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Abstract Invasive alien species can pose a severe

threat to biodiversity and stability of the ecosystems

they invade. Predicting distribution patterns of inva-

sive species in regions outside their native range is a

fundamental component of early warning systems.

Crofton weed (Eupatorium adenophorum Spreng.)

was first discovered in the Yunnan Province of China

around the 1940s. The well-documented invasion

history of this plant species provided the opportunity

for us to examine the spatiotemporal patterns of

biological invasion by crofton weed. Using the

datasets documenting 441 known localities invaded

by crofton weed in China over the past 50 years and

23 environmental variables generated by the genetic

algorithm for rule-set production (GARP) model, we

tested the predictability of crofton weed distribution

with a high degree of accuracy. Both the Kappa

statistics and the receiver–operator characteristic

(ROC) analysis indicated that it is possible to predict

the geographical spread of crofton weed in China.

Precipitation in the coldest quarter of the year,

extremely low air temperature, and maximum annual

air temperature strongly influenced the predictions.

Our results indicate that crofton weed may break out

in Yungui Plateau, Sichuan Basin, southeastern

Coastlands, Hainan Island, and Taiwan although

currently it is either absent or has only recently been

recorded in these regions. Redundancy analysis

(RDA) ordination results demonstrated that temper-

ature and precipitation play an important role in

confining the spread of crofton weed. Over the past

20 years, crofton weed has spread from subtropical

areas with higher annual mean temperature and lower

climatic fluctuations to much cooler and dryer areas

at higher altitudes. The distribution of crofton weed

was restricted mainly to regions with mean annual air

temperature ranging from 10 to 228C and annual

precipitation from 800 to 2000 mm. Our results could

help in developing and implementing early detection

measures to minimize the ecological impacts of

crofton weed invasion in China.
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Introduction

Biological invasion by alien plants has been identified

as one of the most important contemporary ecological

problems because of the potential threat it poses to

biodiversity and stability of ecosystems (Wilcove
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et al. 1998; Reichard and White 2003) and its adverse

impacts on agricultural and forest productivity (Tur-

pie et al. 2003; Knowler and Barbier 2005). Increasing

global economic trade and trans-boundary activities

make it almost impossible to avoid the spread of alien

species across continents (McNeely 1999; Normile

2004) or the movement of species across different

habitats within a region. Being able to understand the

factors that regulate the spread of invasive species is

an important goal of landscape ecology (With 2002).

The ability to predict distribution patterns of invasive

plants in regions outside their native range is funda-

mental to developing early detection systems and

minimizing the ecological impacts of biological

invasion by alien plants.

In China, a total of 108 plant species have been

identified as alien weeds, of which 15 are distributed

throughout most regions or the whole country (Qiang

and Cao 2000). One of the most notable and noxious

invasive alien plants is crofton weed (Eupatorium

adenophorum Spreng.), a perennial herb native to

Central America. It naturally spread into southern

Yunnan province of China from Myanmar around the

1940s (Xie et al. 2001). The invasion of large areas of

grassland and forest land by crofton weed has

contributed to the decline in the numbers of indige-

nous animals and plants and decrease in biodiversity

(Sun et al. 2004). Crofton weed is also a noxious plant

known to cause acute asthma, diarrhea, depilation,

and even death of livestock (Wu et al. 2004). The

weed has invaded more than 30 countries including

China, India, Thailand, New Zealand, Australia and

the United States, resulting in extinction of many

plants and severe economic losses (Fuller 1981; Wang

et al. 1997). The ecological and socio-economic

implications of biological invasion have prompted the

urgent call for better methods to predict the areas

where introduced species may become a threat

(Rejmánek 2000; Welk et al. 2002; Richardson 2004).

Many different modeling approaches have been

developed and used for predicting the likely distri-

bution of plant species based on climatic and edaphic

constraints (Segurado and Araújo 2004; Guisan and

Thuiller 2005). One of the approaches that have

proven to be especially useful is the genetic algorithm

for rule-set production (GARP) modeling system

(Peterson and Cohoon 1999). The GARP modeling

approach employs four inferential sub-routines,

namely atomic, BIOCLIM, range rules, and logistic

regression, in an iterative, artificial-intelligence-based

system and uses raster-based environmental and

biological data to produce a niche-based model of

the environmental requirements of the given species

(Stockwell and Noble 1992; Stockwell and Peters

1999). These models can then be projected onto other

landscapes to predict the geographic distribution of

species (Lim et al. 2002; Parra et al. 2004). By

extrapolating the model to a region free from the

species in question, the potential of that species to

invade the region can be predicted (Peterson and

Vieglais 2001). The predictive power of this

approach has been well tested in applications such

as biogeography and conservation (Ortega-Huerta

and Peterson 2004; Araújo et al. 2005) and in

assessing the effects of global climate change (Pet-

erson et al. 2002; Parra-Olea et al. 2005).

Incomplete sampling and smaller populations are

common problems in compiling or evaluating data on

the distribution of alien species, particularly in the

case of recently established species that are not yet to

reach their limits of successful growth and reproduc-

tion imposed by climate. Stockwell and Peterson

(2002) explored the sample size needed for accurate

modeling via re-sampling of data for well-sampled

species. But random re-sampling methods ignore the

temporal correlations that may exist within real

distribution data.

We used a 50-year chronological data set of crofton

weed covering a large area of China, to build a more

realistic scenario of typical early stages of crofton

weed invasion, incorporated time series re-sampling

as a historical simulation approach, modeled the

fundamental niche of this species using the GARP

approach, and analyzed the environmental parameters

of known localities and within niche areas predicted

as likely to be invaded by the weed. Our objectives

were to (1) describe the spatiotemporal patterns of

crofton weed invasion in China and (2) identify the

regions vulnerable to invasion by crofton weed.

Methods

Datasets

Ecological niche models are based on non-random

correlations between known occurrence of species

and environmental datasets that describe parameters
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related to the dimensions of the ecological niche of

the species. To build models, environmental param-

eters of localities of known occurrence are deter-

mined and then used to identify geographic regions

that have similar environmental parameters. Time

series data are usually obtained by periodically re-

sampling the target objects.

In our study, the occurrence of crofton weed was

established for 441 localities using herbarium records

in local and national museums throughout China and

from literature and field investigations. The localities

of known occurrence were then georeferenced using

the Electronic Sinomap (2004). The dataset for

predicting the distribution of the species consisted

of dated crofton weed specimens from 1940 to 2003.

Because there had been a marked increase in

regionally clustered records as a result of systemat-

ically increased sampling efforts since 1990, we

removed 20 records for the period 1990–2003 to

compensate for any bias due to the increased

sampling. A total of 390 historical records were

selected and stratified, respectively in random and

chronological order, into 39 sets of 10 records each as

intrinsic training data in the modeling process. The

prediction analysis began with the first set of 10

records, and successive sets of 10 records were added

for each of the consecutive runs. The sequential

addition of chronologically stratified data sets, which

is a form of quasi-retrospective sampling, constitutes

the temporal dimension of the dataset compared with

randomly arrayed datasets to examine the influence

of invasion time on the model performance. An

additional set of 51 records was used for evaluating

the performance of GARP models as the extrinsic test

data.

In the modeling process, 23 eco-geographic data

layers were used for the initial assessments of

ecological niche dimensions, including climate data

(i.e. annual total radiation, maximum, minimum,

mean, extreme high and extreme low annual air

temperatures, relative humidity, mean annual pre-

cipitation, precipitation in the warmest and the

coldest quarters, and precipitation in the wettest and

the driest months) for the period 1971–2000 from

Chinese Ecosystem Research Network dataset

(http://www.cern.ac.cn/0index/); topographic and

hydrologic data (i.e. elevation, slope, aspect, topo-

graphic index, flow accumulation, and flow direc-

tion) from the USGS’s Hydro-1K dataset (http://

edcdaac.usgs.gov/gtopo30/hydro/); soil data (i.e. soil

pH, soil moisture, and soil carbon) from the IGBP-

DIS dataset (http://www.sage.wisc.edu/atlas/) and

soil units from the Global Ecosystems Database

(http://www.ngdc.noaa.gov/seg/ecosys/ecosys.shtml/

); and land cover classification based on AVHRR

satellite imagery for 1992–1993 from University of

Maryland Global Land Cover Facility (http://

glcf.umiacs.umd.edu/index.shtml/). The coverage

was limited to 2–548N latitude and 73–1368E
longitude, which was re-sampled to 1-km grid

resolution. We used a jackknife manipulation and

analysis and inspection of omission statistics to

reduce the original sets of environmental layers to

17 ecological dimensions (Peterson and Cohoon

1999).

Niche modeling

The GARP method (http://www.lifemapper.org/

desktopgarp/) works as an iterative process of rule

selection, evaluation, testing, and incorporation or

rejection to produce a heterogeneous rule-set

describing the species’ ecological niche. The general

approach is described in greater detail by Feria and

Peterson (2002). For each of the time-series dataset

model runs, rules were generated for 1000 iterations

and repeated 100 times using a differential data ratio

of 80:20 for training and rule-set validation. We

selected the 10 best-subset models out of the 100

replicates based on optimal combinations of error

components (Anderson et al. 2003). The intersection

of all the 10 best-subset models generated a final

map with values ranging from 0 to 1 (1 for regions

where all the models predicted niche presence; 0 for

regions of niche absence). The resulting value

(hereafter referred to as overlap index, OI) is

interpreted as a measure of relative likelihood of

correctly predicting the niche presence for crofton

weed.

Test approach

To test our model predictions, the extrinsic test data

were overlaid on the mosaic of models and evaluated

through Kappa analysis (Cohen 1960) and receiver–

operator characteristic (ROC) analysis (Hanley and

McNeil 1982) as more reliable measurements, (Pe-

arce and Ferrier 2000; Manel et al. 2001) advocated
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by some researchers (Cumming 2000; Mcpherson

et al. 2004). The Kappa statistic is a reliability metric

that uses the classification probabilities of the model

and of reality to compute the likelihood of agreement

by chance. In other words, the Kappa value is useful

for testing the null hypothesis that there is no more

agreement than might occur by chance alone.

Monserud and Leemans (1992) have suggested the

following ranges of agreement for the Kappa statistic:

poor, K < 0.4; moderate, 0.4 < K < 0.55; good,

0.55 < K < 0.85; excellent, 0.85 < K < 0.99; and

perfect, 0.99 < K < 1.00. Unfortunately, the calcu-

lation of Kappa values requires that probabilistic

predictions of occurrence be divided into concrete

predictions of absence or presence, based on a single,

potentially arbitrary classification threshold.

The ‘‘area under the curve’’ (AUC) of the ROC

plot, instead, is a threshold-independent measure of

model accuracy, which juxtaposes correct and incor-

rect predictions over a range of thresholds. It ranges

from 0 to 1, with a value larger than 0.50 indicating a

better than random-event performance (Fielding and

Bell 1997). Given the various advantages and disad-

vantages to using these different measures, we chose

not to use any one single measure to assess model

accuracy in our analyses.

Model evaluation

The model was evaluated using two criteria: the

influence of each environmental layer on the models’

prediction accuracy and the prediction performance

related to increasing invasion time and data com-

pleteness.

To assess the influence of the environmental

layers, 10 repeated runs of GARP modeling, each

consisting of 100 iterations, were performed in

which each of the 23 layers was sequentially

eliminated from the analyses, which resulted in 10

prediction maps for each of the eliminations. These

maps were overlaid to produce a composite map,

with each pixel having a value between 0 and 10

that indicated the number of replicate model runs

predicting the presence of the weed. These maps

were further compared pixel by pixel with compos-

ite maps generated by GARP for all the 23 layers

following the same procedures. The level of agree-

ment between maps was analyzed by Kappa and

ROC statistics.

To assess the prediction performance related to

increasing invasion time and data completeness, we

tested the 10 best models using the original extrinsic

testing dataset segregated from the training datasets

with random addition and chronological addition for

the known localities of the species based on the two

types of statistical analyses mentioned above.

Environmental envelope analysis

The zonal statistics routine (ArcMap 8.3, Spatial

Analyst; ESRI 2003) was used to extract from the

digital maps the values of 23 environmental variables

in the localities where crofton weed is known to be

present and in 1,000 random locations generated with

a random point generator in ArcMap 8.3 (ESRI

2003). These values were used in the Redundancy

Analysis (RDA; implemented in the software CA-

NOCO 4.5; ter Braak and Šmilauer 2002) to order the

invasion probabilities and spreading dynamics of

crofton weed along the given environmental gradi-

ents. The significant environmental variables

(P < 0.05) were selected after a forward selection

using an unrestricted Monte Carlo permutation test

based on 9,999 random permutations.

Results

Spatiotemporal trends

The chronological development and spatial autocor-

relation for the locations of occurrence of crofton

weed within the invasion time series illustrated a

general trend despite the occurrence of numerous new

records in the areas that were first invaded (Fig. 1).

Crofton weed populations in China tended to be more

recent towards the northern and southern limits of

their distribution range. In the initial phase of the

invasion, the range was limited to several isolated

locations centered on the Jinghong region (Yunnan).

Subsequently, the weed continued to expand and

established clusters of invasion foci. Over the last

60 years, this weed has spanned 23.48 of latitude and

9.68 of longitude. The locations along Yibin (Sich-

uan) and Nandan-Hechi area (Guangxi) appeared to

spearhead a more recent movement of the species by

providing nascent foci for further invasion to the

north and the east.
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Tests of model performance

Each of the more important environmental layers can

be identified by the lower agreement value of the

statistics after the layer is excluded from the rest of

the layers using the jackknifing procedure (Fig. 2).

The ROC analysis indicated that maximum mean

annual air temperature, precipitation in the coldest

quarter, and extreme low air temperature had the

most influence on the predictions whereas the Kappa

analysis identified only the latter two layers as the

most influential factors.

As can be seen in Fig. 3, the predictive accuracy

was related to sample size and especially to the

spatial distribution of input data points. The curves of

both Kappa and AUC values showed an increasing

trend with the random and positive case addition until

leveling off at the 7th run with 70 data points

(Fig. 3a) and did not reach a steady state until the

22nd run with 220 data points in the time series

(Fig. 3b) comprising 50 years of invasion history.

Predicted geographic distribution of crofton weed

in China

The GARP analysis was based on a time series

training set of 390 location records (Fig. 4). This

analysis predicted a much wider distribution than

current occurred areas for crofton weed extending to

192 counties and cities across seven provinces. Each

of the 10 best-subset models from this analysis

(v2 = 217.99–331.56; P < 0.001) was imported into

ArcMap (ESRI 2003) and displayed in geographic

space as a mosaic of model intersections. Given that

ecological niche models yield highly accurate pre-

dictions of the distribution of a species, the most

likely areas for future invasion (i.e. OI = 1) include

significant portions of Yunnan, Guizhou, Guangxi,
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Fig. 2 Identification of the influence of each environmental

layer on the models’ prediction accuracy based on Kappa and

AUC (area under curve) values calculated from jackknife

experiments. Layers excluded from model building are listed

on the horizontal axis. The white and grey bars represent

Kappa and AUC values respectively. pcq: precipitation in the

coldest quarter, elt: extreme low annual air temperature, dem:

elevation, pre: mean annual precipitation, asp: aspect, dir: flow

direction, slp: slope, tmx: maximum annual air temperature,

cov: land cover, pH: soil pH, rad: annual total radiation, cbn:

soil carbon, mst: soil moisture, acc: flow accumulation, eht:

extreme high annual air temperature, top: topographic index,

and hum: relative humidity

Fig. 1 Spatiotemporal trends in crofton weed (Eupatorium
adenophorum) invasion in south-west China. Geographical

distribution of training data was plotted on the bottom x–y axis.

Invasion history of distribution points based on recording dates

was plotted on the vertical axis. The black lines represent the

equal invasion time and the grey arrows indicate the direction

of spread. The boundaries of administrative regions are marked

on the top plane
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Hainan, Chongqing, Hubei, eastern Sichuan, south-

eastern boundary of Tibet, western Hunan, southern

Shanxi; the coastal zone of Guangdong, Fujian,

Taiwan, and Zhejiang; and isolated areas in Henan,

Anhui, Jiangsu and Shandong.

Factors determining the invasion pattern of

crofton weed across China

Figure 5a illustrates the relationships among the

probabilities for crofton weed invasion and selected

environmental parameters. The first two ordination

axes explain 61.6% of the variation in distribution of

the species and 97.7% of the variation in the

relationship between the distribution of crofton weed

and environment parameters respectively. An unre-

stricted Monte Carlo permutation test showed that the

selected environmental variables significantly ex-

plained the total variance (P < 0.05) as well as the

variation along the first ordination axis (P < 0.05).

The first ordination axis is related mainly to extreme

low, minimum, mean, and maximum annual air

temperatures whereas much of the variance of the

second ordination axis is explained by precipitation

in the coldest quarter and mean annual precipitation.

The higher OI values were associated with increased

levels of moisture-related variables, especially mean

annual precipitation and precipitation in the driest

month. It can be inferred that both temperature and

precipitation play a pivotal role in the spread of

crofton weed to northern and eastern parts of China

following the decrease in the value of OI. Figure 5b

shows the relationships among the invasion dynamics

of crofton weed and selected environmental param-

eters. In early stages of the invasion, most of the

likely localities are in the highlands (average altitude

of about 1,300 m) except on steeply sloped terrain

(>158); the occurrence of crofton weed is positively

correlated with precipitation and temperature. In the

later stages of the invasion, the occurrences of crofton

weed were correlated negatively with temperature

and precipitation but positively with geographic and

edaphic factors such as elevation, land cover, soil

type, and soil pH. Over the past 20 years, crofton

weed has spread from subtropical areas with higher

annual mean temperature and lower climatic fluctu-

ations to much steeper, cooler, and drier areas at

higher elevations.

Visualization of ecological niches

A graphical display of the pattern of crofton weed

distribution influenced by concrete, tangible ecolog-

ical parameters provides fertile ground for insights

into the pattern of distribution. The known localities

of crofton weed were well arranged (Fig. 6a) along

the margin of predicted niches defined by the

bivariate environmental space of mean annual air

temperature and annual precipitation, with mean

annual air temperature ranging from 4.48C (Taoyu-

anlang in Taiwan) to 23.18C (Taidong in Taiwan) and

annual precipitation from 698 mm (Yuanmou in

Yunnan) to 2254 mm (Jiangcheng in Yunnan).

The mean annual air temperature in the known

localities (16.88C; SD = 2.9) was above the average of

Model-Run (10 time-series records added each run) / Year of Invasion
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Fig. 3 Quality assessments by Kappa and AUC values of the

performance of the prediction model of modeling methods for

under recorded or incompletely distributed items with random

addition (a) and chronological addition (b). The larger value in

this curve indicates greater reliability of the outputs of the

corresponding model. The minimum sample size in this instance

is just over 70 and the invasion records of at least 50 years are

needed to attempt reliable prediction on a large-scale
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that in randomly predicted locations (15.68C;

SD = 3.2) and the differences were significant

(Mann-Whitney U = 68,284.5, P < 0.001), which

indicated a trend for the spread of crofton weed

toward locations with lower temperatures, whereas

the mean annual precipitation in the known localities

(1292 mm; SD = 252) was not significantly different

from the average of that in randomly predicted

presences (1326 mm; SD = 340; Mann–Whitney

U = 84,019, P = 0.244). When temperature and

precipitation in the sub-regions in which the presence

of crofton weed was predicted were compared with

those in which it was unlikely to spread, it became

apparent that a broad combination of higher temper-

ature and greater precipitation favored crofton weed.

Within the regions of predicted presence, the majority

of habitats had mean annual air temperatures between

10 and 228C and mean annual precipitation between

800 and 2,000 mm.

The predicted locations for continued invasion of

crofton weed are characterized by lower values of

extreme low temperatures and greater precipitation in

the coldest quarter of the year than in those locations

where the invasion was held to be unlikely (Fig. 6b).

Precipitation in the coldest quarter of the year for the

predicted localities was also higher than that in the

known localities of crofton weed, suggesting that

crofton weed may be expected to spread further

toward wetter regions.

Discussion

Predictive power and practical consequences of

the model

Hierarchical modeling schemes of environmental

control on the spread of species, such as those

discussed by Wu and David (2002), may be essential

to the improvement of spatial modeling. In this study,

however, we opted for the simpler niche modeling

approach because our primary objective was not so

much to eradicate the weed from localities where it is

already established as to identify regions potentially

Fig. 4 Geographic predictions for crofton weed (Eupatorium
adenophorum) in China. Blue triangles represent the 390 spots

used to train the predicted models and where the weed is

known to occur, and white circles represent 51 extrinsic testing

data used to test the predicted geographic range. To derive a

robust result, all the available data (including extrinsic testing

data) were used as input data in the final modeling after model

testing and validations. The different colors represent regions

where crofton weed presence was predicted with varying

degrees of certainty or likelihood (i.e. overlap index 1 means a

higher possibility in that 10 out of 10 models predicted the

presence; overlap index 0 means a lower possibility in that

none of the 10 models did so)
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vulnerable to invasion and implementing appropriate

control measures. Our exercise proved effective in

that it has achieved excellent predictive accuracy by

identifying environmental parameters that influence

the potential spread of the species.

In predicting new regions where a given species is

likely to spread, the environmental conditions in the

native range are often used as a constraint (Peterson

et al. 2003; Iguchi et al. 2004). In this study, our

predictions used the data on occurrence of the species

in China. Although crofton weed has existed in China

for about 60 years, it continues to expand its’ range.

Our datasets reflected the geographical non-equilib-

rium in the distribution of the species. However,

given the long invasion history and diverse environ-

mental conditions across the invaded regions, crofton

weed can be considered to have occupied extremes of

ecological niches in China. For many plant species,

the current environmental conditions in their native

ranges may not be necessarily consistent with the

ecophysiological characteristics of the species (Haw-

kins and Sweet 1989; Sun and Sweet 1996). The

distribution of a plant species reflects to a large extent

the influences of a suite of factors related to evolution
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Fig. 5 (a) Redundancy analysis (RDA) ordination diagram

(showing first and second ordination axes) displaying the

relation of crofton weed (Eupatorium adenophorum) invasion

probabilities (arrows with dashed lines show OI value ranging

from 0.1 to 1) and the correlation pattern of selected

environmental characteristics (arrows with thick lines) in

China. (b) RDA diagram displaying the relation of the

temporal dynamics by crofton weed invasion (arrows with
dashed lines show invasion years ranging from 2 to 60) and the

correlation pattern of selected environmental characteristics

(arrows with thick lines): tmn: minimum annual air tempera-

ture, tmp: mean annual air temperature, pwm: precipitation in

the wettest month, pdm: precipitation in the driest month, pwq:

precipitation in the warmest quarter and soil: soil category. For

the explanations of the other abbreviations, see Fig. 2
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Fig. 6 Ecological niches of crofton weed (Eupatorium
adenophorum) in environmental space, . White circles indicate

known localities; black dots and gray triangles indicate

modeled predicted presences and absences, respectively, in

the area of analysis
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and geological history of habitats and may not always

fit the most suitable environmental conditions.

Papes et al. (2003) predicted the distribution of

crofton weed in China based on environmental

conditions in the native habitats and suggested that

the species would occur mainly in eastern Yunnan,

and central and south-eastern China. Our results,

based on the locations in China where it has invaded

and become established, seemed to fit the known

localities better, which allowed for considering the

possibly of changed niches regulated by different

biotic (e.g. competitive exclusion) and abiotic factors

(e.g. habitat specificities) (Davis et al. 1998) than in

its’ natural range. Certainly, to achieve more reliable

spatial predictions over a shorter time span, distribu-

tional data in the native range should be incorporated

into such models.

Spatial models of species distribution are com-

monly subject to two types of errors: errors of

omission (exclusion of regions inhabited) and errors

of commission (inclusion of regions not actually

inhabited) (Fielding and Bell 1997). Insufficient

sampling and ignoring the potential of non-equilib-

rium invasion would tend to increase the first type of

error, leading to predicted values being lower than the

actual values. Additionally, failure to take into

account interactions among species (i.e., mutualism,

competition, and predation), long distance dispersal,

propagule pressure (Rouget and Richardson 2003),

anthropogenic disturbance, and other restricting fac-

tors could lead to a gap between real and predicted

distributions resulting from both types of errors.

Approaches that take these processes into account

will not only result in more accurate predictions but

also provide better insight into specific factors

controlling the distribution of invasive plants.

Despite the possible sources of errors, statistical

analysis of our results indicated that our niche model

based on records where crofton weed has invaded

China and a 50-year record of crofton weed invasion

had a high degree of predictive power. It included

most known localities for crofton weed, suggesting

low omission errors. Ninety-six percent of known

localities were predicted by all models (OI = 1). The

high predictive power of distribution ranges from

niche modeling is widely reported (Anderson 2003;

Raxworthy et al. 2003). Although the large-scale and

long-term prediction of establishment can be based

on the characteristics of a species’ native and invaded

range using climate-matching models, invasiveness

and invasibility are mainly determined by additional

processes that act on much smaller spatial scale

(Williamson 1999, 2001).

Dispersal mode and invasion pattern of crofton

weed

Baker (1986) noted that invasion occurs through two

modes: the steady advance and the stratified diffusion

models. Crofton weed has been expanding from the

south-west boundaries of China to the southern and

eastern provinces as scattered satellite populations

from the original center of introduction followed by

infilling of the gaps. These long-distance hops are

characteristic of ‘‘stratified diffusion’’, which is the

most frequent pattern of plant invasions such as that

observed in the post-glacial dispersal of oak trees in

Great Britain (Hengeveld 1989). The extent to which

species spread by stratified diffusion may influence

the choice of control strategies. For example, control

measures that prevent the establishment of new foci

or eliminate newly established foci are far more

effective than those in which efforts are concentrated

on invasion fronts already established (Moody and

Mack 1988). As demonstrated in this study, the

establishment of new foci through jump dispersal

resulting from a heterogeneous landscape is of

paramount importance in the spread of crofton weed.

Identification of factors that affect patterns and

processes of the spread of species and potentially

enhance or hamper species invasion is expected to

suggest ways for effectively managing invasive

species (Sakai et al. 2001; Fagan et al. 2002). The

RDA analyses revealed that environmental charac-

teristics are the key features determining the invasion

patterns of crofton weed and provided justification for

using environmental data in niche visualization. The

occurrence of crofton weed was found to be posi-

tively correlated with precipitation and temperature

and was more likely in regions with sufficient rainfall

and higher temperatures. The predicted northern limit

is 33.58N corresponding to 0 8C isotherm in the

coldest month in China. This temperature may

represent a particular threshold for the weed to adapt

to cold climates. Elevation and slope, despite having

no direct biological effects on plants (Austin 2002),

can influence crofton weed invasion through their
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correlation with temperature and precipitation. The

preference of crofton weed to highlands largely

reflects their range in their native habitats (Lu and

Ma 2004); most of their known localities occur at

flatter, mid-elevation sites where soil moisture is

relatively high. Those known localities may also

represent staging areas where the weed could slowly

adapt to an environment of steeper slopes and higher

elevations.

The spread of crofton weed in China is far from

over. Human transformation of landscapes has facil-

itated the dispersal of a species that already has

strong reproductive capacity and long-distance dis-

persal capability (Wang et al. 1994). In south-western

China, crofton weed is often found along major river

systems such as the Jinsha, Yalong, Hong and

Lancang, with the highest densities along river

valleys, in riparian areas, and on riverine beaches.

Hence, rivers may have been a major channel of

spread for crofton weed. River corridors consist of an

array of landscape elements (Ward et al. 2002) with a

high frequency of open ground for colonization

(Malanson 1993), thus forming dispersal networks

connecting different landscapes (Forman and Godron

1986) and serving as a dispersal vector for alien

invasive organisms (Renöfält et al. 2005). Crofton

weed is reported to have reached the Yangtze River

in 2003 and may continue to spread eastward along

the river course if not contained.

Remarks on invasion by crofton weed

Crofton weed, a species characteristic of warmer

regions with a tropical climate, appears to tolerate a

wide range of environmental conditions within trop-

ical and subtropical regions. Our study suggested that

Yungui Plateau, Sichuan Basin, south-eastern Coast-

lands, Hainan Island, and Taiwan might be at high

risk of invasion by this weed although currently the

weed is either altogether absent in these regions or

recorded only recently from isolated locations.

Despite its already widespread occurrence, crofton

weed may expand further into regions susceptible to

its invasion. Identification of such sites would help in

formulating measures to contain its spread. One area

of particular concern is south-east China given the

number of open ports, which makes it highly

susceptible to the introduction of alien weeds through

frequent trade.

At present, the invasion of crofton weed is so

extensive that eradication would be extremely labor-

intensive, and removal projects, although possible on

local scales, will have to be accompanied by long-term

management efforts. An important means of conserv-

ing native biodiversity is to be vigilant in preventing

crofton weed from entering the vulnerable areas.

Under those circumstances, long-term monitoring

systems to provide early detection and strict quaran-

tine measures to avoid anthropogenic spread of crofton

weed would be a high priority for the management of

crofton weed invasion. Our predictions of potential

distribution of crofton weed can provide a strong basis

for identifying areas where detection efforts would be

most effective and beneficial.
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