
Abstract Neutral landscape models were origi-

nally developed to test the hypothesis that hu-

man-induced fragmentation produces patterns

distinctly different from those associated with

random processes. Other uses for neutral models

have become apparent, including the develop-

ment and testing of landscape metrics to charac-

terize landscape pattern. Although metric

development proved to be significant, the focus

on metrics obscured the need for iterative

hypothesis testing fundamental to the advance-

ment of the discipline. We present here an

example of an alternative neutral model and

hypothesis designed to relate the process of

landscape change to observed landscape patterns.

The methods and program, QRULE, are de-

scribed and options for statistical testing outlined.

The results show that human fragmentation of

landscapes results in a non-random association of

land-cover types that can be describe by simple

statistical methods. Options for additional land-

scape studies are discussed and access to QRULE

described in the hope that these methods will be

employed to advance our understanding of the

processes that affect the structure and function in

human dominated landscapes.
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Introduction

Natural areas are being converted into landscapes

intensively used by humans at unprecedented

scales (e.g., NRC 2001; Foley et al. 2005). These

changes are producing significant losses in species

diversity (Hanski 2005; Lindborg and Eriksson

2004), invasions of exotic organisms (McCay

2001; Vitousek et al. 1997), declines in water

quantity and availability (Goetz et al. 2004;

Meyer and Turner 1992), the alteration of bio-

geochemical cycles and reductions in ecosystem

productivity (Osher et al. 2003; Williams et al.

2004). The global consequences of landscape

alteration are uncertain, but evidence is increas-

ing that landscape change may also alter the

earth’s climate (Copeland et al. 1996; Pyke 2004;

Stohlgren et al. 1998) while promoting the spread

of new diseases (Langlois et al. 2001).

Our ability to record, measure and describe the

consequence of landscape change has improved
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dramatically over the past two decades. However,

our understanding of the fundamental processes

affecting land-use and land-cover change remains

inadequate for ‘‘... society to respond effectively

to environmental changes and to manage human

impacts on environmental systems’’ (NRC 2003).

Consequently, the need to understand and predict

the dependency of landscape pattern on the pro-

cesses that have produced these patterns has been

identified as one of six ‘‘grand challenges’’ for the

National Science Foundation’s effort to establish

a national ecological observatory network

(NEON, NRC 2003).

Identifying the specific processes shaping

existing landscapes has been surprisingly chal-

lenging. Extensive data from remote imagery,

advanced computational methods for analysis and

simulation, and a plethora of pattern metrics have

failed to rigorously link pattern with process.

There are many practical reasons why progress

has been so slow. The local co-variation in the

physical template and land use change (e.g., soils,

topography, climate, human population density)

has created a broad spectrum of possible results;

the human legacy of landscape alteration com-

bined with natural disturbance regimes has been

difficult to document and studies have been lim-

ited in scope; and the idiosyncratic nature of data

classification schemes may produce unaccounted

analysis errors, confounding even simple com-

parisons (Costanza and Maxwell 1994; Riley et al.

1997; Wickham et al. 1997). Although a number

of detailed studies have been published (e.g.,

Dale et al. 1994; Motzkin et al. 1999; Orwig and

Abrams 1994) each has required intensive, ret-

rospective analysis with little hope for general-

ization of results and comparison with similar

landscapes. Clearly, advancing the science of

landscape ecology requires the adaptation of the

principles of strong inference—the critical testing

of alternative hypotheses—first outlined by Platt

(1964). We suspect that most readers of this

journal will be surprised to learn that a paradigm

for iterative testing of alternative hypotheses,

adapted to the special requirements of landscape

studies, was first suggested nearly two decades

ago.

Krummel et al. (1987) used land cover maps

from the USGS Natchez Quadrangle (the

southern Mississippi drainage) to test the

hypothesis that the physical template (i.e., topo-

graphic and hydrologic heterogeneity) produced

distinct patterns of forest cover in undisturbed

areas that differed from patterns within agricul-

tural regions. The fractal index was introduced as

the appropriate metric to define the scales over

which these two processes have affected land-

scape pattern. Results confirmed that the

‘‘... current pattern of forest reflects the overlay-

ing of many relatively small scale human distur-

bances on the large-scale factors that control the

major successional patterns of natural vegeta-

tion’’ (Krummel et al. 1987). This small but

important success precipitated an effort to extend

the use of iterative hypothesis testing by

employing neutral models based on percolation

theory (Gardner et al. 1987). These neutral

models were then used to ‘‘... establish a base

against which data and hypotheses [could] be

rigorously tested’’ (Gardner et al. 1987). Results

from a series of neutral modeling studies have

elucidated a broad variety of principles, including:

the amount of habitat, p, is the single best pre-

dictor of landscape pattern (Gardner et al. 1987;

Gardner and O’Neill 1990), mandating that

comparisons among landscapes must occur at

fixed values of p (Turner et al. 2001); the critical

threshold in land cover, pc, defined by percolation

theory (Stauffer and Aharony 1992) defines a

boundary above which few differences exist be-

tween random and real landscapes (Gardner and

O’Neill 1990; Pearson and Gardner 1997); con-

versely, large differences occur below pc making

this ‘‘region’’ the most fruitful domain for

exploring process-pattern dependencies (Gardner

and O’Neill 1990); landscapes with a mixture of

altered and natural habitat types have lower dis-

persal rates, abundance levels and population

persistence (Andow et al. 1990; Fagan et al. 1999;

Gustafson and Gardner 1996), with corridor

usage enhanced or inhibited by adjacent matrix

effects (Anderson and Danielson 1997; Bennett

et al. 1994; Gardner et al. in press; Gustafson and

Gardner 1996); simple organizing features of

individual landscapes (i.e., hierarchical patterns

or contagion) introduce threshold effects that are

scale-dependent (Lavorel et al. 1994; O’Neill

et al. 1992); and, as a final example, disturbances,
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as illustrated by a variety of fire models, both

generate and respond to critical thresholds in

landscape connectivity (Maddox 1992; Romme

et al. 1998; Turner et al. 1994).

Neutral landscape models have been used

widely in landscape ecology over the past decade

(With and King 1997; Tischendorf et al. 2003),

with recent examples primarily focused on the

responses of (model) populations to landscape

pattern—in effect using neutral-modeling to

generate random but structured templates for

population processes. Thus, these applications

have diverged substantially from the original goal

of using neutral models to make inferences about

the agents that have and are presently generating

landscape pattern.

The purpose of this paper is to renew the

interest among landscape ecologists in the use of

strong inference to advance our understanding of

process-pattern dependencies at landscape scales.

We first illustrate how alternative hypotheses can

be developed and tested, extending our under-

standing beyond that produced by simple random

maps. We then show how quantitative compari-

son of diverse landscapes can be effected. Finally,

new suggestions for advanced statistical analysis

that takes advantage of the rich information

provided by Monte Carlo simulations are ex-

plored.

Background

Simple random maps can produce a surprisingly

rich array of spatial patterns as p, the fraction of

the area occupied by a particular land cover type,

passes a critical threshold (i.e., percolation

threshold) in connectivity (Stauffer and Aharony

1992). When Monte Carlo methods are used to

iteratively generate and analyze random maps

(holding map dimensions, resolution, number of

land-cover types, and p constant) then confidence

intervals for a variety of metrics and statistics can

be estimated. If the pattern of the observed map

lies within this 95% confidence region, then the

observed pattern is said to be statistically indis-

tinguishable from a random pattern at a=0.05

(Gardner and O’Neill 1990; Pearson and Gardner

1997). Because we know that real landscapes are

not randomly assembled, but rather organized by

physical, biotic and human effects (Delcourt et al.

1983; Forman and Godron 1986; Urban et al.

1987), simple random maps are the most effective

‘‘neutral model’’ for landscape analysis.

The computer program, RULE, was developed

to generate random maps, estimate a variety of

landscape metrics and calculate their associated

confidence intervals (Gardner 1999). A spectrum

of questions have been addressed using RULE,

including the variation in edge as a result of

landscape fragmentation (Gardner et al. 1987),

the existence of scale-dependent pattern in actual

landscapes (Plotnick et al. 1993; Plotnick et al.

1996), and the effect of pattern on patch coloni-

zation (Gustafson and Gardner 1996). In all cases,

a specific question was formulated, per the

example of Krummel et al. (1987), and the

appropriate metric employed. Blind searches

for pattern using multiple metrics should be

avoided—in part, because of the classic Type II

error of statistics (Zar 1996): if we look at enough

metrics, something is likely to emerge as ‘‘signif-

icant’’. Multi-variate statistical approaches can

reduce the information provided by multiple

metrics to a few more meaningful dimensions

(Fauth et al. 2000) but the value of this approach

still depends on the formation of a specific, test-

able, a priori question.

Although much of the literature regarding

landscape pattern analysis has focused on the use

of metrics, the usefulness of traditional statistical

testing procedures should also be considered. For

instance, fragmentation effects can be evaluated

via changes in the cumulative frequency distri-

bution (cfd) of patch sizes for that cover type.

Because pattern metrics are a single-numbered

measure (i.e., a mean or variance, etc.) derived

from a cfd, they often fail to capture subtle re-

sponses clearly revealed by an examination of the

cfd. Significant change, or departures from ran-

dom, of an observed cfd is easily assessed by

familiar methods such as the Kolmogorov–Smir-

nov (KS) test (Zar 1996). If an expected cfd can

be parametrically defined (Johnson and Kotz

1970a, b) then Monte Carlo methods will not be

needed. Because the cfd of patch sizes varies with

map dimension, resolution and methods used to

classify land-cover types (Turner et al. 2001), it is
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usually impossible to define an expected proba-

bility distribution in advance. In these cases one

must rely on models and Monte Carlo methods to

generate the ‘‘expected’’ cfd to compare to an

observed landscape via the appropriate statistical

test (Fortin 2003).

Methods

Human activities have resulted in dynamic and

continuous change in forests of the eastern Uni-

ted States over the past three centuries (Foster

et al. 1998). Changes in forest pattern continue,

with ~5% rearrangement of the spatial distribu-

tion during the past 15 years (Riitters and Coul-

ston 2005). Rates of forest loss have been greatest

near urban areas (Wickham et al. 2000), with in-

creases in forest growth into adjacent abandoned

crop and grasslands (Riitters and Coulston 2005).

Conservation efforts also affect forest pattern

formation, with preservation often focusing on

larger remnant areas that tend to persist along

streams or ridge tops (Taverna et al. 2005). Two

hypotheses were investigated to explore the con-

sequences of these activities: (1) The distribution

of forest patches within human dominated land-

scapes, and their adjacency to other cover types,

does not deviate from random. This is the neutral

model hypothesis sensu Gardner et al. (1987) and

was tested here first by comparing the cfd of patch

sizes against simple random maps, and secondly

by a v2-test of the association matrix of cover

types (i.e., the frequency matrix of site adjacen-

cies, details below). The rejection of the first null

hypothesis (i.e., observed landscapes are non-

random) allows a second hypothesis to be tested:

(2) Patterns of forest cover are significantly af-

fected (statistically explained) by the constraints

of topography (especially rivers) and urban

development. The second hypothesis was tested

by a specially developed neutral model, which

formed patterns based on land cover constraints.

The cfd of patch sizes for this new neutral model

was then compared to the simple random maps

and the observed landscapes. In addition, three

landscape metrics were calculated to confirm the

sufficiency of landscape constraints to statistically

explain the differences in number, size and

correlation length of forest patches among map

types.

Four maps were extracted from the National

Land Cover Data (NLCD) set (see Vogelmann

et al. 2001). These maps, based on Landsat The-

matic Mapper (TM) imagery, have been classified

into 21 land cover types at a spatial resolution of

0.09 ha (30 m) (Riitters et al. 2002). The four

extracted landscapes were 512 · 512 pixels

(786 ha) in size, located near the Antietam bat-

tleground in Maryland; Harpers Ferry on the

Potomac River; Prince William Forest Park in

Virginia and Rock Creek Park in Washington DC

(Fig. 1). For the purposes of this analysis, the

NLCD data were reclassified into four land cover

types: aquatic habitat (water, wetlands); agricul-

ture (an aggregation of seven classes including

pasture, row crops, orchards and fallow lands);

urban developed (residential, commercial and

urban); and forest (deciduous, evergreen, mixed

forests). The relative proportions of habitat found

within each landscape are given in Table 1.

The RULE program was rewritten for this

exercise, providing statistical summaries based on

area rather than pixel counts, improving the for-

mats of ancillary data sets that included the cfd,

and adding the potential for developing and ana-

lyzing alternative neutral models. (See Appendix

A for details on obtaining the documentation and

source code for this revision, referred to as

QRULE). QRULE retains the essential features

of RULE (i.e., generation and analysis of simple

and multi-fractal random maps), and was used to

generate 12 simple random maps with the same

proportion of forest as the four extracted maps

(Table 1). Although any number of Monte Carlo

iterations may be specified in QRULE, experi-

ence has shown that 12 iterations are adequate to

reliably characterize the mean values for the

metrics being considered (Table 2). Forest pat-

ches were analyzed using the ‘‘rook’s’’ rule (i.e.,

four cardinal neighbors), and the cfd was plotted

for both the observed and random maps. Three

metrics were selected for additional pattern

analysis: Nc, the number of patches of a particular

land-cover type; Sav, the area-weighted average

patch size (ha); and Clg, the correlation length

(m), which measures how compact the habitat

patches are (see Gardner 1999 for additional

18 Landscape Ecol (2007) 22:15–29
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information). Although most landscape metrics

are correlated with one another (Riitters et al.

1995), these metrics were selected because they

provide relatively independent assessments of

pattern and provide important information about

the number, characteristic size, and pattern of

habitat patches (Gardner et al. in press).

The per-pixel association of land cover types

was an n · n matrix (where n is the number of

land cover types) of the frequency of adjacent

Fig. 1 Four landscapes from the mid-Atlantic region
(dimensions are 30.8 km and resolution 30 m): (a) Antie-
tam, Md.; (b) Harpers Ferry at the confluence of the
Susquehanna and Potomac; (c) Prince William, Va; and

(d) Rock Creek, Washington, DC. Four colors indicate
rivers (blue), agriculture and grassland (yellow), forests
(green) and urban (red). See text for further data
description

Table 1 The proportion
of land cover on four
maps extracted from the
NLCD land cover data
(see text for details)

Map Not classified Forest Agriculture Aquatic Urban developed

Antietam 0.02 0.29 0.67 0.01 0.01
Harpers Ferry 0.05 0.52 0.40 0.01 0.02
Prince William 0.08 0.74 0.06 0.01 0.11
Rock Creek 0.04 0.28 0.07 < 0.01 0.61
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pixel types using the nearest-neighbor rule. The

diagonals of the matrix represent the probability

of self-association, the off-diagonals represent the

probability of association with other land-cover

types, with the columns summing to 1.0 (i.e., all

associations accounted for). The v2-test of this

matrix is the familiar statistical procedure of

estimating a departure from the ‘‘expected’’ ran-

dom matrix, providing statistical rigor for testing

neutral models. Because the method uses the

marginal frequencies (i.e., the values of p for each

cover type), it provides a test consistent with that

employed by QRULE. QRULE calculates the

association matrices for each landscape and esti-

mates their departure from that expected by a

purely random process using the v2-test.

A new method for neutral models was used to

test the second hypothesis. A Masked-Constraint

Algorithm (MCA) was included in QRULE to

randomly generate forest pattern constrained by

the fixed patterns of aquatic and urban land cover

types. This approach presumes that human land

use decisions are effectively constrained by

proximity to water (and hence, by topography).

This method was implemented in three steps: (1)

The observed landscape served as an input to

define the cover types used to form the map

constraints. The user supplied the usual input

values required by RULE (e.g., number of repli-

cates, which metrics to compute), but also speci-

fied which cover type(s) to serve as fixed

constraints (the aquatic and urban land cover, in

this example) and which cover type should be

randomly generated (i.e., forest). (2) The associ-

ation matrix for the observed landscape was

estimated by QRULE. (3) A random map was

initiated by creating a map of identical size and

resolution, and then applying a mask extracted

from the land cover types defined as the con-

straints of the observed system (Fig. 2). The

process of forest cover generation was initiated by

random placement of ‘‘seeds’’ along the margins

of the mask. The diagonal element of the associ-

ation matrix for forest cover was then used to

define the probability of growth into adjacent

non-forest sites. Growth of forest patches con-

tinued until the overall proportion of forest, p, of

the actual landscape was achieved. The remaining

habitat was set to the background matrix value

(i.e., agriculture). The process was repeated until

12 MCA maps were generated and analyzed. The

data produced from the analysis of MCA maps

was then compared to the observed landscapes

and the simple random maps.

Table 2 Landscape pattern metricsa for forests within the four landscapesb of the Mid-Atlantic region. Results for two
neutral modelsc, the random and MCA simulations, are also presented

Map P Nc Sav Clg

Antietam 0.2944 4419.0 616.80 2106.01
Random 0.2913 33859.9 (127.46) 0.42 (0.003) 70.84 (0.889)
MCA 0.2903 2945.2 (41.98) 828.29 (265.19) 4027.23 (477.92)
Harpers Ferry 0.5165 2829.0 3566.87 3472.41
Random 0.5210 14992.7 (120.21) 9.17 (0.50) 374.25 (19.83)
MCA 0.5211 2089.0 (68.9) 2762.78 (473.04) 4037.77 (94.92)
Rock Creek 0.280 5420.0 495.71 2538.97
Random 0.2801 34020.0 (128.7) 0.39 (0.003) 67.67 (0.73)
MCA 0.2802 7315.2 (56.0) 123.55 (28.08) 1439.29 (346.31)
Prince Williams 0.7426 1801.0 12621.40 5691.66
Random 0.7422 1078.5 (37.0) 17238.10 (26.04) 6293.13 (0.001)
MCA 0.7428 3081.1 (65.5) 11709.40 (317.35) 5560.05 (59.48)

aThe four pattern metrics are: p, the proportion of the landscape that is forested; Nc, the number of forest patchs; Sav, the
characteristic patch size (ha); and Clg, the correlation length of patch sizes (m). The numbers in parentheses for the Random
and MCA analysis represent the standard deviations of the 12 Monte Carlo iterations. See text for further description of
these metrics
bThe four maps were extracted from the NLCD land-cover mapping data (see text for details)
cThese analyses were performed with QRULE. See Appendix for details on obtaining the QRULE execution, script and log
files for these simulations
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Results

Within the constraints of the land cover mask,

random forest patches are generated. This was

especially evident for Antietam and Harpers

Ferry where the landscape constraints and the

proportion of forest cover was lowest (Fig. 3). A

comparison of the cfd of the number of forest

patches for the four landscapes (Fig. 1) is illus-

trated in Fig. 4. The cfd of the simple random

maps were not significantly different from the

actual maps in three of the four cases (Table 3).

The cfd for the simple random map was

significantly different from the Prince William

landscape due to the greater frequency of small,

isolated patches in the random maps. Further

examination of cfd for the random maps showed

that, except for Prince William, random maps

deviated from the observed landscapes in one

important way: the largest patch size of the ran-

dom maps was several orders of magnitude

smaller than the largest patch for the actual

landscapes. Because the KS test measures the

degree of difference between two normalized

distributions, it was insensitive to cumulative

differences in the tails of the distribution where

the probability of occurrence is relatively small.

The random map for Prince William was an

Fig. 2 The masks created for the four mid-Atlantic
landscapes: (a) Antietam, Md.; (b) Harpers Ferry, Va.;
(c) Prince William, Va; and (d) Rock Creek, Washington,

DC. The masks are composed of 2 land-cover types: rivers
(blue) and urban (red)

Landscape Ecol (2007) 22:15–29 21

123



exception because p, the proportion of area that

was forested, was equal to 0.7426—far above the

critical threshold of pc=0.5928 (four neighbor

rule, Gardner et al. 1987; Plotnick and Gardner

1993). When p> pc random maps display the well-

known percolation phenomena (Stauffer and

Aharony 1992) where large spanning patches are

formed by simple random processes.

The cfd for the MCA maps (dashed lines in

Fig. 4) gave an excellent fit for observed patterns

of Prince William and Rock Creek (Table 2), the

two landscapes where the high value of p and the

limits imposed by urban land cover dominated

pattern formation. However, the cfd for the MCA

maps deviated significantly from the Antietam

and Harpers Ferry landscapes where the topog-

raphy of the ridge and valley province dominated

pattern formation.

Examination of Table 2 shows that, except for

Prince William, the random maps also tended to

overestimate the number of patches (Nc) and

underestimate the characteristic patch size (Sav)

and the correlation length (Clg) of patches of

forest habitat. The estimates of Sav were partic-

ularly poor, often differing by three orders of

magnitude. The Prince William case was again an

exception because, as noted above, percolation

processes ensure that large patches were formed.

Fig. 3 Representative simulations of the four mid-Atlan-
tic landscapes: (a) Antietam, Md.; (b) Harpers Ferry, Va.;
(c) Prince William, Va.; and (d) Rock Creek, Washington,
DC. These simulations used the MCA neutral model (see

Fig. 2 and text for details). Forested areas (green) and
agricultural lands (yellow) were simulated around the
mask (blue) composed of river and urban land-cover types
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Because the pattern metrics estimated from the

random maps had a relatively small variance (CV

ranging from < 0.1 to 5%) even small differences

between random and actual maps were statisti-

cally significant.

The pattern metrics for the MCA maps

(Table 2) were much closer to the actual maps

with the exception of Prince William where Nc

for the random maps provided the better estimate

than Nc for the MCA maps. The characteristic

patch size, Sav, was more accurate for all MCA

maps (Fig. 5). In fact, estimates of Sav for the

actual maps for both the Antietam and Harpers

Ferry landscapes did not significantly differ from

the MCA maps. The estimates of Clg for the

MCA maps were of the same magnitude while the

random maps produced estimates that were or-

ders of magnitude less than three of the four

landscapes (Table 2).

The observed frequency of association of hab-

itat types between neighboring pixels provides a

different perspective on spatial patterns because

this information can characterizes non-random

association between different habitat types. This

matrix, as constructed by QRULE, is always

symmetrical with dimensions of c · c, where c is

the number of habitat types being considered. A

v2-test of the association matrix of an uncon-

strained map has df = c(c –1)/2 (Zar 1996).

Fig. 4 The cumulative frequency distribution of patch sizes for the four mid-Atlantic landscapes (solid line) are contrasted
with two neutral models: the simple random maps (dotted line) and MCA maps (dashed line)

Table 3 Kolmogorov–Smirnov test of the cumulative
frequency distribution of predicted forest patches from
two neutral models compared against the four mid-
Atlantic landscapes

Landscape df KS Critical
value
(a=0.05)Random MCA

Antietam 118 0.075 (NS) 0.133 (0.05) 0.122
Harpers Ferry 99 0.094 (NS) 0.159 (0.02) 0.134
Prince William 92 0.316 (0.001) 0.027 (NS) 0.139
Rock Creek 127 0.108 (NS) 0.024 (NS) 0.119
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Table 4 reports the v2 values for the four land-

scapes (c=5, df = 10). The average v2 values for

the 12 iterations of the MCA neutral model are

also reported with c=3, f (the number of con-

strained habitat types) = 1, and consequently

df = (c(c–1)–f(f–1))/2 = 2 reduced due to the

constraints of the habitat mask. The v2 values for

the actual landscapes were larger than the MCA

maps, indicating a greater deviation from a ran-

dom pattern, but both types of maps differ by

roughly five orders of magnitude from that due to

random processes alone.

The third column in Table 4 highlights an

interesting result. The 95th percentile for 10,000

maps was estimated using QRULE (each map

had four habitat types with the same proportions

and map dimensions as the actual maps). One

might expect the 95th percentile to be approxi-

mately equal to the tabulated v2 of 12.592 (four

habitat types, 6 df, Zar 1996). However, the ob-

served value was larger than the tabulated value

because random selection of pixels occurs within

a finite spatial context making the completely

random, independent selection of neighbors (re-

quired by v2) impossible. Although this is an

important consideration affecting statistical

inferences from map comparisons, the relatively

large v2 values observed for both actual maps and

MCA maps clearly show that the neighborhoods

of these maps were structured rather than ran-

dom.

Discussion

Most observations of the natural world will

quickly reveal the intrinsic variability of a wide

variety of physical and biological phenomena. It is

the local variation in topography, soils, climate

and history that shapes our landscapes, producing

the distinctive patterns that make each location

recognizable (Nassauer 1997). Because each

landscape is unique, the determination of

processes responsible for observed patterns has

proven to be difficult (Turner et al. 2001). Nev-

ertheless, a wide variety of statistical methods are

available to test the adequacy of our under-

standing of pattern-process relationships at land-

scape scales. The first step in hypothesis testing is

to define what would be expected in the absence

of the process being considered. This ‘‘expecta-

tion’’ may be a landscape that lacks that process

(e.g., fire, road development, or invasive species),

or, as presented here, a model capable of defining

the expected pattern from a more elaborate set of

pattern-generating rules. Once the ‘‘expected

pattern’’ is defined, a variety of statistical tests

may be applied. The illustration we present

Fig. 5 Histogram and error bar (±1standard deviation) of
the area-weighted average patch size (Sav) for forested
regions of the four mid-Atlantic landscapes (open bar),
random (cross-hatched) and MCA (solid) maps. The
number above each set of bars is p, the fraction of the
landscape that is forested

Table 4 A v2-test of the hypothesis that the matrix of
habitat association was random

Landscape v2

Observed
landscapea

MCAa, b Simple
randomc

Antietam 17.5e5 9.39e5 24.89
Harpers Ferry 21.5e5 11.5e5 25.12
Prince William 17.2e5 7.1e5 25.08
Rock Creek 17.4e5 7.1e5 25.17

aThe critical value (a =0.05) for the observed landscape
with five habitat types (10 df) was 18.307; the critical value
for MCA with three habitat types (2 df) was 5.991 (Zar
1996)
bAverage v2 value from 12 iterations
cThe 95th percentile of v2 values from 10,000 iterations of a
simple random map with four cover types (6 df with a
critical value of 12.592)
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examines only a few possibilities, but raises some

general issues in making inferences about land-

scape pattern.

Landscape pattern and ‘‘p’’

As with simpler random landscapes, our analyses

underscored the crucial importance of p, the

proportion of the landscape occupied by a focal

cover type, as an index of pattern. Comparisons of

landscape metrics are only meaningful if the

landscapes have similar values of p. At high val-

ues of p, the landscape is composed of a few large

patches that may ‘‘percolate’’ from edge-to-edge;

in these cases, simple random landscapes often

provide a reasonable model of real landscapes.

This implies that inferences about landscape

pattern and process will not be very satisfying at

high values of p. There are two possible responses

to this general result. The first option is to focus

inferential studies on landscapes with lower val-

ues of p because the maximum number of patches

in random landscapes occurs at p~ 0.3 (Gardner

et al. 1987), far below the critical threshold of 0.6.

It seems likely that we can learn more about

patches by studying landscapes with larger num-

bers of patches. The second option is to accept

that patchiness declines at high values of p,

making these cover types the dominant compo-

nents of pattern. For example, a landscape com-

prised of a few large forest patches may not be as

interesting as the non-forested patches embedded

within the forest matrix (i.e., agriculture or

development) or other community and ecosystem

attributes of the forests (e.g., compositional or

structural variation generated by environmental

gradients). Thus, in the high-p case, we might

reverse the focal cover types and characterize

patterns of the lower-p cover types. Alternatively,

we may redefine forest patches, subdividing large,

contiguous areas into finer categories or subtypes

(e.g., stand ages, community types, or disturbance

histories).

Pattern metrics

While the imperfect link between pattern metrics

and pattern-generating processes has been widely

recognized (Neel et al. 2004; Tischendorf et al.

2003; Wu and Hobbs 2002), it is worth empha-

sizing here that some intuitive and popular met-

rics of pattern—especially average patch

size—are simply not very effective indicators. In

part this is because the distribution of patch sizes

is typically highly asymmetric, and so the mean is

a poor descriptor of the distribution (Figs. 4 and

5). It is well known from percolation theory that

the largest patch size is a better index (Stauffer

and Aharony 1992) because of the threshold-like

behavior of so many phenomena relative to p

(Gardner 1999; Turner et al. 2001). In the analy-

ses illustrated here, we have found the cfd to be

much more informative about landscape pattern.

This invites the use of distributional statistics such

as the Kolmogorov–Smirnov (KS) test. Unfortu-

nately, the KS test is insensitive to differences

between distributions in the extremes where

pattern may be most ecologically relevant.

Clearly, there is a great deal of research that still

needs to be done to develop more sensitive and

ecologically meaningful tests of landscape pat-

tern.

Inferential models of pattern generation

While most of us would agree that landscapes are

probably not generated by random processes, we

have been remarkably slow to pose more inter-

esting alternative models. Thus, we have taken

only the first step in an iterative process toward

explaining landscape pattern. Therefore, it is

appropriate that we begin with randomness as the

simplest null model (Gotelli 1996). When this

model is rejected, we are free to move on to more

interesting, and probably more complicated,

explanatory models. Presumably, we would con-

tinue to successively pose more complicated

models until we failed to reject one, leaving us

with the most parsimonious explanatory model

consistent with measurements from real land-

scapes.

From the perspective of statistical inference, it

seems obvious that we can make stronger infer-

ences about landscape processes by invoking and

exploring models that are more narrowly con-

strained in terms of explanatory processes. A fo-

cused explanatory model allows us to highlight

each process, forming layers that may or may not
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be merged into a final explanatory model. This

procedure is analogous to a multiple regression

model that is fit in a ‘‘stepwise forward’’ fashion

(or more generally, a set of nested models com-

pared formally in terms of their incremental

explanatory power using, e.g., AIC methods). The

aim of this approach is to select the best from a

set of competing models, where each of the

competitor models is itself ecologically plausible

(and more compelling than simple randomness).

This model-selection approach to inference is

rapidly gaining momentum in ecology (e.g.,

Burnham and Anderson 1998; Anderson et al.

2000; Johnson 2002; Robinson and Wainer 2002;

Di Stephano 2004).

Understanding the relationship between pat-

tern and process requires the development of the

most compelling explanatory models of landscape

pattern. Landscape pattern has long been attrib-

uted to the combination of abiotic constraints

(climate, terrain, soils: the physical template),

biotic processes (competition, dispersal), and

natural or anthropogenic disturbance regimes

(Delcourt et al. 1983; Urban et al. 1987, 2000), but

we have not made much progress in elaborating

how these agents of pattern vary regionally and

interact in time to produce measurable change.

Significant challenges lie ahead in specifying

models that relate these agents to observed pat-

terns in ways that allow convincing statistical tests.

The examples we have presented illustrate the

approach we wish to pursue. The adjacency ma-

trix, which may be unique for each landscape, can

be used to constrain the random location of cover

types to produce more realistic landscape pat-

terns. However, the adjacency matrix is itself a

pattern metric—the result of some unspecified

generating processes—and it is ultimately these

processes we wish to uncover. If the adjacency

matrix provides a ‘‘better explanation’’ of land-

scape pattern, then we must ask what processes

acting within these landscapes have generated the

observed pattern of adjacencies in land cover?

Certainly the specific processes will depend on

the particular landscape and cover type consid-

ered, but the likely candidates will include aspects

of the physical template, biotic processes, and

disturbance regimes. It remains for us to devise

methods to identify and isolate these candidate

explanatory variables in ways that allow results to

be objectively evaluated.

Explanatory models and Monte Carlo

methods

It is obvious that complex, multi-layered explan-

atory models of landscape pattern are much more

cumbersome than their statistical analogues (e.g.,

a KS or v2-test). However, any explanatory

model, whether simple or complex, can be

implemented as computer simulations and gen-

erated patterns can be statistically characterized

via Monte Carlo methods. These methods have

been well developed (Manly 1997) but have yet to

be fully explored in landscape ecology (Fortin

et al. 2003).

Although the process may be awkward, the

procedure for testing potential relationships be-

tween pattern and process at landscape scales is

conceptually simple and straightforward. First, a

candidate model is posed; this model is then used

to generate a distribution of expected values and

associated statistics; and the distribution of results

is then compared to actual landscapes. This

model–data comparison is neither new nor revo-

lutionary, but opens the door to many new pos-

sibilities both statistical and inferential.

Within this framework, there are a spectrum of

approaches. The simplest is the original neutral

landscape model where pattern is generated from

simple random processes constrained only by map

grain and extent and the number of land cover

types. At the other end of the spectrum, spatially

explicit landscape simulators might be used to

generate patterns from detailed ecological

mechanisms. For example, Urban (2005) used the

heuristic forest landscape model METAFOR to

illustrate feedbacks between environmental gra-

dients and local seed dispersal mediated by

competitive hierarchies in tree species growth

rates and tolerances to drought and cold. These

feedbacks generated qualitatively contrasting

spatial patterns in simulated forests. Urban (2005)

did not test these patterns against actual forest

patterns, simply because these data were not

available (we do not yet have the capability to

remotely sense species composition for these

forests, although this capability might not be far
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off, given developments in hyperspectral sensors

and other techniques). This example underscores

two important issues in using such models to

generate hypothesis tests for landscape pattern.

First, if the model is data-intensive, there is a

substantial empirical cost as compared to simpler

random landscapes. Second, the data needed to

test the models can be similarly expensive,

requiring measurements with fine grain and broad

extent. Although continued advances in remote

sensing technology continues to reduce these

costs, significant investments in time and effort

might never be entirely eliminated. Nevertheless,

we expect a model-intensive approach to be a

promising direction for future efforts. Several

models now available might be applied in this way

(Mladenoff and Baker 1999).

As an intermediate approach, the constrained

random method we have illustrated here bridges

the purely random methods with the more com-

plex simulators. The constraints of the MCA in-

fuse, via the adjacency matrix, the consequence of

ecological processes without the undue expensive

of model development and parameterization.

However, this approach requires that there be an

explicit link between the ecological explanation

and the mask or constraint used to generate the

statistical expectations. Here, the adjacency ma-

trix offers itself as a useful focus, because we can

posit ecologically reasonable explanations for the

tendency for some land cover types to occur next

to others (e.g., residual forest next to water; also

see Taverna et al. 2005). We hope that wider

adoption of these approaches will ultimately re-

sult in general, parsimonious models capable of

explaining and predicting landscape change.

QRULE provides a useful platform for such

developments.

Conclusion

Relatively simple models can often ‘explain’

complicated patterns. Indeed, as Gardner et al.

(1987) have noted, real landscapes are sometimes

indistinguishable from purely random maps. This

result does not argue that real landscapes are

generated by simple, random processes, but merely

defines the conditions where more complicated

explanations are not required. However, the fail-

ure of this simple model indicates where a more

complicated explanation is required—explana-

tions that may invoke specific agents of pattern

formation from the physical template (environ-

mental gradients), biotic processes, and distur-

bance regimes (including human actions). We have

illustrated one method for exploring a more com-

plicated explanatory model, an extension of simple

neutral models, with the hope that the general

approach will be extended to richer and more

useful explanatory models of landscape pattern

and process.
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Appendix

The development of RULE (Gardner 1999) has

been an evolutionary process. The current

incarnation of this program, QRULE, involves

extensive changes to the format of the output,

data files for statistical summaries, and the

inclusion of the neutral model described in this

manuscript. Program documentation, example

input and output files, and the Fortran source

code for QRULE may be obtained from http://

www.al.umces.edu/Qrule. It is hoped that the

release of the source code will allow alternative

neutral models to be suggested and tested to

better understand the relationship between pat-

tern and process at landscape scales. The Open

Software License (http://www.opensource.org/

licenses/index.php) applies to the distribution,

use, and possible alteration of QRULE.
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