
Abstract Land use change is an important

research area in landscape ecology and urban

development. Prediction of land use change (urban

development) provides critical information for

making the right policies and management plans in

order to maintain and improve ecosystem and city

functions. Logistic regression is a widely used

method to predict binomial probabilities of land

use change when just two responses (change and

no-change) are considered. However, in practice,

more than two types of change are encountered

and multinomial probabilities are therefore nee-

ded. The existing methods for predicting multi-

nomial probabilities have limits in building

multinomial probability models and are often

based on improper assumptions. This is due to the

lack of proper methodology and inadequate soft-

ware. In this study, a procedure has been developed

for building models to predict the multinomial

probabilities of land use change and urban

development. The foundation of this procedure

consists of a special bisection decomposition sys-

tem for the decomposition of multiple-class sys-

tems to bi-class systems, conditional probability

inference, and logistic regression for binomial

probability models. A case study of urban devel-

opment has been conducted to evaluate this pro-

cedure. The evaluation results demonstrated that

different samples and bisection decomposition

systems led to very similar quality and performance

in the developed multinomial probability models,

which indicates the high stability of the proposed

procedure for this case study.
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Introduction

Land use change and urban development are two

areas of research that attract broad attention,

since both can produce significant ecological

impacts to the environment. However, urban

development is a special type of land use change:

the conversion of mainly agricultural and forested

lands to residential, commercial-industrial, and

recreational in cities and along their edges. The

special driving forces and radiating impact of
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urban development distinguish it from other

kinds of land use change. The major driving for-

ces of urban development include cultural, social,

and economic factors; and make the processes of

urban development very complex (Cheng and

Masser 2003; Fang et al. 2005; Gimblett et al.

2001; Ligtenberg et al. 2001; Rusk 1995; Weber

2003). Although the proportion of urbanization is

small compared to the total land use change on

the earth’s land surface area (Grübler 1994),

urbanization can cause very large changes in

surrounding environmental conditions, more so

than other land use changes (Folke et al. 1997;

Heilig 1994; Lambin et al. 2001). Even though the

two areas can be separated based on the above

reasons, both land use change and urban devel-

opment researchers eventually study the conver-

sion of land use. Therefore, they can share

techniques such as those which estimate the

conversion probability and the mapping of

the conversion. Logistic regression is one of the

techniques shared by land use change and urban

development researchers.

Logistic regression is a common method to

build models for predicting the probabilities of

categorical variables (responses or events) based

on numerical (continuous and discrete) and cat-

egorical variables (Agresti 2002; Hosmer and

Lemeshow 2000; McCullagh 1980). It is also

widely used in predicting the conversion proba-

bilities of both land use change (Geoghegan et al.

2001; Serneels and Lambin 2001; Verburg et al.

2002) and urban development (Cheng and Masser

2003; Fang et al. 2005; Wu 2002). In studies of

land use and urban development, usually logistic

regression is used to fit a probability model based

on sampled data. The conversion probability of

land use change and urbanization in a study area

thus can be predicted using the fitted logistic

models based on the attribute maps. The resulting

probability maps can be used to indicate the ‘‘hot

spots’’ where the highest probability for change

will occur over a certain duration (Fang et al.

2005).

Currently, logistic regression has been mainly

used in predicting binomial probability of two

responses (‘‘yes’’ or ‘‘no’’ in general) of a

dependent categorical variable (event) in studies

of land use change and urban development (for

example, Geoghegan et al. 2001; Verburg et al.

2002; Wu 2002). Often the conversion of land use

change and urbanization possesses a multinomial

distribution (Turner et al. 1996; Wear et al. 1998).

The challenge of multinomial probability predic-

tion is that the sum of the predicted probabilities

of all responses should be equal to one. Usually,

multinomial probabilities are predicted using a

set of logistic models, whose dependent variables

could be fractions of probabilities of paired re-

sponses [log(Pi /Pj) = A¢X, i „ j, where A and X

are vectors of coefficients and independent vari-

ables, respectively], and the models are adjusted

to make the multinomial probabilities consistent

(i.e., the sum of probabilities equal to one) after

their coefficients are estimated (Allison 1999;

Chomitz and Gray 1996; McCullagh 1980).

The estimation of multinomial probability has

its limits. First, the adjustment to reach consis-

tency of the multinomial probabilities is based on

the assumption of independence among multiple

responses (Chomitz and Gray 1996). This

assumption does not hold for most of situations.

Furthermore, when each response has its own

unique explanatory variables (Deal et al. 2002),

the pair-response-based logistic models and the

resulting models (Allison 1999) may make no

logical sense and can cause confusion, since the

resulting model for a specific response contains

explanatory variables which are not defined for

that response. Another problem for this situation

is over-parameterization, i.e., too many explana-

tory variables may be included in a model,

even though some are not significant in terms of

prediction.

Finally, in model development and calibration,

there is a need for screening techniques, i.e., to

select significant independent variables of the lo-

gistic models from a number of candidate vari-

ables. Although screening techniques are

available for binomial logistic regression, they are

usually not available for multinomial probability

estimation in standard statistical packages (for

instance, SAS� and SUDAAN�). Therefore,

there is a need for methods that estimate multi-

nomial probability without the theoretical and

practical limitations as given above.

Since the estimation of a logistic model for

binomial probability is well-established and any
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multi-element system (set) could be divided into

two subsystems (subsets) at a time, a bisection

system is promising to find a solution for the

prediction of the multinomial probabilities of

land use change. A bisection system has been

widely used in developing regression trees to

improve the quality of empirical models (Alex-

ander and Grimshaw 1996; Chaudhuri et al. 1994;

De’Ath and Fabricius 2000; Loh and Shih 1997);

for machine learning in classification (Perlich

et al. 2003); and for classification of vegetation

patterns and land use conversion changes (not

prediction of future change) (Lawrence and

Wright 2001; McDonald and Urban 2006; Rogan

et al. 2003; Taverna et al. 2005). In tree regres-

sion, although the dependent variables of the

models can be numerical or categorical and

individual probabilities of categories can be

computed for classification, the consistency of

multinomial probabilities (i.e., their sum equals to

1.0) is never considered. In addition, tree regres-

sion does not divide data according to the (cate-

gorical) dependent variables of the models in the

estimation of multinomial probabilities, but in-

stead by the independent variables.

The objective of this study is to develop a

consistency-constrained procedure based on a

bisection system for prediction of the multinomial

probabilities of effect-specified land use conver-

sion. The bisection system is based on the

dependent variables of the probability models.

The procedure is suitable for the general prop-

erties of land use change and urbanization, but

can also be used for other landscape systems

where multinomial probabilities are needed. It

has been developed based on conditional proba-

bility inference and utilizes existing logistic

regression statistical software. A case study will

be used to evaluate this procedure and demon-

strate its use in the prediction of the multiple

probability maps.

Procedure development

When an event has two types of responses (such

as, ‘‘yes’’ and ‘‘no’’), it has a binomial distribution

and the probability of one type of response can be

calculated from that of the other one, i.e.,

P2 = 1 – P1. Logistic regression has been

developed for modeling the probability of

binomial distributions and most major statistical

software packages have procedures for this

purpose. When there are more than two types of

responses (say, k responses) for an event, it has

multinomial distribution and the sum of the

probabilities for all types of responses should be

equal to one, i.e.,
Pk

r¼1 Pr ¼ 1; where Pr is the

probability of the rth response.

Suppose a special bisection decomposition

system as shown in Fig. 1 is constructed. In such a

decomposition system, k types of responses of an

event are decomposed into k – 1 decomposition

levels, each decomposition level being a binomial

structure. At the first level there are exactly two

classes, one class containing a single response

type and the other class containing all remaining

k – 1 response types. For the second level, re-

move the data for the single response type used

for the first level. Then the class containing k – 1

responses in first level is regrouped to have ex-

actly two classes: one class containing a single

response type and the other class containing all

Level 1

Level 2

Level k-2

Level k-1

{R(k-2)}

{R(k-1)}{Rk}

{R1}

{R2}

{R1, R2, ..., Rk}

{R2, ..., Rk}

{R3, ..., Rk}

{R(k-1),  Rk}

{R(k-2),  ..., Rk}

.

.

.

.

.

.

.

.

.
.

.

Decomposition
Levels

Responses of An Event

Fig. 1 Special bisection decomposition system designed
for predicting multinomial probability of events which
have more than two types of responses using logistic
probability models and conditional probability inference
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remaining k – 2 response types. This general form

of decomposition is continued for k – 1 levels.

Therefore, at each decomposition level, a sep-

arate logistic regression for binomial distribution

can be applied to estimate the (conditional)

probabilities of the separated single response

types at each level. The logistic model of the first

decomposition level estimates the probability of

the single response type, and the logistic models

beyond the first level estimate the conditional

probabilities of the corresponding single response

types at each level. Based on this decomposition

system (Fig. 1), a total of k-1 logistic models are

needed to estimate the probabilities of all k types

of responses of an event. In logistic model

development, given a data set, the first model uses

the entire data set in logistic regression. Thus the

prediction of the established model is the proba-

bility of the first single response type. The second

model based on the second level should use the

sub data set, which excludes the data whose single

response type belongs to the first level single re-

sponse. Therefore, the predicted probabilities of

the second model are the conditional probabili-

ties of the second level single response type given

the probability of the first level single response

type. Following this pattern, the last (k – 1 level)

model uses only the sub data set which contains

only data whose responses belong to the k – 1 and

kth types, and predicts the conditional probabili-

ties of the (k – 1)th type of response given the

(conditional) probabilities of the 1st, 2nd, ..., and

(k – 2)th types of responses. After the probability

model for each level is developed and the (con-

ditional) probabilities of the first k – 1 types of

responses are predicted, the probabilities of all

responses of the event can be computed according

to the properties of binomial distribution and

conditional probability:

Pi ¼ P0i i ¼ 1

Pi ¼ P0i �
Qi�1

j¼1

ð1� P0jÞ i ¼ 2; � � � ; k� 1

Pk ¼ 1�
Pk�1

r¼1

Pr i ¼ k

8
>>>>><

>>>>>:

ð1Þ

where P¢ is the (conditional) probability predicted

using the logistic models, P is the probability of

response types, and subscripts (i, j, r, and k)

indicate the types of the responses.

By using the bisection decomposition system,

the logistic regression at each level can have

specific explanatory variables, since there is only a

single response type at each level. Therefore,

there is no confusion with the explanatory vari-

ables and the probability models, which can be

very meaningful. When a specific set of explana-

tory variables are not known or are not well de-

fined for a particular response or responses,

logistic regression with screening options (for

example, forward, backward, and stepwise selec-

tion) can be used to develop the logistic models at

each level.

Procedure evaluation

A case study of urbanization over a 10-year period

was conducted in order to evaluate the properties

of the procedure proposed in the previous section.

In the case study, four types of urbanization land

use conversion were considered.

Study area

The study area includes the cities of Columbus,

Georgia, and Phenix City, Alabama; and their

adjacent area. The geographical location of

the study area is between latitude 32�25¢00¢¢–
32�44¢55¢¢ N and longitude 84�34¢18¢¢–85�04¢52¢¢W.

The land use of the study area in 1980 and 1990 is

displayed in Fig. 2A and 2B. Outside the cities, the

predominant land use category is forested.

Development during 1980 and 1990 within the

study area was mainly concentrated inside the

cities and their suburbs (Fig. 2C). There are three

categories (responses) of urban development:

‘‘Residential’’ (RES), ‘‘Commercial-Industrial’’

(CI), and ‘‘Open Space’’ (OS, urban/recreational

grassy area). Adding the response of ‘‘No Change’’

(NCH) in development, there were a total four

types of development (responses) considered in

this study.

Among the total number of 493,600 pixels

(177,696 ha) in the study area, 23,810 pixels

(8,571 ha) had no data in the 1980 land use map

422 Landscape Ecol (2007) 22:419–430
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(at the south-east corner) (Fig. 2B). Therefore,

that corner was eliminated from the analysis.

Materials

The US Construction Engineering Research

Laboratory (USACERL) (Lozar et al. 2003)

provided land use maps. The pixel size of the land

use maps was 60 · 60 m2. The first three types of

urban development (RES, CI, and OS) are

modeled and predicted using the explanatory

variables generated by ten factors. Those factors

are City (X1), County Road (X2), Slope (X3),

Forest (X4), Ramp (X5), Road Intersection (RI,

X6), State Highway (SH, X7), Water (X8),

Utilities (X9), and the number of immediate

neighbors (Neighbor, X10). They were defined

by the LEAM (the Land Use Evolution and

Impact Assessment Model, see URL

‘‘http://www.leam.uiuc.edu/’’) research group and

Fig. 2 Land use maps (A
and B) of the study area
(including cities of
Columbus, Georgia (GA)
and Phenix City,
Alabama (AL), USA)
and urbanization
development during 1980
and 1990 (C). The land
use categories come from
the website of USGS
(http://edcwww.cr.usgs.
gov/programs/lccp/classes.
html). Open Space repre-
sents urban/recreational
grassy areas
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their definitions are listed in Table A1 in the

Appendix (Deal et al. 2002).

The LEAM group defined scores based on the

ten factors that potentially could lead to the

conversion to RES, CI, and OS. Those scores

served as the direct explanatory variables for the

logistic models. At a particular location (pixel), a

factor could have different scores for different

categories of conversion (Deal et al. 2002). For

example, the factor Forest (X4) for a pixel could

have a higher score for RES and a lower score for

CI, or visa-versa. The exceptions were the two

factors, Utility (X9) and Neighbor (X10), which

had the same scores for different categories at the

same location. Therefore, there were a total of 26

(Neighbor + Utility + (8 factors · 3 categories))

unique scores across the categories, each category

had ten scores (explanatory variables).

The score maps were also provided by the

LEAM group. The original resolution of the score

maps was 30 · 30 m2. They were scaled up to

60 · 60 m2 based on the average value of the

merged pixels to correspond to the pixel size of

land use maps. The score maps were used in two

ways: (1) pixels from these score maps were

sampled to calibrate the logistic probability

models using the bisection system; and (2) using

all pixels from the score maps as model inputs,

the calibrated logistic probability models were

used to predict the probabilities of the four types

of urban development for the entire study area.

Methodology assessment

Three categories of urban development, RES, CI,

and OS, were explicitly modeled in this study

using the corresponding scores. The probability of

the last category, NCH, was not explicitly mod-

eled, since there were no scores defined for it and

its probability can be calculated as the comple-

ment of the first three categories of urban devel-

opment (see lower part of Eq. 1). For coefficient

estimation, three independent samples were ran-

domly drawn from the historical land use and

score maps. For each of the random samples, 3%

(14100 pixels) of the total pixels in the study area

were sampled.

The order in which the response variables

were considered in the bisection decomposition

systems was evaluated. Three separate bisection

decomposition system were constructed. Table 1

lists the decomposition levels and the order in

which the response variables were considered in

the bisections. According to the procedure, for

each of the random samples, three logistic models

(as one set) were needed to predict the multinomial

probabilities of the categories of urban develop-

ment for each of the decomposition systems. Thus,

three sets of (nine) logistic models were developed

with each of the three random samples, resulting in

a total of nine sets of (27) logistic models.

The initial independent variables of the prob-

ability models included the scores of the ten

explanatory factors and their cross product terms

that are listed in Table 2. A stepwise logistic

regression was used for selecting significant

independent variables for the models and for

estimating their coefficients using SAS� (PRO-

CEDURE ‘‘LOGISTIC’’ with the model option

‘‘SELECTION=STEPWISE’’ and default signifi-

cance level (a = 0.05)). The quality of each

model was assessed using (pseudo) R-square

and concordance, which is a summary measure

of association based on the number of pairs of

observations whose predicted probability and

response are consistent.

In order to evaluate the performance of the

models, Relative Operating Characteristic (ROC)

was used. ROC is an index used to measure the

accuracy of predicted probability compared to the

actual condition (Swets 1988). Pontius and

Schneider (2001) interpreted ROC in measuring

the quality of the prediction of spatial ecological

changes, and provided the details for drawing

empirical ROC curves and computing their

Table 1 The order in which the categories were
considered for three separate bisections systems

Decomposition
Level

Decomposition System
(Order)

1 2 3

1 CI OS RES
2 RES CI OS
3 OS RES CI

Categories CI, OS, and RES represent land use converted
into Commercial-Industrial, Open Space, and Residential
uses, respectively
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values. Fang et al. (2005) used ROC in compari-

son of the performance of urbanization models.

In this study, both predicted probability and his-

torical land use maps were used to draw Relative

Operating Characteristic (ROC) curves and to

compute the ROC value for each category. The

details on how this was done can be found in Fang

et al. (2005) and Pontius and Schneider (2001). In

drawing the ROC curves and computing their

values, 11 probability scenarios were adapted: 0.0,

0.1, ..., 0.9, and 1.0.

The quality and performance of the logistic

probability models were statistically analyzed

using analysis of variance (ANOVA). There were

three random samples (Sample), three orders

(Order) in which the response variables were

considered in the decomposition, and three

response variables (Category). Therefore, a three-

way ANOVA was used to identify the effects of

these variables on the quality measures of (pseudo)

R-squares, percent concordance, and ROC values

used for assessing performance of the logistic

regressions. In the ANOVA, the null hypotheses

were that the different levels of Sample, Order, and

Category individually had the same effect on the

three quality measures. The ANOVA’s were con-

ducted using SAS� PROCEDURE ‘‘ANOVA’’.

Results and analysis

From 1980 to 1990, among the 469,790 pixels

(169,124 ha) considered in the study area

(excluding the south-east corner as shown in

Fig. 2C), 458,139 pixels (164,930 ha) had no

change. The major type of urbanization was the

conversion to Residential (RES), which consisted

of 7,276 pixels (2,619 ha). The number of pixels

converted to Commercial-Industrial (CI) were

3,130 (1,127 ha). Open Space (OS) was the least

converted, only 1,245 pixels (448 ha) changed.

The models calibrated with sampled data from the

study area reflected the pattern of urbanization.

Table 3 lists the descriptive statistics of the

quality measures of the (conditional) probability

models, which were fitted based on the three se-

lected bisection systems and three random sam-

ples. The R-squares of all models were between

0.72 and 0.75 . The mean R-squares of the models

for the three categories with all samples were also

within this interval (Table 3). The standard error

Table 2 The initial independent variables (scores generated from the factors and the combinations of scores)

Factor* Code Cross
product

Code Cross
product

Code Cross
product

Code

City X1 X1 · X2 U1 X2 · X8 U13 X5 · X8 U25

County Road (Road) X2 X1 · X3 U2 X3 · X4 U14 X6 · X7 U26

Forest X3 X1 · X4 U3 X3 · X5 U15 X6 · X8 U27

Slope X4 X1 · X5 U4 X3 · X6 U16 X7 · X8 U28

Ramp X5 X1 · X6 U5 X3 · X7 U17 X10 · X1 U29

Road Intersection (RI) X6 X1 · X7 U6 X3 · X8 U18 X10 · X2 U30

State Highway (SH) X7 X1 · X8 U7 X4 · X5 U19 X10 · X3 U31

Water X8 X2 · X3 U8 X4 · X6 U20 X10 · X4 U32

Utilities X9 X2 · X4 U9 X4 · X7 U21 X10 · X5 U33

Neighbor X10 X2 · X5 U10 X4 · X8 U22 X10 · X6 U34

X2 · X6 U11 X5 · X6 U23 X10 · X7 U35

X2 · X7 U12 X5 · X7 U24 X10 · X8 U36

* The descriptions of the factors are listed in Table A1 in the Appendix

Table 3 The means and standard errors (SE) of the
R-squares and percent concordance of the probability
models based on the three random samples

Modeled
category

Random sample

1 2 3

Mean SE Mean SE Mean SE

R-squares
RES 0.729 0.00040 0.729 0.00049 0.729 0.00044
CI 0.736 0.00013 0.734 0.00017 0.727 0.00009
OS 0.746 0.00007 0.744 0.00003 0.743 0.00009
Percent concordance
RES 96.60 0.1000 96.00 0.1000 97.33 0.0667
CI 89.73 0.5841 87.67 0.3667 36.67 0.8333
OS 89.83 0.8172 90.03 1.1681 91.97 0.3283
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of the R-squares of any individual sample was

very small ( < 0.001), which indicates very small

variation when different samples were used. The

concordance was also larger than 87% for all

models, except for CI with the third random

sample. The standard errors of concordance for

all models were smaller than 1.2 (Table 3). Since

the means of the R-squares and concordance

based on variables Sample and Category had

relatively large variation compared to the overall

standard errors, the corresponding F-values were

large, thus leading to small P-values ( < 0.03) for

the variables Sample and Category (Table 4).

Therefore, the results of ANOVA led to rejecting

the null hypotheses for the effect of these two

variables at a 0.05 significance level. However, the

variable Order had small F-values ( < 0.11) and

very large P-values (> 0.9) (Table 4) for both the

R-squares and the concordance from modeling.

Thus, the null hypotheses for the effect of Order

could not be rejected at even a 0.50 significance

level.

The means and standard errors of the ROC

values, computed from the predicted probability

maps and historical land use maps, are listed in

Table 5. The means of the ROC values for the

category RES were the highest in comparison to

those of the other categories. The logistic models

for the category CI provided the lowest means of

the ROC values and their highest mean was still

smaller than 0.53, which was very close to the

base ROC value of 0.50 . The higher ROC values

of RES indicated that RES probability models

could explain more land use conversion than CI

and OS models based on their explanatory vari-

ables. The ROC curves visually demonstrate the

performance of the logistic models built using the

first random sample according to the locations of

the categories with the third decomposition sys-

tem (Table 1 and Fig. 3). The ANOVA results

based on ROC values showed that both the

variables Sample and Order had very small

F-values (0.37 and 0.08) and large P-values

(0.6983 and 0.9219). Therefore, the null hypoth-

eses for the effect of these two variables could not

be rejected at a 0.05 significance level. Thus, the

difference of ROC values based on different

sample and order was not significant. However,

the variable Category had a very large F-value

(693.74) and a very small P-value ( < 0.0001),

which led to a rejection of the corresponding

hypothesis at any significant level larger than

0.0001. A pairwise multiple comparison test was

performed and the difference in the mean ROC

values for each of the categories were all found to

be significantly different from each other at the

0.05 level (Table 5). The ANOVA model of ROC

was highly significant (P-value < 0.0001).

Figure 4 displays the predicted probability

maps of all categories using the probability models

based on the first random sample and the last

(third) bisection decomposition system given in

Table 1. Comparing the probability maps with the

actual change during 1980 and 1990 (see Figs. 2C

and 4), the predicted maps of RES and OS

(especially RES) provided a reasonable prediction

of the spatial pattern of the development. The

quality of probability maps was measured by the

ROC values and curves (Fig. 3 and Table 5). As

these figures show, the predicted CI probability

map captured a small portion of the actual CI

conversion. The probability of No Change (NCH)

Table 4 ANOVA results of the R-squares and percent
concordance of the probability models

Source DF* R-square Percent concor-
dance

F-value P-value F-value P-value

Sample 2 11.3 0.0005 4.16 0.0308
Order 2 0.1 0.9088 0.01 0.9878
Category 2 186.42 < 0.0001 8.16 0.0026
Overall

ANOVA
6, 26* 65.94 < 0.0001 4.11 0.0075

* DF = degree of freedom. For the overall ANOVA
degrees of freedom, the first and second values are model
and corrected total degrees of freedom, respectively

Table 5 The means and standard errors (SE) of ROC
values computed based on the historical land use maps and
the predicted probabilities according to the three random
samples

Modeled
Category

Random Sample

1 2 3

Mean SE Mean SE Mean SE

RES 0.777 0.00208 0.768 0.00176 0.781 0.00737
CI 0.527 0.01035 0.510 0.00623 0.500 0.00000
OS 0.590 0.00240 0.608 0.00203 0.622 0.00939
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Fig. 3 ROC graphs based
on the historical land use
maps and predicted
multinomial probabilities
of land use converted to
Residential (A),
Commercial-Industrial
(B), and Open Space (C)
between 1980 and 1990 in
the study area. Models
were built using the first
random sample according
to the location of the
categories in the third
decomposition system
(Table 3)

Fig. 4 The maps of the
predicted probabilities of
city development between
1980 and 1990. Maps A to
D are the probabilities of
land use converted to
Residential, Commercial-
industrial, Open Space,
and no conversion (No
Change), respectively
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could be considered as a view of the probability of

overall urban development. Comparing Figs. 2C

and 4D, the major development during 1980 and

1990 was captured by lower probability of NCH in

its probability map. The ROC value from the

probability map of NCH was 0.851, which was

considerably better than that of RES. This indi-

cated that some CI or OS pixels which were not

captured by their corresponding probability

models were predicted to have higher probability

of RES, or vice versa. This might have been caused

by the similarity among the three categories.

Discussion and conclusion

The procedure presented for modeling multi-

nomial probabilities has been developed based on

conditional probability inference and a special

bisection decomposition system. As long as such a

decomposition system can be established, multi-

nomial probability problems can be decomposed

into binomial and conditional probability prob-

lems. Once decomposed, classical methods/tech-

niques can be used for estimation. Theoretically,

there was no assumption implied in the proce-

dure, and a special bisection decomposition sys-

tem could always be built for any multi-response

event. The decomposition of multinomial proba-

bility into binomial probability made it much

more convenient to use screening techniques with

logistic regression and to structure specific models

for specific responses and their corresponding

explanatory factors.

In the evaluation of this procedure, the

responses of interest had different numbers of

observations in the samples. The largest number

of responses, Residential (RES), had five times

the number of observations as Open Space (OS).

With this large difference, evaluation of this

procedure showed that the impact of decompo-

sition order to either the quality or performance

of logistic models was not significant. It also im-

plies that modeling uncertainty will impact the

prediction of individual pixels, but not reduce the

accuracy of predictions for the entire population

(across entire case study area). This property of

the procedure adds more flexibility in practice:

researchers could decompose a multinomial

system into a series of binomial systems according

to their preference.
The performance of the probability models

built with the procedure developed in this study

was comparable to similar studies. The highest

ROC mean of the probability maps of the mod-

eled categories was RES with a value of 0.78,

which was higher than that (0.72) of the RES

probability map in Peoria, Illinois, USA (Fang

et al. 2005). The comparison of the performance

of the probability models built in different study

areas showed that the procedure developed in this

study would not cause difficulties in terms of

model performance. Due to technical reasons

mentioned in the Introduction, there is no com-

parison between this procedure and other esti-

mation methods for multinomial probability.
The measures of model quality and perfor-

mance were not consistent in this study. Concor-

dance, which indicated the quality of probability

models, had very different values when different

random samples were used in model develop-

ment. With the third random sample, logistic

models of CI had concordance values less than

half of that obtained from the first two samples.

However, the R-squares and ROC values of all

models for all categories across samples were very

stable. The R-squares of the models of all cate-

gories were concentrated within a narrow interval

(0.72 to 0.75), although statistically there was

significant difference based on the ANOVA.

The ROC values of different categories had more

noticeable differences. Since ROC value was

computed directly based on probabilities and

for the entire study area, it was more reliable than

R-square, which is computed using likelihood in

logistic regression, and concordance based on

ordinal variables. The consistency of ROC values

for any one of the categories indicated that

all three random samples represented the study

area well.
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Appendix: Descriptions of the factors for

predicting urban sprawl

The factors used in the LEAM (the Land Use

Evolution and Impact Assessment Model, see

website ‘‘http://www.leam.uiuc.edu/’’) model to

predict urban sprawl have been defined by the

LEAM research group. Table A1 lists the fac-

tors and their descriptions. In the LEAM

model, functions have been developed to con-

vert the original values of these factors into

scores valued between zero and one. For details

about how to measure these factors and convert

them into scores, please contact the LEAM

research group.

Table A1

Factor Description

City Weighted travel time to city centers
Road Proximity to county roads
Forest Proximity to forests
Slope Steepness (degree) of the

topographic character
Ramp Travel time to ramps

of limited-access highways
Road Intersection

(RI)
Proximity to major road

intersections
State Highway

(SH)
Proximity to state highway

Water Proximity to lakes and rivers
Utilities Proximity to sewage, water supply,

electricity, etc.
Growth Trend

(GT)
Historical growth trend

Growth Booster
(GT)

City development policy,
such as zoning

Agricultural
Protection
(AP)

Policy to preserve farm land

Neighbor Number of immediate
house/building neighbors
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