson RA, Martin EB, Blaiklock J

(1997) Modelling bird distributions—a combined GIS and

Bayesian rule-based approach. Landsc Ecol 12:77–93

Vázquez A, Moreno JA (1995) Patterns of fire occurrence

across a climate gradient and it’s relationship to meteo-

rological variables in Spain. In: Moreno JA, Oechel WC

(eds) Global change and Mediterranean-type ecosystems.

Springer Verlag, New York, pp 408–434

Venevsky S, Thonicke K, Sitch S, Cramer W (2002) Simu-

lating fire regimes in human-dominated ecosystems:

Iberian Peninsula case study. Glob Chang Biol 8:984–998

WWF/Adena (2004) Incendios Forestales. Causas, situación

actual y propuestas. WWF/Adena, Madrid, p 25

WWF/Adena (2005) Incendios Forestales. >Porqué se queman
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