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Abstract The authors demonstrate a statistical boot-

strapping method for obtaining unbiased item selection and

predictive validity estimates from a scale development

sample, using data (N = 256) of Epperson et al. [2003

Minnesota Sex Offender Screening Tool—Revised

(MnSOST—R) technical paper: Development, validation,

and recommended risk level cut scores. Retrieved

November 18, 2006 from Iowa State University Depart-

ment of Psychology web site: http://www.psychology.ias-

tate.edu/~dle/mnsost_download.htm] from which the

Minnesota Sex Offender Screening Tool—Revised

(MnSOST—R) was developed. Validity (area under re-

ceiver operating characteristic curve) reported by Epperson

et al. was .77 with 16 items selected. The present analysis

yielded an asymptotically unbiased estimator AUC = .58.

The present article also focused on the degree to which

sampling error renders estimated cutting scores (appropri-

ate to local [varying] recidivism base rates) nonoptimal, so

that the long-run performance (measured by correct frac-

tion, the total proportion of correct classifications) of these

estimated cutting scores is poor, when they are applied to

their parent populations (having assumed values for AUC

and recidivism rate). This was investigated by Monte Carlo

simulation over a range of AUC and recidivism rate values.

Results indicate that, except for the AUC values higher

than have ever been cross-validated, in combination with

recidivism base rates severalfold higher than the literature

average [Hanson and Morton-Bourgon, 2004, Predictors of

sexual recidivism: An updated meta-analysis. (User report

2004-02.). Ottawa: Public Safety and Emergency Pre-

paredness Canada], the user of an instrument similar in

performance to the MnSOST—R cannot expect to achieve

correct fraction performance notably in excess of what is

achievable from knowing the population recidivism rate

alone. The authors discuss the legal implications of their

findings for procedural and substantive due process in

relation to state sexually violent person commitment stat-

utes and the Supreme Court’s Kansas v. Hendricks decision

regarding the constitutionality of such statutes.
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Sex offenses, and in particular sex offender recidivism,

present considerable problems for law enforcement,

penology, and society as a whole. A number of states have

enacted laws that aim to reduce recidivism through invol-

untary, expensive, and typically prolonged civil commit-

ment of ostensibly high-risk sex offenders, following such

offenders’ completion of their originally imposed criminal

sentences. These have been legally and ethically contro-

versial, mostly due to individual rights arguments (Janus

2000), but such laws have withstood Constitutional scru-

tiny (Kansas v. Hendricks 1997). A central feature of

Hendricks-type statutes is a requirement that the individual

to be committed be judged as ‘‘likely’’ to re-offend (Janus

and Meehl 1997). Typically, attention is restricted to the

likelihood of specifically sexual re-offenses; in any case,

sexual recidivism is emphasized over non-sexual new
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crimes. If one is to select offenders for potential commit-

ment based on probable reoffending, then for reasons of

efficiency and distributive justice, one needs as unbiased

and accurate a prediction method as possible.

Predictive accuracy depends on the validity of the pre-

dictor, the base rate of the predictand, and the adaptation of

predictor to predictand. The further the base rate departs

from 1/2, the more valid a predictor must be to improve on

‘‘betting the base rates,’’ that is, predicting the modal

outcome for all individuals (Meehl and Rosen 1955). Sex

offender recidivism rates have been reported to range from

5% (Minnesota Department of Corrections 2000b) to 52%

(Prentky et al. 1997), depending on the criterion and the

follow-up interval. Hanson and Morton-Bourgon’s (2004)

meta-analytic estimate of 13.7% (N = 24,040 offenders; 84

studies) is a sex offender multiyear recidivism rate based

on by far the most available data.

No matter how hard is recidivism to detect, the passage of

sexually violent person (SVP) commitment laws in 17 states

mandates that recidivism predictions about individuals be

made. Clinical and ‘‘actuarial’’ (mechanical, formal) methods

are currently used to make such predictions. The literature on

clinical versus statistical prediction gives strong reason to

conjecture that mechanical predictions of recidivism will

perform as well as or better than clinical ones (Grove et al.

2000). However, few sex offender-specific studies have

compared these methods directly (Litwack 2001). There are

many actuarially-based methods in use, including the Vio-

lence Risk Appraisal Guide (VRAG; Harris et al. 1993), Sex

Offender Risk Appraisal Guide (SORAG; Quinsey et al.

1998), Rapid Risk Assessment of Sexual Offense Recidivism

(RRASOR; Hanson 1997), Static-99 (Hanson and Thornton

1999), and the Minnesota Sex Offender Screening Tool—-

Revised (MnSOST—R; Epperson et al. 2003).

The MnSOST—R is used in 13 of the 17 states that have

Hendricks-type commitment laws, and is reportedly used in

more jurisdictions than the RRASOR or the SORAG

(Dennis Doren, personal communication, October 10,

2005). This is concerning because there is relatively little

validity information on the MnSOST—R. We are aware of

three peer-reviewed studies: Barbaree et al. (2001), Bartosh

et al. (2003) and Langton et al. (in press), whose sample

overlaps substantially with that of Barbaree et al. Aside

from the original development report (Epperson et al. 2003)

we are aware of just two sources of validity information

outside the peer-reviewed literature: a conference paper by

Epperson et al. (2000); and a conference paper by P.R.

Kropp (personal communication, April 18, 2006).

Epperson et al. (2000) presented a cross-validation sam-

ple at a sex offender treatment conference, but never pub-

lished it in a peer-reviewed journal. About 220 Minnesota

sex offenders released in 1992 were studied, excluding 50

individuals re-imprisoned for non-sexual offenses because

they had little opportunity to commit a new sexual offense.

The AUC was .73 (p < .04).

P.R. Kropp (personal communication, April 18, 2006)

presented a cross-validation sample at a sex offender

treatment conference, but also never published his results

in a peer-reviewed journal. The MnSOST—R was admin-

istered to just 53 sex offenders incarcerated in Canadian

federal prison. The point biserial correlation coefficient

was .18. Given the study’s recidivism rate of approxi-

mately .28, the equivalent AUC would be .73 (p > .05).

Bartosh et al. (2003) examined the MnSOST—R in

Arizona sex offenders. They split subjects into N = 73

rapists and N = 59 extrafamilial child molesters. (The

MnSOST—R is not designed to predict intrafamilial mo-

lester recidivism.) The MnSOST—R did not significantly

predict sexual recidivism for rapists (AUC = .585, p < .31)

or molesters (AUC = .586, p < .36).

Barbaree et al. (2001) and Langton et al. (2006), when

examined jointly, present interesting findings. Barbaree

et al. studied the MnSOST—R in 150 Ontario sex

offenders. The AUC was .65 (p < .13, using Bamber’s

1975, formula for the variance of the AUC).

Langton et al. (in press) contains data previously re-

ported in Langton (2003). Langton et al. (and Langton

2003) extended and refined Barbaree et al. (2001). Langton

et al. studied 136 of 150 Barbaree subjects plus 218 new

ones, 354 offenders in all. Hitherto unavailable file infor-

mation was acquired, allowing incomplete or questionable

MnSOST—R ratings to be recoded, and the MnSOST—R

was completed for all the new subjects. The AUC for the

N = 354 sample was .70 (p < .001). Langton’s (2003) AUC

for 117 of the 150 Barbaree subjects was .69 (p < .05)

Langton (2003) conjectured that this improved result for the

Barbaree et al. subset was due to more complete informa-

tion and better-trained MnSOST—R raters.

Validity studies on other instruments are considerably

more plentiful. Hanson and Morton-Bourgon (2004) list six

studies (three peer-reviewed, N = 1,348) on the SORAG, 17

studies (six peer-reviewed, N = 5,266) on the RRASOR, and

21 studies (seven peer-reviewed, N = 5,103) on the Static-

99. Notably, Hanson and Morton-Bourgon (2004) did not

find significantly different AUCs (albeit in limited power

studies) between the MnSOST—R (mean AUC = .66) and

the other, better-researched instruments named above (mean

AUC = .48–.77). However, their statistical methods were

faulty. They failed to correct for non-independence of AUC

estimates based on common samples, which necessitates that

a special test (Hanley and McNeil 1983b) be combined with

the usual independent-samples test (Hedges and Olkin 1985)

they employed. This mistake may have masked true differ-

ences between AUCs. Hence, their failure to find different

mean AUCs between the instruments studied, including the

MnSOST—R, cannot be accepted at face value.
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The literature is thus equivocal on the MnSOST—R’s

validity as a predictor of sexual reoffending. As Hanson and

Morton-Bourgon (2004) state, further analyses are required.

When the MnSOST—R debuted, the work was never

published in a peer-reviewed journal, causing concern in

forensic circles (Campbell 2000; Janus and Prentky 2003;

Wollert 2002, 2003). The MnSOST—R development

sample data were acquired from the Minnesota Department

of Corrections (DOC), and the present authors re-analyzed

them with two aims:

1. estimating the effect of sampling error on overselec-

tion of items and overestimation of accuracy (AUC) in

the development of the MnSOST—R, using a special

form of statistical bootstrapping (Shao 1996); and

2. estimating the expected correct fraction of a recidivism

prediction instrument under practical conditions, when

that instrument has population accuracy (AUC) at

several values representative of those reported for the

MnSOST—R (and other sex offender recidivism pre-

diction tools), at various postulated recidivism rates.

The first goal required development of a computerized

version of a close approximation to the steps Epperson

et al. (2003) followed to make decisions about item rating

level weighting, item selection, and cutting score selection

based on the development sample. The present authors

initially developed this algorithm by close reading of the

‘‘Final Report’’ document describing the development of

the MnSOST—R (Epperson et al. 2003). It became clear

from this reading that certain information was omitted or

still unclear, so Prof. Epperson was personally contacted

for clarification. He generously explained in detail the

procedures followed, including:

1. the identification of every potential item considered for

inclusion in the MnSOST—R, out of the larger data set

the Minnesota DOC delivered to us;

2. how missing values were imputed;

3. how certain items were recoded and combined a priori

(i.e., not based on intercorrelations with each other, or

validity correlations with recidivism) into summary

items;

4. more detailed information about how the item coding

level weighting procedure (called a ‘‘modified’’ Nuf-

field weight system) worked (see below); and

5. more detailed information about how the four stages of

item selection employed by Epperson et al. were

implemented (see below).

With a computerized algorithm embodying these pro-

cedures, one could mechanically apply Epperson et al.’s

(2003) method to a sample of data possessing the requisite

variables. The present authors used the algorithm repeat-

edly, applying it to samples drawn with replacement from

the development data set, with the result that each sample

yielded its own, unique MnSOST—R-type instrument.

This is the heart of the statistical bootstrapping method

explained in detail below.

The second study goal was to investigate the expected

population performance of such an instrument as the

MnSOST—R, having estimated AUC of a certain magni-

tude, when its application is subject to three kinds of

sampling error: (a) error in estimating the AUC corre-

sponding to error in estimation of test discriminating

power, (b) error in estimating the recidivism base rate

where the test will be used, and (c) error in choosing the

test cutting score that minimizes classification errors, given

the apparent recidivism rate.

The AUC has the advantage of being a prevalence-free

measure of predictive accuracy and has been promoted by

various investigators (Mossman 1994a, b; Rice and Harris

1995). Correct fractions (the epidemiologist’s hit rate, or

the proportion of recidivists and non-recidivists correctly

identified as such by the test) are of interest in their own

right, because decisions such as ‘‘commit/don’t commit’’

are routinely being made, informed by predictions of ‘‘will/

won’t reoffend,’’ which correspond naturally to right/

wrong tabulation (Amenta et al. 2003; Campbell 2003;

Szmukler 2001). Alas, there is only a general correspon-

dence between the AUC and correct fractions; the AUC

only informs one about best-case classification accu-

racy—accuracy that is achievable in practice only if quite

restrictive assumptions are all satisfied:

1. the AUC is estimated without error;

2. the mathematical model relating the form of the ROC,

its area, and the distributions of recidivists’ and non-

recidivists’ test scores is exactly valid, so that a certain

equation relating the AUC to the difference between

group test score distributions’ means is exactly correct;

3. the recidivism base rate is estimated without error; and

4. the equation relating the forms of recidivists’ and non-

recidivsts’ test score distributions, their mean separa-

tion, and the recidivism base rate, is solved for the

exactly optimal cutting score that minimizes classifi-

cation errors.

If one or more of these assumptions is materially

false, then to that extent the classification accuracy

achieved may fall short of what one might expect from

a published AUC figure. In particular, suppose that

sampling error intrudes—as it must. Then investigation

beyond the AUC is required to determine what classi-

fication performance can be expected from a test, (a)

whose AUC must be estimated, (b) which will then be

employed in a population whose recidivism rate must

also be estimated, (c) using an estimated cutting score

to make predictions.

268 Law Hum Behav (2008) 32:266–278

123



Method

Reproduction of Epperson et al. (2003) Analyses

To try to reproduce Epperson et al.’s results, we followed

their steps as precisely as possible (Epperson et al. 2003;

D. Epperson personal communication, June 20, 2001). This

is the procedure:

1. Identification of candidate predictors. The investigators

started with about 825 potential predictor items, 178 of

which were actually considered for inclusion in the

MnSOST—R. (We retrieved these variables from

spreadsheets provided by the Minnesota DOC.) Certain

items were combined and/or recoded a priori; we started

with the combined/recoded items in our analyses.

2. Modified Nuffield weights (Nuffield 1982). Each cod-

ing level for each categorical item had its associated

recidivism rate calculated; weights were assigned to

each level, as rounded integer multiples of the differ-

ence between the level-specific recidivism rate and the

overall item’s recidivism rate, divided by .05. Adjacent

coding levels not differing in weights, or levels con-

taining less than 10% frequency, were combined and

their combined weight recalculated; this process con-

tinued until no changes occurred. Any nonmonoto-

nicity existing in coding-level weight assignment at the

end of the procedure derives from empirical, non-

monotonic relationships between item rating levels and

recidivism rates. Epperson (personal communication

June 20, 2001) indicated that subjective-theoretical

considerations were taken into account in deciding

whether to combine rating levels; after consultation,

one of the present authors (WMG) wrote an algorithm

and accompanying computer program capturing as

closely as possible his stated policies. The final part of

this step was to delete all items whose every rating

level had the same weight.

3. Screen items for Pearson r with recidivism. Among

items surviving step (2), drop any whose Nuffield-

weighted scores’ correlations with the criterion are not

significant, p < .10.

4. Block-entry logistic regression. Surviving items were

divided into four groups. Item groups were entered

successively into logistic regression to predict new sex

offenses, with the Nuffield-weighted item scores

serving as predictors for each individual. The groups

were: (a) dynamic (potentially treatment- or develop-

ment-changeable) variables (e.g., discipline history,

chemical dependency treatment while incarcerated,

sex offender treatment while incarcerated, age at

prison release), (b) chronicity (e.g., adolescent anti-

social behavior, number of sex offense convictions,

number of different age groups against which offenses

committed, length of sex-offending history), (c) sex

offense topographic variables (e.g., use or threat of

force in any sex offense, 13–15 year old victim in any

sex offense, any sex offense committed in public,

victim a stranger, multiple acts in any single offense,

sex offense committed while under penal supervision),

and (d) variables reflecting instability (e.g., unstable

employment, history of substance abuse). Each vari-

able having partial v2 with p < .15 was retained; no

retained variable was ever later removed.

Epperson et al. (2003) only classified those 16 items

into blocks for logistic regression analysis that sur-

vived their steps (1)–(3); the other 178 – 16 = 162

items had no group assignment. We created an

‘‘Other’’ category for these items. We entered the

items in this block last, after blocks (a)–(d), if its items

survived steps [1]–[3] in our re-analysis, into the lo-

gistic regression. To retain an ‘‘Other’’ item in the

logistic regression, we required a partial v2 with

p < .15.

All items surviving step (4) constituted the final instru-

ment. The sum of Nuffield-weighted item scores consti-

tuted the MnSOST—R score for each individual.

Consistent Model Selection Bootstrapping

A major purpose of this study was to estimate the validity

of the MnSOST—R, without capitalizing on chance as did

Epperson and colleagues. Bootstrapping (Shao 1996) can

give an approximately unbiased estimate of accuracy using

the same cases to develop a scale and to test its validity.

This method relies on repeatedly sampling with replace-

ment from the study sample as if it were a population,

calculating a statistic of interest (in this case, the AUC) for

each ‘‘pseudo-replicate’’ sample.

Ordinary bootstrapping, in which a sample of size N is

drawn with replacement from a ‘‘population’’ of size N,

works well for some types of models, but fails badly for

model selection problems like the one involved in building

an instrument. A helpful reviewer has raised the question

Whether ordinary bootstrapping would be more appropriate

than Shao’s (1996)? The reason that ordinary bootstrapping

is inappropriate for this study is the large-scale winnowing

of the variables of the data set; the Epperson et al. (2003)

development procedure reduced 178 candidate variables to

16. Ordinary bootstrapping is designed to deal with an

unselected set of variables (e.g., items) and to estimate

sampling variability associated with the weights attached to

the items, and performance statistics associated with the

items (AUC, etc.). Introducing variable selection brings in

an additional source of sampling variability: one bootstrap
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pseudoreplicate sample can have a different set of variables

from another bootstrap sample, not just a different set of

weights. Shao (1996) has proven that the ordinary boot-

strap produces the correct model (i.e., a model with all

those variables which have non-zero weights in the popu-

lation and only those variables with non-zero weights in the

population) with probability approaching zero as N ap-

proaches infinity. Shao’s method of bootstrapping was

developed specifically to produce (a) the correct model, in

terms of selected variables with probability approaching

one as N approaches infinity and (b) asymptotically unbi-

ased estimates of the model weights (i.e., weights of

variables obtained in the logistic regression analysis that is

the final step in Epperson et al.’s [2003] and our proce-

dure). In other words, ordinary bootstrapping produces a

statistically inconsistent result, whereas Shao’s (1996)

bootstrapping produces a statistically consistent result that

is to be preferred in this type of analysis.

Shao’s (1996) procedure has three steps: (1) drawing

numerous (in our study, 1,000) pseudo-replicate samples

with replacement, each of size m, from the whole sample of

N. m is chosen much smaller than N, such that m/N fi 0

as N fi ¥, e.g., m = N3/4. Here, m = 64. (2) For each

pseudoreplicate sample, carry out the whole series of

MnSOST—R item selection steps (1)–(4) above; record

which items pass all four steps and their Nuffield weights,

as well as the v2/df of the final model (instrument). The

latter is recorded because the logistic regression v2 is what

is optimized by variable selection; dividing by the df

compensates for different instruments having differing

numbers of items. (3) Evaluate the v2/df of each model in

the whole N = 256 sample. This is analogous to applying a

sample-based procedure to the whole population. (4) After

obtaining 1,000 models’ v2/df values, one examines the

distribution of the corresponding AUCs, as these are of

much greater interest: particularly the middle (mean,

median) of this distribution and its spread (SD, confidence

intervals).

Translation of Population AUC to Expected Correct

Fraction under Sampling Error

It has already been explained how sampling error, as well

as less than certain distribution of test scores, degrades the

perfect relationship between population AUC and attain-

able classification correct fraction. To investigate the ex-

tent of this problem, we simulated the distribution of

expected population correct fractions, employing the fol-

lowing steps:

1. A suitable quantitative specification of the non-re-

cidivist and recidivist population score distributions on

the prediction instrument is developed (probability

density functions, cumulative distribution functions,

quantile functions, and pseudo-random number gen-

erators). Concretely, the two population distributions

are arrived at in stages as follows. First, the non-re-

cidivist (N = 166) and recidivist (N = 90) samples

(plus 11.05, added for convenience to make all

MnSOST—R scores positive) are used to calculate

kernel density estimates (KDEs) over the range 0–40

via unbiased cross-validated bandwidth estimation and

an optcosine kernel (chosen because it is approxi-

mately mean-square-error efficient; Scott 1992). Next,

cubic spline interpolation is used to ‘‘fill in’’ the two

frequency curves (density estimates times P̂ and Q̂,

respectively) and put both subpopulations on the same

X-axis values, .001 score points apart. Finally, separate

multinomial approximations to the spline-interpolated

KDEs are used for looking up probability density

function, cumulative density function, and quantile

function values, and for generating pseudorandom

observation values. By following these steps, we avoid

assuming a particular parametric form (e.g., Gaussian,

gamma) for the MnSOST—R-like instrument score

distributions, instead forcing the score distributions to

be as much like the Epperson et al. (2003) sample

distributions as possible, subject to the constraint that

the two distributions be smooth.

2. The simulation proper begins by estimating values Âz

(the sample AUC value) from its asymptotic distribu-

tion according to Bamber (1975) with N = 256 and

P � .32, the proportion of recidivists in Epperson

et al. (2003). Estimated Âz-values were simulated from

population AUC values chosen to equal either .5813,

.6796, or .77. The former is the present analysis’s

bootstrap AUC estimate; see below. .6796 is the

weighted mean AUC for the MnSOST—R (Hanson

and Morton-Bourgon 2004), and .77 is the original

reported AUC for the MnSOST—R (Epperson et al.

2003); these values thus essentially cover the range of

reported AUC values for the MnSOST—R. Given

heteroscedastic binormal ROC assumptions, Âz values

dictate corresponding estimated mean differences d̂a

between recidivist and non-recidivist test score distri-

butions according to the following mathematical

transformation,

d̂a ¼ U�1 Âz

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rn

rsn

r
;

where U�1 is the standard normal cumulative distribu-

tion function, and rn and rsn are the standard deviations

of the non-recidivists and the recidivists, respectively.

We checked whether these assumptions were critical by

seeing whether we could reproduce the observed mean
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difference between non-recidivists and recidivists in

Epperson et al. (2000) even though the score distribu-

tions were far from normal. The formula yields (after

appropriate transformation to account for scale) the

correct mean difference to within .1, out of an observed

mean difference of 5.52 (less than 2% error);

3. NP̂ is simulated binomially, then divided by N to ob-

tain P̂ values. Q̂ ¼ 1� P̂;

4. instrument score data Xni (i = 1,...,Nr) for recidivists

and Xnri (i = 1,...,Nnr) for non-recidivists are simulated

from separate population distributions developed as

described in step 1. For each simulated value Âz from

step 2, with its corresponding value of d̂a, the mean

difference between to-be-sampled score distributions

is adjusted from its observed (Epperson et al. 2000)

sample value of 5.52 raw score units to d̂a SD units

according to the d̂a calculated during step 2; the var-

iance was kept equal to the originally observed vari-

ances in Epperson et al. Pseudorandom scores on the

prediction instrument were generated separately for

recidivists (Nr ¼ NP̂ in number, rounded to nearest

integer) and non-recidivists (Nnr = 256 minus rounded

NP̂ in number) by use of a multinomial pseudorandom

number generator, followed by linear transformation to

the appropriate MnSOST—R score metric;

5. the estimated optimum cutting score X̂c for a given

pair of non-recidivist and recidivist score samples (in

relative abundance P̂ : Q̂) was then sought. This was

accomplished in two steps. First, KDEs (unbiased

cross-validated bandwidth, optcosine kernel as in step

1) were calculated, and were cubic spline interpolated

to a common basis on the interval (0, 40) at .001

intervals. Second, the region from the highest mode of

the non-recidivist KDE to the maximum score in either

sample was examined for an intersection of the P̂- and

Q̂-weighted KDEs (known as the Hitmax cut; Meehl

1965). In this way, we avoided assuming that the forms

of the test score distributions were known to a user of

the prediction instrument. This Hitmax cut is taken as

the estimated optimal cutting score X̂c;

6. apply the estimated sample cutting score X̂c to the parent

test score distributions, i.e., the true distributions reflect-

ing no sampling error, as these were specified in step 1.

That is, one approximates via numerical integration,

a � 1�
ZX̂c

0

KDEr and

b �
ZX̂c

0

KDEnr;

where a is the epidemiologists’ sensitivity, b is speci-

ficity, X̂c is the cutting score, and KDEr or KDEnr is the

spline-interpolated kernel density estimate for the re-

cidivist or non-recidivist population from step 1,

respectively. From these quantities, the correct fraction,

in the parent mixed population, is simply

CF = Pa + Qb. Note that P and Q here are not esti-

mated in this equation (and so do not have ‘‘hats’’ on

them), and likewise these KDEs are only subject to

numerical approximation error, not sampling error (and

so do not have ‘‘hats’’ on them);

7. repeat steps (2) to (6) 1,000 times per combination of

true Az · P values, to obtain a distribution of expected

population correct fractions for 1,000 sample-estimated

cutting scores X̂c. Examine the middle (mean, median)

and spread (quantiles) of each parameter combination-

specific CF-distribution. Also, compare the correct

fractions to those obtainable by ‘‘betting the base rate,’’

i.e., always predicting the most frequent outcome (if

Q̂[:5, predict non-recidivism for all offenders, other-

wise predict recidivism for all offenders), regardless of

instrument score (Meehl and Rosen 1955).

The correct fraction above and beyond that achievable

from base rate information alone is a critical measure of a

test’s incremental validity, for a specific combination of Az

and P. The CF will reflect real life conditions, including

sampling error, which always intrudes into the estimation

of (1) recidivism rates and (2) cutting scores that are

apparently optimal for local recidivism rates.

A reviewer has questioned the relevance of the CF, as

unlike Az it is base rate dependent. The answer is that in

application, the instrument user does not experience ‘‘base

rates in general,’’ which is what Az measures predictive

accuracy for. Instead, the clinician experiences a particular

base rate—the one in the population from which their ex-

aminees are drawn. There is an associated cost for a mis-

prediction at that base rate, not at ‘‘base rates in general.’’

It is true, as pointed out by one reviewer, that a proper

decision analysis would consider not only the proportion of

erroneous classifications but also the costs associated with

these errors—distinguishing positive from negative classi-

fication errors as we do not. However and unfortunately,

there is no general agreement among decision makers

about the relative importance of false positive and false

negative prediction errors. Therefore, we followed custom

in the statistical discrimination literature and assumed

zero–one loss: zero relative cost if no prediction error

occurs, versus a cost of one if either a false negative or a

false positive prediction error occurs. Absent a legislative

clarification of how important is mistakenly committing a

low-risk sex offender, as compared to letting a high risk sex
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offender live at large in the community, we are loath to

impose our private evaluations of relative importance.1

The bootstrapping procedure used to achieve our first

study goal was written in the Statistical Analysis System

(SAS Institute 2005), using the macro facility, Output

Delivery System, DATA step, and several statistical

procedures. The AUC-correct fraction simulation was

written in the R graphics and statistics programming

environment (Venables et al. 2002). All code is available

on request. The use of human subjects data was approved

by the University of Minnesota Institutional Review

Board (IRB) as an exempt secondary use of data; original

approval was granted to Epperson and colleagues by

the Minnesota DOC IRB (Steven Huot personal commu-

nication, May 15, 2006).

Results

The main result of our reanalysis appears in Table 1. The

m = 64-based model having the lowest N = 256-based

residual v2/df for fit of the hierarchical regression model is

displayed, since this was the criterion Epperson et al. used

to decide on final item selection. The actual value of this

statistic is not unbiased. SPSS (SPSS, Inc. 2005) variable

names, as received in Minnesota Department of Correc-

tions system files, are given for the items, as well as an

explanation of which each item measures. The reader will

immediately note that whereas 16 items were selected by

Epperson et al., only four were selected by the bootstrap.

Clearly, the bootstrap results are consistent with the

hypothesis that overfitting (overselection of items) has ta-

ken place during scale development by Epperson et al. This

would tend to make the performance of their scale less

stable than desirable in repeated applications to the same

population, let alone applications across distinct popula-

tions (e.g., different base rates, let alone different offender

characteristics). Such overfitting by Epperson et al. would

not be surprising—indeed it would be predicted—because

Shao (1996) has shown that the probability of selecting the

correct model using a procedure like that of Epperson et al.

goes to zero as N goes to infinity.

Direct comparisons of the items selected, and the AUCs

estimated, must be made with special care. The procedures

followed by Epperson et al. differed in one important way

from the one we followed: in assigning (modified) Nuffield

weights, Epperson et al. allowed subjective, theory-medi-

ated considerations to influence their decisions. While we

strove to write an algorithm that captured as much of their

policies as a mechanical procedure could do, based on

consultations with Epperson, it is of course in principle

impossible for any computer program exactly to mimic a

human judge’s decisions. As the Nuffield weight assign-

ments were the first step in Epperson et al.’s multistep

scale-building procedure, any differences between their

procedure and that of the present authors, even if relatively

small, might have a ‘‘snowball’’ effect on subsequent

stages, ultimately resulting in significant differences in

items selected and the AUC calculated. The question of

comparability (or lack thereof) between the Epperson et al.

results and those of the present authors is taken up in the

‘‘Discussion.’’

Bootstrap Analysis

First, we describe the models generated in the 1,000

m = 64 bootstrap pseudoreplicate samples, in terms of the

variables per model, and then in terms of the models

themselves. Next we describe the models’ performances.

A total of 178 items went into the selection process.

About 95 of these were actually retained in at least one

model, while 85 did not pass muster for any model. Two

models retained no variables at all. The five-number

summary regarding items per model was 0, 5, 7, 8, and

15. (A five-number summary gives the minimum, first

quartile, median, third quartile, and maximum.) No

individual item was included in as many as 22% of the

1,000 models developed. Clearly, quite different vari-

ables were being selected across different pseudoreplicate

samples.

The data can also be looked at in terms of models per

item. The number of models in which an item participated

was 0–218. The five number summary was 0, 0, 23, 51,

218. Considering only those items that were retained in at

least one model, the five number summary was 1, 12, 40,

59, 218.

The main result of interest is, of course, the performance

of the models (or instruments) developed. One is interested

both in typical performance and the distribution about the

average.

The distribution of whole-sample (N = 256) AUCs for

those 998 pseudoreplicate models that retained at least one

item was as follows: M = .5813, M ± SD = (.5395, .6231).

The 95% bootstrap basic percentile confidence interval was

(.4882, .6744), which notably includes .5, the chance-level

1 One might imagine that headway on this problem could be made by

assuming certain values, e.g., values in a certain range, for the ratio of

relative costs of false positive versus false negative classification

errors. However, it can readily be proven that there always exists

some value of this ratio for which any instrument, no matter how

weakly it outperforms a mere flip of the coin in predicting sex of-

fender recidivism, has huge utility. Contrariwise, there always some

(other) value of this ratio for which such an instrument, no matter how

strongly it outperforms a flip of the coin (as long as it is not perfectly

accurate, Az = 1), has huge disutility. Proof omitted to save space, but

available from the authors on request.
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value for an AUC; but the 90% c.i. lower limit just ex-

cludes .5. That is, the bootstrap analysis rejects H0: Az = .5

at .025 < p < .05. The five-number summary for whole-

sample AUCs is .4002, .5628, .5863, .6077, .6867; one can

say that a typical AUC in our analyses ran about eight and

one-half percent better than chance-level discrimination.

Effect of Sampling Error on Translation of Population

AUC into Achievable Correct Fraction

The final analysis investigated the effect of sampling error

on the ability to turn a given level of AUC into an effective

population correct fraction, by selecting a suitable cutting

score for a local recidivism base rate. As described in

‘‘Methods’’—for an assumed range of population AUC

and recidivism base rate values—the AUC, recidivism base

rate, and optimum cutting score were estimated in 1,000

simulated finite samples (N = 256 each for the AUC and

cutting score estimators, and N = 2,000 for the recidivism

rate estimator). (Assuming that recidivism rate estimation

is done on N = 2,000 is quite a generous concession on

behalf of the test; the Minnesota recidivism rate estimate is

based on less than one tenth this number, N = 192; Min-

nesota Department of Corrections 2000a.) The optimum

cutting score was sought by kernel density estimation fol-

lowed by interpolation for the intersection of the estimated

base rate-weighted densities.

Table 2 gives the average population correct fractions

for various combinations of AUC and recidivism rate

values. The pattern is quite simple. Except for P = .4, the

CF for the instrument is either less than that of betting the

base rates or never exceeds it by more than a very few

percent (e.g., 3.7% at most). At P = .4, the instrument

‘‘beats the base rate’’ by amounts varying from 5.8%

(AUC = .5813) to 8.5% (AUC = .77). Note that a base rate

of .4 is over three times that of the weighted mean sex

offender recidivism rate reported on the largest meta-

analysis to date (Hanson and Morton-Bourgon 2004). Also

note that the AUC of .77 is the highest AUC ever reported

not only for the MnSOST—R but also, to our knowledge,

for any sex offender recidivism prediction instrument; it is

not cross-validated. Concentrating on what are much more

typical values: at the average AUC reported for the

Table 1 Items selected by the bootstrap model selection analysis

Number SPSS

variable ID

Nature of item

1 Sohx Length of offending history

2 Cdtx Chemical dependency treatment (completed

or in)

3 Supfail Number of supervision failures (e.g.,

probation violations)

4 Xcdecep Offense in which compliance achieved

through deception

AUC = .5813

Table 2 Correct fractions in 1,000 simulated trials of estimating cutting score and applying it to parent populations

AUC Base rate Five number summary: correct fraction

5% Q1 Median Q3 95% Expected

correct fraction

Correct fraction for

‘‘betting the base rate’’

.5813 .05 .9477 .9496 .95 .9505 .95 .9496 .95

.1 .8996 .9 .9 .9022 .9031 .9002 .9

.137 .8630 .8630 .8630 .8701 .8709 .8645 .863

.2 .8 .8 .8055 .8176 .8179 .8067 .8

.3 .7 .7155 .7270 .7426 .7460 .7248 .7

.4 .6159 .6483 .6606 .6882 .7015 .6582 .6

.6796 .05 .9476 .9492 .95 .9505 .95 .9495 .95

.1 .8996 .9499 .9001 .9029 .9031 .9004 .9

.137 .8630 .8641 .8670 .8708 .8709 .8657 .863

.2 .8022 .8044 .8145 .8178 .8179 .8097 .8

.3 .7244 .7272 .7386 .7439 .7461 .7317 .7

.4 .6664 .6670 .6766 .6966 .7017 .6750 .6

.77 .05 .9476 .9485 .9499 .9499 .9501 .9492 .95

.1 .8996 .9 .9001 .9029 .9031 .9006 .9

.137 .8630 .8641 .8670 .8708 .8709 .8668 .863

.2 .8022 .8103 .8145 .8179 .8179 .8130 .8

.3 .7244 .7346 .7386 .7456 .7461 .7374 .7

.4 .6664 .6773 .6853 .7008 .7017 .6849 .6
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MnSOST—R (also very close to the average AUC reported

for other recidivism prediction instruments such as the

SORAG, VRAG, Static-99, etc., in the Hanson and Mor-

ton-Bourgon meta-analysis), and at the average recidivism

base rate reported in that meta-analysis, namely 13.7%, the

simulated instrument has an incremental validity measured

in CF, compared to betting the base rates, that is estimated

to be .8657 – .863 = .0027. This is, as far as the present

authors are concerned, so close to zero as to make no

difference.

The reason the figures in the table appear as they

do—viz., quantiles of CF running close to but less than P is

as follows. For Az = .5813, .6796, and .77, substantial

distribution overlap occurs. Coupled with modest recidi-

vism rates and right-skewed scores, recidivist distributions

generally ‘‘nestle’’ beneath the non-recidivist distribution’s

right tail, rather than intersecting with the recidivist dis-

tribution; an optimal cutting score cannot be found at an

intersection of the recidivist and non-recidivist test score

distributions. Instead, a default cutting score at an ex-

tremely high value of X has to be taken. This makes the

instrument perform much like, and about as well as, betting

the base rate.

Discussion

This study adds a rather negative finding on the validity of

the MnSOST—R to an already equivocal record of previ-

ous efforts to cross-validate this instrument.

Comparison to the Literature

The reader may view the bootstrap-estimated population

AUC of .58 with skepticism, reasoning that it does not

match up to other cross-validation studies’ AUC values.

One anonymous reviewer pointed out, for example, that

our value of .5813 differs significantly (by Hanley and

O’Neil’s [1983a] test) from the .73 value reported by Ep-

person (2000). However, no other study’s AUC differs

from our .5813 result at the p < .05 level. Most important,

our value’s confidence interval overlaps with that of the

most carefully conducted, comprehensive review of the

prediction literature to date; Hanson and Morton-Bour-

gon’s (2004) weighted confidence interval for the

MnSOST—R: our 90% interval’s upper end is at .67, their

lower end is at .64.

Comparison with Epperson et al. (2003)

An anonymous reviewer opined that there is no fair com-

parison between Epperson et al.’s results and ours, due to

methodological differences. This is too strong. Some gen-

eralizations and plausible quantitative limits can be placed

on the direction, and probable size, of the difference be-

tween Epperson et al.’s predictive validity, and our pre-

dictive validity, based on the clinical versus mechanical

prediction literature (Grove et al. 2000). This is because the

former investigators used a partially judgment-based and

partially statistically-driven scale-development procedure,

whereas the present authors used an entirely mechanical,

statistics-driven procedure; Grove et al. included studies

that examined such hybrid prediction schemes.

We can examine statistics on the effect sizes (ESs) from

Grove et al. (2000), as the best comprehensive source on

how well subjective versus mechanical data combination

works.2 The average advantage enjoyed by purely statisti-

cal data combination was .086; the 5% and 95% quantiles

ran from .50 to –.12, measured in an ES metric that allowed

intercomparison of various kinds of predictive accuracy

statistics, including correlations, correct fractions, AUCs,

and others. When translated into correlations for conve-

nience, this works out to an average of r = .0858,

approximately (quantiles –.1194, .4621). Hence, the reader

is most plausibly entitled to expect that the predictive

validity of Epperson et al.’s items at Stage 1 was attenu-

ated by almost .09 in correlation collectively, of course this

being made up by Epperson et al.’s failure to cross validate

their whole scale’s predictive accuracy, resulting in a

considerably inflated AUC.

Caveat Regarding the AUC as Sole Measure of

Predictive Accuracy

An AUC statistic tells a researcher or clinician how well a

test performs across the whole potential range of disorder

(recidivism) base rates and optimum cutting scores for those

base rates. It can lull the clinician into thinking that, if the

AUC is suitably high, the test will perform satisfactorily in a

given population, i.e., at a given base rate. This is far from

necessarily so; a sufficiently high AUC only ensures that a

test can perform well in a population with a certain base rate,

if the cutting score is appropriately set. The point of our third

set of analyses is to bridge the gap between population AUC

and attainable correct fraction, taking into account sampling

errors that degrade test performance. These analyses show

that, unless the recidivism rate is more than three times

higher than the aggregate figure reported in the literature

2 The Grove et al. (2000) meta-analysis concerned 136 head-to-head

comparisons of judgment accuracy (or prediction) in health and hu-

man behavior, across a very wide variety of domains (diagnosis,

prognosis, criminology, mental health, etc.), employing a wide variety

of judges (mental health professionals, medical doctors, etc.) at

varying levels of ostensible expertise and training (from novices to

those fully trained, and with many years of experience).
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(Hanson and Morton-Bourgon 2004), an instrument with

predictive accuracy like the MnSOST—R will not provide

predictive accuracy (measured in CF) exceeding that of

betting the base rate by more than about three and one-half

percent, an amount which we consider trivial. This is par-

ticularly so when one considers the amount of effort ex-

pended to obtain the measure, and the importance of the

decision about an individual’s life which may in significant

part depend on a recidivism prediction predicated on the

score from this instrument.

In view of the fact that base rate predictions require no

expert input, no time spent evaluating offenders, and de-

liver predictions about as accurate as elaborate actuarial

schemes like the MnSOST—R across a wide range of

clinically relevant recidivism rates, it would seem that

base-rate predictions have much to recommend them in the

field of sex offender recidivism prediction. Naturally, we

are not so naı̈ve as to expect that such predictions will find

widespread adoption. After all jurists, like legislators and

the public, are almost certainly a good deal more worried

about false negative predictions than they are about false

positives; and base-rate predictions make only false nega-

tive predictive errors.

Nevertheless, base-rate predictions do provide a rational,

objective benchmark for the assessment of predictive

accuracy of sex offender recidivism predictions. An elab-

orate, expensive actuarial scheme for predicting recidivism

that cannot outperform the simple prediction of the modal

outcome for each offender hardly inspires confidence.

To justify use of such a method as the MnSOST—R

despite its inferior correct fraction (or essentially equivalent

correct fraction, and very considerably greater expense), an

appeal on some other basis must be made. The only rational

basis that comes to mind is to an instrument’s long run cost-

weighted error rate, i.e., the expected disutility of its false-

negative errors times that error rate, plus the expected dis-

utility of its false-positive errors times that error rate—as

compared to the expected disutility of false-negative errors

for betting the base rate, times its false-negative error rate

(viz., P). Evaluating disutilities requires a careful analysis

of the tangible and intangible costs of false-negative and

false-positive decision errors: costs of needless yet expen-

sive civil commitments; costs to victims, families, and

society of preventable new sex offenses; and so on.

The authors are unaware of a single serious attempt to

undertake an analysis of this kind, let alone any concrete

justification balancing competing error costs, such that a

reasoned appraisal of disutilities favors the use of predic-

tion instruments having accuracies either no better than

betting the base rates, or at best minimally more accurate.

Emotional appeals on the side of the (undeniably) great

costs to victims, families, and societies are ersatz relative

to a careful, balanced decision analysis.

Optimal cutting score placement depends in part on

levels of competing disutilities. Cutting scores currently

used in fieldwork are suboptimal, whether due to promul-

gation of fixed cutting scores without regard to local

recidivism rates (as in Epperson et al. 2003), or to insuf-

ficiently large samples to obtain stable estimates of optimal

cutting scores for local jurisdictions. (Reliable estimates of

quantiles of score distributions can require thousands of

cases per group.) When already misestimated cutting

scores are credulously adopted without concern for dis-

utility, it is safe to say that one simply does not have an

inkling of a jurisdiction’s cost outcome, even though these

are data of the gravest import. One can expect, however,

that jurisdictions will experience classification correct

fractions considerably lower than AUC figures appearing

in the literature portend, whether users realize it or not.

One reviewer claimed that comparisons of the CF of an

instrument like the MnSOST—R to that of betting the base

rate were irrelevant since for (unstated) ethical and legal

reasons, it was not possible to adopt ‘‘betting the base rate’’

as a decision strategy. We would argue that there are, in fact,

circumstances, where one could in effect adopt such a

strategy, by acting so as to (in effect) always render modal

predictions/decisions (for P < .5) in the sex offender com-

mitment arena: an expert witness who concludes that it is not

possible to carry out the prediction of ‘‘likely’’ sex offender

recidivism with the requisite degree of accuracy, using

admissible evidence, in accordance with the requirements of

statute, can refuse to take on such cases on behalf of the

State. After all, working on such cases is hardly compulsory.

We add here that regardless of whether one actually

contemplates adoption of ‘‘betting the base rates’’ as a

decision strategy, comparing the CF of an instrument to the

CF of betting the base rate is, quite frankly, a not very

demanding validity hurdle, beyond the hurdle cleared by

establishing that the instrument is more valid than pure

chance, which is all that establishing Az > .5 by significance

testing accomplishes. In fact, establishing that an instrument

outperforms the base rates is a demonstration of incremental

validity—a showing that the instrument tells the clinician

something more than what readily available information, on

hand prior to acquiring examinee-specific data, would have

allowed one to predict. If an instrument will not allow one

materially to outperform the base rate (the base rate is one

kind of readily available pretest information), then one’s test

really has not much going for it.

Implications for Forensic Practice

Our analyses suggest that single actuarial instruments, with

validities similar to the MnSOST—R and recidivism rates

below .4, do not suffice for the sex offense recidivism risk

prediction problem. Unfortunately, there is currently no
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known way to improve on predictions made with single

actuarial instruments:

(a) clinical prediction, including clinically-mediated

actuarial outcomes, is expected to perform poorer

than ‘pure’ actuarial prediction; and

(b) combining, via statistically optimal procedures like

logistic regression, measures like the MnSOST—R

with other instruments (e.g., Static-99) has thus far

not been demonstrated to increase accuracy beyond

that obtained with only one instrument (Seto 2005).

(c) instruments with accuracies comparable to

MnSOST—R employed in populations with base

rates similar to that investigated in our correct fraction

simulation (i.e., below .4) will add only negative to

negligible incremental validity to the base rate

strategy;

Irrespective of the nascent state of the science, courts

solicit risk predictions and practitioners must be aware of

and acknowledge prediction instruments’ infelicities and

report to the court accurate predictions, even if that means

reporting that their predictions, no matter how the predic-

tions are derived, function at chance-level, should (a)

through (c) prove true.

In states like Minnesota, licensed psychologists are

ethically mandated by the Board of Psychology to report

‘‘[A]ny reservations or qualifications concerning the

validity or reliability of the conclusions formulated and

recommendations made, taking into account...the limita-

tions of scientific procedures...the impossibility of absolute

predictions;...[and] a notation concerning any discrepancy,

disagreement, or conflicting information regarding the

circumstances of the case that may have a bearing on the

psychologist’s conclusions...’’ (Minnesota Board of Psy-

chology 2005). In Minnesota, and we expect elsewhere as

well, it is expressly an ethical as well as professional

obligation that, should (a) through (c) prove true, psy-

chologists either (1) refrain from making sex offense

recidivism predictions, (2) express serious reservations

about such predictions, or (3) expressly adopt an explicit

regrets ratio that countervails low base rates and renders

the risk instrument sufficiently valid.

Respondents to sexually violent predator civil commit-

ment petitions are protected, like all those at trial, by

substantive and procedural due process safeguards. Indeed,

questions of due process were among the central issues of

the Supreme Court’s decision in Kansas v. Hendricks

(1997). The Court opined that substantive due process is

not violated by civil commitment statutes as long as stat-

utes require a finding of the respondent’s dangerousness

and a finding of an inability to control that dangerousness.

Such inability may simply be volitional impairment sec-

ondary to a mental abnormality or personality disturbance

that renders the respondent dangerous beyond his/her

control. Under (a) through (c) above, there is currently no

way to differentiate between high-risk and low-risk

offenders. Unless States with civil commitment laws are at

the present time willing to commit without discretion any

member of the entire class of sex offenders, and the

average level of dangerousness of this entire class is suf-

ficient for a particular State legislature’s purposes and in-

tent, enforcement of the statutes cannot meet criteria set out

in the Hendricks opinion, thus inculpating civil commit-

ment statutes under Hendricks as in violation of the due

process clause of the Fourteenth Amendment.

The Court further opined that civil commitment stat-

utes were constitutional as long as procedural due process

was observed, i.e., that proper procedures and eviden-

tiary standards were upheld prior to civil commitment.

Again, given (a) through (c) above, instruments like the

MnSOST—R do not meet even the most basic evidentiary

standard, that of relevance. When the MnSOST—R, and

other risk prediction methods of comparable or worse

accuracy, are used in jurisdictions with low base rates they

offer negligible to negative incremental validity over what

is already known about the likelihood of reoffense prior to

obtaining the offenders’ test scores, that is, the tests are not

useful in deciding any issue of fact; they possess at most

paltry probative value at that point in the fact-finding

process. Instruments performing like the MnSOST—R are

irrelevant, and should not be admissible as evidence at trial.

The MnSOST—R, and similar instruments, fail to meet the

most basic test for admissibility in, for example, the Fed-

eral Rules of Evidence Rule 702 (1975).

Were tests such as the MnSOST—R probative in com-

mitment trials, they may still be excludable under Federal

Rule 403 (1975) because a tests’ probative value may be

substantially outweighed by the danger of unfair prejudice.

To take an example, if the MnSOST—R were used to

predict future offending in a population with a base rate of

~14%, the average respondent at trial for commitment has

an ~86% chance of being correctly identified by the test as

either future recidivist or non-recidivist. The remaining

~14% of the time, the respondent is approximately three

times more likely to be incorrectly identified a recidivist as

compared to being incorrectly identified a non-recidivist.

When the test errs, it errs systematically against the

respondent, constituting a prejudiced outcome.

In Hendricks-like statutes, State legislatures have at-

tempted to establish by fiat a ‘‘fact on the ground,’’ namely

that courts possess, by acting with assistance of experts, the

ability to detect, with a degree of accuracy sufficient for

their purposes, the presence of a legally requisite degree of

likelihood of committing a future offense, whatever may be

the legislature’s intent as to the meaning of ‘‘likely’’ in that

jurisdiction. The present analyses suggest that the state
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legislatures have, in effect, attempted to establish by statute

the proof of an empirical non-fact: Namely that the

MnSOST—R, and instruments with comparable AUCs,

along with clinical, judicial, and/or lay intuition and

judgment, when used in populations with base rates less

than .4, can assist in the determination of likelihood of

reoffense.
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