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Eyewitness identification research has reliably shown that accurate identifications are
faster than inaccurate identifications. Recently, D. Dunning and S. Perretta (2002)
claimed that an identification latency of 10–12 s not only best discriminates between
accurate and inaccurate identifications but also produces extremely high accuracy
rates, approaching 90%. Consistent with predictions from recognition memory the-
ory, however, we show that the optimum time boundary varies with overall response
latency under manipulations of retention interval and nominal lineup size, and that
the accuracy rate inside the optimum time boundary is much less impressive than
previously reported. We outline directions for clarifying the accuracy and latency re-
lationship to assist the reliable diagnosis of identification accuracy.

KEY WORDS: eyewitness identification; identification latency; identification accuracy-latency
relationship.

Eyewitness identifications constitute important evidence in many criminal in-
vestigations and trials, but are also known to be fallible. It is not surprising, there-
fore, that a large amount of research attention has been directed at improving the
accuracy of eyewitness identifications. This research can be broadly divided into
two categories. The first category includes research that aims to improve identifi-
cation accuracy by improving the lineup procedure itself. Examples of this work
(for review, see Brewer, Weber, & Semmler, 2005) include investigations of system
variables such as lineup presentation mode (Lindsay & Wells, 1985), lineup fairness
(Lindsay & Wells, 1980; Wells, Leippe, & Ostrom, 1979), and the instructions given
to a witness before viewing the lineup (Malpass & Devine, 1981). The second cat-
egory includes research that has focused on the investigation of variables that may
allow the identification of either correct or incorrect decisions rather than on im-
proving the accuracy of the identification itself. In other words, researchers have
searched for markers of the accuracy of identification decisions (i.e., assessment
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variables, Sporer, 1993). One potential marker of identification accuracy that has
received considerable research attention is response latency. The present research
follows the second of these approaches and investigates the relationship between
response latency and accuracy, with a particular focus on the time boundary that
best discriminates correct from incorrect decisions under two forensically relevant
manipulations, one of retention interval (an estimator variable) and the other of
nominal lineup size (a system variable).

A consistent finding in the eyewitness identification literature is a negative iden-
tification response latency–accuracy relationship (Brewer, Gordon, & Bond, 2000;
Dunning & Perretta, 2002; Dunning & Stern, 1994; Smith, Lindsay, & Pryke, 2000;
Smith, Lindsay, Pryke, & Dysart, 2001; Sporer, 1992, 1993, 1994; Weber, Brewer,
Wells, Semmler, & Keast, 2004). Importantly, this relationship appears to hold only
for witnesses who make a positive identification from the lineup (i.e., choosers) but
not for those who reject the lineup (i.e., nonchoosers). Despite the consistency of
this relationship, response latency is not by itself a useful marker of identification
accuracy in the applied context. The problem arises from the inability of lineup
administrators to classify any single identification decision as fast (and, therefore,
likely to be accurate) or slow (and, therefore, likely to be inaccurate). The use of
discriminant function analysis (Smith et al., 2000; Smith et al., 2001; Sporer, 1994)
is one potential solution to this problem. However, the need to calculate a differ-
ent discriminant function for each set of stimuli and viewing conditions renders
this approach unsatisfactory as an applied technique for predicting the accuracy of
any single identification decision. An alternative solution is to use time boundary
analysis to identify the time boundary that best discriminates correct from incor-
rect decisions (Dunning & Perretta, 2002). A time boundary analysis is conducted
by computing a series of chi-square statistics. Specifically, for each time boundary
to be considered, the chi-square statistic for the 2 (time boundary: identification
faster than time boundary vs. identification slower than time boundary) × 2 (accu-
racy: correct vs. incorrect) contingency table is computed. The time boundary that
optimally discriminates correct from incorrect identifications is defined as the time
boundary at which the greatest chi-square value is observed.

Dunning and Perretta (2002) used time boundary analyses to identify the opti-
mum time boundary for data from four different experiments. These analyses pro-
duced two key findings. First, for all four samples, the optimum time boundary fell
within a 10–12-s window. Second, the proportion of correct decisions made before
the optimum time boundary was an impressively high 87.1%. On the basis of these
results Dunning and Perretta concluded that the optimum time boundary was likely
to be constant across stimuli and viewing conditions, and would consistently identify
lineup decisions with a high probability of being accurate. Consequently, they sug-
gested the 10–12 s rule for identifying decisions that are likely to be correct. Specif-
ically, they argued that decisions made in 10–12 s or less can be considered likely to
be accurate. If such a rule generalized across stimuli and viewing conditions, there
would be obvious practical implications for the diagnosis of accurate identification
decisions. To investigate the consistency of this result Weber et al. (2004) recently
conducted time boundary analyses on data from four experiments, all of which
used the same stimulus video. These analyses clearly demonstrated that the time
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boundary was not consistent across experiments or across the two targets featured
in the video. Furthermore, the accuracy rates of decisions made before the opti-
mum time boundary (and also before Dunning and Perretta’s suggested 10-s time
boundary) were substantially lower than those observed by Dunning and Perretta.
Thus, the two key findings from Dunning and Perretta’s time boundary analyses,
upon which the 10–12-s rule was based, did not generalize to the stimuli and view-
ing conditions examined by Weber et al. From an applied perspective, Weber et al.’s
findings have obvious implications for the utility, or lack thereof, of the 10–12 s rule
in the real world. However, their results also raise a number of important theoretical
issues regarding the nature of the identification decision process.

Dunning and Perretta (2002) argued that a consistent optimum time bound-
ary accompanied by highly accurate pre-time boundary decisions are predicted by
Dunning and Stern’s (1994) account of the eyewitness identification decision pro-
cesses. Specifically, Dunning and Stern described two different decision processes
that may be used by witnesses. Automatic decisions are characterized as fast and
unconscious and tend to be reported by witnesses who made an accurate identifi-
cation. In contrast, deliberative decisions, which are more likely to be used by wit-
nesses who make inaccurate identifications, are characterized as slow and thought-
ful. Importantly for the time boundary, Dunning and Stern argued that the latency
of automatic decisions should be insensitive to changes in the decision context. In
other words, changes in stimuli or viewing conditions that influence response la-
tency should affect the latency of deliberative, but not automatic, decisions. Con-
sequently, Dunning and Perretta argued that, regardless of the lineup and viewing
conditions, a concentration of fast and accurate decisions should always be present.
Therefore, the optimum time boundary should (a) be consistent across viewing con-
ditions and stimuli, and (b) consistently identify decisions with a high probability of
being correct. Obviously, Weber et al.’s (2004) demonstration of both the variable
time boundary and less than impressive accuracy of pre-time boundary decisions,
directly contradicts these predictions. The important issue for understanding the
identification decision process, therefore, appears to be why Dunning and Stern’s
predictions were not supported.

Resolution of this issue is not just of theoretical interest. An understanding of
the identification decision process could provide useful practical insights into the
ideal process for conducting a lineup (for a broader discussion of this issue, see
Brewer, Weber, & Semmler, in press). If Dunning and Stern’s (1994) account is cor-
rect, then an understanding of the factors that determine the decision process used
by witnesses would suggest two potential methods for the improvement of over-
all identification accuracy. First, the ability to identify decisions made using an au-
tomatic decision process would allow lineup administrators to diagnose decisions
with a high probability of being correct and, therefore, weight the identification
evidence more strongly than a nonautomatic decision. Second, an understanding
of the determinants of the decision process used by witnesses may allow the de-
velopment of a lineup administration or construction method that promotes auto-
matic and, therefore, highly accurate identification decisions. Thus, investigation of
the underlying cause of the discrepancy between Dunning and colleagues’ results
(Dunning & Perretta, 2002) and predictions (Dunning & Stern, 1994) and the re-
sults reported by Weber et al. (2004) is an important issue.
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One potential account of this difference is that one of the assumptions un-
derlying the automatic–deliberative processing account of eyewitness identification
decision-making is incorrect. Specifically, consideration of the broader cognitive
psychology literature suggests that the invariance of the response latency of au-
tomatic decisions posited by Dunning and colleagues (Dunning & Perretta, 2002;
Dunning & Stern, 1994) is questionable. For example, theories of recognition mem-
ory based on information accumulation (Van Zandt, 2000) and the diffusion pro-
cess (Ratcliff, 1978) predict the difference in correct and incorrect decision laten-
cies observed in the eyewitness identification domain. These theories also predict
that response latency will be affected by manipulations that influence the discrim-
inability of old from new stimuli. Both theories posit that a decision is made when
the evidence accumulated by an individual reaches a criterion value. Importantly, as
discriminability decreases the rate of accumulation of clear-cut evidence slows and
decisions take, on average, longer. Importantly, this change in response latency is
predicted to occur for both correct and incorrect decisions. Therefore, theories of
recognition memory that include predictions relevant to response latency suggest
that the optimum time boundary is likely to be variable. Specifically, they predict
that the optimum time boundary should be affected by manipulations of discrim-
inability that affect overall response latency. This prediction is consistent with the
results of Weber et al. (2004) who observed that, in the data sets they analyzed,
the optimum time boundary tended to vary with overall response latency. There-
fore, a primary aim of the experiments reported here was to test the competing
predictions of the automatic–deliberative account of eyewitness identification deci-
sion processes (Dunning & Perretta, 2002; Dunning & Stern, 1994) and recognition
memory theories (Ratcliff, 1978; Van Zandt, 2000). Specifically, we investigated the
impact of two forensically relevant manipulations (i.e., retention interval in Exper-
iment 1 and nominal lineup size in Experiment 2) on overall response latency and
on the optimum time boundary. We did so using encoding and test stimuli not pre-
viously used by Dunning and colleagues or Weber et al. (2004).

EXPERIMENT 1

In Experiment 1 we examined how the optimum time boundary varied with
retention interval, that is, the interval between the viewing of the target stimulus
and the identification test. Recognition memory theories have long considered re-
sponse latency to be a key indicator of underlying memory strength (Kahana &
Loftus, 1999; Murdock & Dufty, 1972) and, hence, of the likelihood that a previ-
ously studied stimulus is recognized as having been seen before (Atkinson & Juola,
1974; Gillund & Shiffrin, 1984). Memory strength is, in turn, considered to be af-
fected by variables such as retention interval (Metcalfe, 1996; Murdock, 1985). To
the extent that increasing the retention interval undermines memory quality for the
target stimulus, correct and incorrect identification latency should be increased, as
should the optimum time boundary. Three retention intervals—0, 15, and 30 min—
were examined.
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Methods

Participants

Two hundred and thirty-eight individuals (93 male, 145 female), completed
this experiment. Participants were either first-year psychology students, who par-
ticipated as part of a research participation exercise, paid volunteers recruited on
campus, or unpaid volunteers recruited from the community.

Materials

A single video of a nonviolent, staged crime was presented to all participants. It
featured a white female shoplifting from a supermarket. The shoplifter walked along
a supermarket aisle, then removed an item from the shelves and examined it before
slipping it into her handbag and walking away from the camera. The film lasted
for 42 s, with the shoplifter’s face in view for approximately 6 s. A photograph of
the offender for use in the target-present lineups, was taken after filming the video.
The offender wore different clothes in the video and lineup photograph. Further,
the photograph of the shoplifter depicted her with hair down, rather than tied back
as in the video. Eight foils were selected from a pool of photographs on the basis of
their match to the description of the offender. One of these eight foils was randomly
chosen as the target’s replacement for the target-absent lineup. All stimuli were
presented on a 17′′ PC monitor with resolution set at 1,024 × 768 pixels. The video
was displayed at a size of 670 × 500 pixels. The lineups were presented as two rows
of four photographs, each presented at a size of 200 × 200 pixels (4.5-cm square). A
button labeled not present was presented below the photo array. The arrangement
of photographs in the array was randomly determined for each participant.

Design and Procedure

To examine the impact of retention interval on predictors of identification accu-
racy, a 3 (retention interval: 0, 15, and 30 min) × 2 (target presence: target-present
and target-absent) between-participants design was used. With the exception of the
distractor task, the experiment was completed on computer with each participant
in an individual cubicle. Before watching the stimulus video all participants were
informed that they would be asked to watch a video of a staged crime and make an
identification decision about the person or people in it. After viewing the video, par-
ticipants in the 15 or 30 min retention interval completed the distractor task (picture
puzzles) for the allotted time. Participants in the 0 min condition proceeded imme-
diately to the identification test.

Before being presented with the lineup, participants were explicitly informed
that (a) the offender may or may not be present in the photo array and (b) if they
thought the offender was present, they should click on that offender’s photograph,
or if they thought the offender was not present, they should click on the not present
button. The lineup was then presented on the screen and remained in view until
the participant had indicated their decision by clicking on a photograph or the not
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Table 1. Frequency and Percentage of Identification Responses in Each Condition for
Target-Present and Target-Absent Lineups

Correct
identification

Incorrect
identification Rejection

Condition No % No % No % Total No

Target-present
0 min 12 30.0 7 17.5 21 52.5 40
15 min 13 33.3 7 17.9 19 48.7 39
30 min 12 30.0 10 25.0 18 45.0 40
Overall 37 31.1 24 20.2 58 48.7 119

Target-absent
0 min 18 46.2 21 53.8 39
15 min 16 40.0 24 60.0 40
30 min 19 47.5 21 52.5 40
Overall 53 44.5 66 55.5 119

present button. Response latency was recorded by the computer as the time from
the onset of the lineup display to the participant’s response.

Results

An alpha level of α= .05 was used for all inferential analyses. Cohen’s3 f is
reported as the measure of effect size for ANOVAs and Cohen’s w (which is equiv-
alent to the phi coefficient for 2 × 2 contingency tables) is reported for chi-square
analyses. The frequencies of the different categories of identification response, for
both target-present and -absent lineups, are displayed in Table 1. Chi-square analy-
ses were used to examine the effect of the manipulation on identification responses.
For target-present lineups, a 3 (identification response) × 3 (retention interval) chi-
square analysis revealed no significant impact of retention interval on the frequency
of the different identification responses, χ2(4, n = 119) = 1.02, w = 0.09. Similarly,
for target-absent lineups a 2 (identification response) × 3 (retention interval) chi-
square analysis revealed no significant impact of retention interval on identification
responses, χ2(2, n = 119) = 0.52, w = 0.07.

Following previous investigation of response latency in eyewitness identifica-
tion (e.g., Sporer, 1992), separate analyses were conducted for choosers and non-
choosers. Descriptive statistics for response latency of choosers and nonchoosers
by accuracy and retention interval are presented in Table 2. Because of signifi-
cantly positively skewed response latency distributions in all conditions, inferen-
tial analyses were conducted on transformed data (i.e., log base 10). As the trans-
formed and nontransformed data displayed the same pattern of results, descriptive
statistics are based on the nontransformed data to assist interpretation. For both
choosers and nonchoosers a 3 (retention interval) × 2 (accuracy) ANOVA was
conducted on transformed response latency. Consistent with previous findings, cor-
rect identifications were made, on average, faster than incorrect identifications,

3Values of Cohen’s f greater than .4 are considered large effects, while the cut-off values for small and
medium effects are .1 and .25, respectively.
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F(1, 108) = 4.97, f = 0.21, but no main effect of accuracy was observed for non-
choosers, F(1, 118) = 0.00, f = 0.00. Similarly, a significant main effect of retention
interval was identified for choosers, F(2, 108) = 4.07, f = 0.27, but not nonchoosers,
F(2, 118) = 1.91, f = 0.18. Examination of the descriptive statistics suggests that
(a) correct identifications were made, on average, faster than incorrect identifica-
tions, and (b) identifications in the 0 min condition were made faster than those
in the 15 and 30 min conditions. No significant interaction effect was found for
choosers, F(2, 108) = 0.02, f = 0.02, or nonchoosers, F(2, 118) = 0.25, f = 0.07. In
other words, there is no evidence that the retention interval manipulation affected
the difference in response latency between correct and incorrect identifications.

As no evidence of a significant response latency–accuracy relationship was
present for lineup rejections, time boundary analyses were performed only on the
choosers’ data. Time boundary analyses were conducted separately for each reten-
tion interval. Consistent with the technique used by Dunning and Perretta (2002)
and Weber et al. (2004), a chi-square statistic4 based on the 2 (time boundary: faster
or equal vs. slower) × 2 (accuracy: correct vs. incorrect) contingency tables was com-
puted with the time boundary set at each integer value from 1 s to 50 s (i.e., 1 s, 2 s,
3 s, and so on until 50 s). The latency that produced the greatest chi-square value
(i.e., the highest peak in the time boundary curve) was identified as the time bound-
ary that optimally discriminated correct from incorrect decisions. Following Weber
et al., we also report the confidence range for each peak in the time boundary curve.
The confidence range includes all consecutive time boundaries that produce a chi-
square value within ± 1 standard error of the peak value. The confidence range is
indicative of the degree to which the peak can be confidently located at a specific
time boundary.

Plots of chi-square value (and standard error) by time boundary for each re-
tention interval are presented in Fig. 1. Consistent with the main effect of retention
interval on mean response latency for choosers, the optimal time boundary also ap-
pears to differ between retention interval conditions. Specifically, the optimal time
boundary for the 0 min condition (13 s, w = 0.31, confidence range = 13–14 s) is
markedly earlier than those for the 15 min (36 s, w = 0.34, confidence range = 36–
42 s) and 30 min (35 s, w = 0.27, confidence range = 35–39 s) conditions. Thus,
the time boundary appears to be later in the conditions that produced, on average,
slower identification decisions. This observation parallels the findings of Weber et al.
who demonstrated that, in the data sets they analyzed, the optimal time boundary
generally varied with mean response latency.

In addition to the variability of the optimal time boundary itself, the other strik-
ing features of these data are the proportions of correct identifications made before
the optimum time boundaries (0 min.: 54.5%; 15 min.: 46.2%; 30 min: 36.7). In stark
contrast to the observation by Dunning and Perretta (2002) of almost 90% correct
identifications made before the optimum time boundary, none of these conditions
produced pretime boundary accuracy rates in excess of 60%.

4Time boundary analyses can also be conducted by computing the log odds ratio at each time boundary.
As the log odds ratio analyses produce the same pattern of results as the chi square analyses, we report
only the chi square analyses.



Eyewitness Identification Accuracy and Response Latency 39

0 min. 

0

1

2

3

4

5

6

C
hi

-s
qu

ar
e 

va
lu

e

15 min.

0

1

2

3

4

5

6

C
h

i-
sq

ua
re

 v
al

u
e

30 min. 

0

1

2

3

4

5

6

0 10 20 30 40 50

Time boundary (s)

C
h

i-
sq

ua
re

 v
al

u
e

Fig. 1. Plots of chi-square (and standard error) by time-boundary for each retention interval condition.



40 Brewer, Caon, Todd, and Weber

Discussion

In sum, these data replicated the well established negative response latency–
accuracy relationship for choosers. Furthermore, for choosers, the manipulation of
retention interval was demonstrated to influence both mean response latency and
the latency that optimally discriminated correct from incorrect identifications. Of
course, the retention intervals used here (i.e., 0, 15, and 30 min) are negligible in
comparison with the days, weeks, or months that can pass between the crime and a
witness viewing a lineup in the real world. However, the observed impact of such a
seemingly trivial manipulation provides a particularly strong demonstration of the
instability of the optimum time boundary. Notably, in all conditions, the optimum
time boundary was outside Dunning and Perretta’s (2002) 10–12-s window. Despite
the variability in the optimum time boundary, the proportion of correct decisions
made before the boundary was consistently poor. Finally, the impact of the retention
interval manipulation on the optimum time boundary has important implications for
our understanding of the identification decision process.

One potential explanation of the observed variability in the optimum time
boundary between conditions is the relatively small number of choosers in each
condition (i.e., 37, 36, and 41 for the 0-, 15-, and 30-min retention intervals, re-
spectively). Although this may account for our failure to replicate the 10–12 s win-
dow, the small number of choosers does not explain the observation of markedly
later optimal time boundaries in conditions with longer average response latencies.
Two theoretical explanations of the impact of the manipulation on the optimum
time boundary appear plausible. First, as predicted by the recognition memory the-
ories discussed in detail earlier (Ratcliff, 1978; Van Zandt, 2000), the latency of
all decisions, including those based on an automatic decision process, is suscepti-
ble to manipulations of discriminability. An alternative explanation, however, is
that these stimuli did not elicit the “significant plurality” (Dunning & Perretta,
2002, p. 960) of participants relying on an automatic decision process to produce
a stable time boundary, a possibility that is consistent with the low accuracy rates
observed for target-present lineups. Consequently, the time boundaries were de-
termined largely by the unstable response latency of deliberative decisions. The
implications of these accounts are addressed in detail in the General Discussion
section.

EXPERIMENT 2

The results of Experiment 1 provided a clear demonstration of the impact of
changes in the retention interval on the optimum time boundary. In Experiment 2
we aimed to provide converging evidence for the instability of the optimum time
boundary by manipulating another forensically relevant factor likely to affect dis-
criminability. Rather than manipulate another factor likely to influence the quality
of the memory of the offender held by the participants, we manipulated the con-
ditions under which participants were asked to identify the offender from a lineup,
specifically, varying the nominal size of the lineup. Such a manipulation provides a
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particularly strong test of the stability of the optimum time boundary as Dunning
and Perretta (2002) argued that such a manipulation should not affect the latency of
automatic decisions or the optimum time boundary.

Methods

Participants

One hundred and ninety-six individuals (33 male, 163 female), completed this
experiment. Participants were paid volunteers recruited from the community (i.e.,
staff, parents, and friends) of a local school.

Materials

In addition to the video used in Experiment 1, a second video of a nonviolent
staged crime was also used in this experiment. The second video displayed a White
male attempting to break into a car. Before successfully opening the car door he
was startled by a shout and ran from the scene. The video lasted for 16 s and the car
thief’s face was in view for approximately 3 s. The lineup photograph of the car thief
was taken after filming the video. The car thief was wearing different clothes, but his
appearance was otherwise unaltered. Both videos were presented, as in Experiment
1, at a size of 670 × 500 pixels, on a monitor with resolution set at 1,024 × 728
pixels.

For the car thief lineup, 12 foils were chosen from a pool of photographs based
on their match to the description of the offender and one was chosen as the target’s
replacement for the target-absent lineups. For the shoplifter lineup, in addition to
those used in Experiment 1, four foils were chosen based on their match to the de-
scription of the offender. The same photograph was used as the target’s replacement
in both experiments. Depending on the lineup size condition, the lineups were pre-
sented as one, two, or three rows of four photographs, each presented at a size of
200 × 200 pixels. As in Experiment 1, a button labeled not present was presented be-
low the photoarray and the arrangement of photographs in the array was randomly
assigned for each participant. Further, given this random positioning, the onscreen
positions of the rows of photographs, combined with the position of the cursor at
lineup onset (a common point at the bottom of the screen), ensured that the av-
erage mouse travel distance (across participants) was equivalent across lineup size
conditions. Thus, the manipulation of nominal lineup size was not confounded with
the average distance mouse movement required to indicate a decision.

Design and Procedure

To examine the impact of lineup size on the predictors of identification accu-
racy, a 3 (lineup size: four, eight, and 12) × 2 (target presence: target-present and
target-absent) between-subjects design was used. For all participants the shoplifter
video was viewed and a decision made about the shoplifter lineup before presen-
tation of the car thief video and lineup. For both stimuli, after viewing the video
participants were immediately shown the lineup instructions and asked to make a
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Table 3. Frequency and Percentage of Identification Responses in Each Condition for Target-Present
and Target-Absent Lineups for Both Videos

Correct
identification

Incorrect
identification Rejection

Conditions No % No % No % Total No

Shoplifter Video
Target-present

4 13 40.6 2 6.3 17 53.1 32
8 7 21.9 7 21.9 18 56.3 32

12 7 20.6 8 23.5 19 55.9 34
4

Overall 27 27.6 17 17.3 54 55.1 98
Target-absent

4 9 28.1 23 71.9 32
8 12 35.3 22 64.7 34

12 12 37.5 20 62.5 32
Overall 33 33.7 65 66.3 98

Car thief video
Target-present

4 26 81.3 4 12.5 2 6.3 32
8 22 64.7 4 11.8 8 23.5 34

12 20 62.5 5 15.6 7 21.9 32
Overall 68 69.4 13 13.3 17 17.3 98

Target-absent
4 16 50.0 16 50.0 32
8 22 68.8 10 31.3 32

12 25 73.5 9 26.5 34
Overall 63 64.3 35 35.7 98

decision from the lineup. The lineup instructions were identical to those used in
Experiment 1. Participants viewed one of three different sized photoarrays: 4-, 8-
, or 12-person lineups. In the four- and eight-person lineup conditions, for each
participant the foils presented with the target or target’s replacement were ran-
domly selected (by the identification test software) from the pool of 11 foils. For the
12-person lineup condition all 11 foils were presented.

Results

Table 3 displays the frequencies of the different categories of identification re-
sponse, for both target-present and -absent lineups. Chi-square analyses were used
to examine the effect of the manipulation on identification responses. For target-
present lineups, 3 (identification response) × 3 (lineup size) chi-square analyses re-
vealed no significant impact of lineup size on the frequency of identification re-
sponses for either the shoplifter video, χ2(4, n = 98) = 6.39, w = 0.25, or the car thief
video, χ2(4, n = 98) = 4.58, w = 0.22. Similarly, for target-absent lineups 2 (identifica-
tion response) × 3 (lineup size) chi-square analyses revealed no significant impact of
lineup size on identification responses for either the shoplifter, χ2(2, n = 98) = 0.69,
w = 0.08, or car thief, χ2 (2, n = 98) = 4.39, w = 0.21, videos. Examination of the
effect size measures, however, suggests small effects were present for all but the
target-absent lineups for the shoplifter video.
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Descriptive statistics for the response latency of choosers and nonchoosers by
accuracy and lineup size are presented in Table 4. Because of significantly positively
skewed response latency distributions in all conditions, inferential analyses were
conducted on transformed data (i.e., log base 10). As the nontransformed data
displayed the same pattern of results, descriptive statistics are again based on the
nontransformed data. For both choosers and nonchoosers 3 (lineup size) × 2
(accuracy) ANOVAs were conducted, separately for each video, on transformed
response latency. For both shoplifter, F(1, 71) = 12.12, f = 0.41, and car thief
videos, F(1, 138) = 8.46, f = 0.25, the main effect of accuracy was significant, and
at least moderately strong, for choosers. However, for nonchoosers the effect
was nonsignificant for both videos, shoplifter: F(1, 113) = 0.62, f = 0.02; car thief:
F(1, 46) = 0.05, f = 0.03. Examination of the descriptive statistics clearly indicates
that, for both videos, correct identifications were made faster than incorrect
identifications. Similarly, for choosers in both videos a strong and significant main
effect of lineup size was observed, shoplifter: F(2, 71) = 4.86, f = 0.37; car thief:
F(2, 138) = 20.06, f = 0.54. Examination of the descriptive statistics suggests that
for the shoplifter video identifications from the four-person lineups were made
faster than those from the 8- and 12-person lineups. For the car thief video,
identifications from the four-person lineup were made faster than those from the
eight-person lineup, which were, in turn, made faster than those from the 12-person
lineups. The interaction effect was nonsignificant for choosers from both videos,
shoplifter: F(2, 71) = 0.41, f = 0.11; car thief: F(2, 138) = 1.62, f = 0.15, although
the effect size measures suggest that, with more power, reliable effects may have
been observed.

Using the same method as Experiment 1, time boundary curves were plotted
for each lineup size for the shoplifter video and car thief videos (Figs. 2 and
3, respectively). Again, because of the nonsignificant main effects of accuracy
on response latency for nonchoosers, only choosers’ data were used in the time
boundary analyses. For the car thief data, a clear impact of lineup size on the
optimum time boundary is evident in the time boundary curves. Consistent with
the results of Experiment 1, the optimum time boundary appears to vary with
mean response latency. Specifically, the four-person lineups, which produced the
fastest identification decisions, displayed the smallest optimum time boundary (5 s,
w = 0.36, confidence range = 5 s). Further, the eight-person lineups produced
both intermediate response latency and an intermediate optimum time boundary
(8 s, w = 0.28, confidence range = 8 s). Finally, the slowest identifications and
longest optimum time boundary were produced in the 12-person lineup conditions
(23 s, w = 0.45, confidence range = 20–28 s). A similar increase is evident for the
shoplifter video from the eight-person (10 s, w = 0.60, confidence range = 10 s) to
the 12-person lineup condition (15 s, w = 0.48, confidence range = 15–16 s). How-
ever, no clear optimum time boundary is evident at all in the four-person lineup
condition for the shoplifter video. The greatest chi-square value was observed at
latencies of 16 s through 21 s (w = 0.35), but a secondary, and almost equivalent,
peak was also observed at 10 s. The lack of a clear time boundary in this condition
is emphasized by the confidence range for the greatest chi-square value (confidence
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Fig. 2. Plots of chi-square (and standard error) by time-boundary for the shoplifter data in each
lineup size condition. Note that to allow easy discrimination of the chi-square peak or peaks for each
curve the y-axis scales are not consistent.
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size condition. Note that to allow easy discrimination of the chi-square peak or peaks for each curve
the y-axis scales are not consistent.
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range = 14–23 s). Therefore, with the exception of the four-person shoplifter
lineups for which no clear optimum time boundary was observed, these findings
parallel those of Experiment 1 and Weber et al. (2004). Specifically, later optimum
time boundaries were observed in conditions with slower mean response latency.

As in Experiment 1, the accuracy of decisions made before the optimal time
boundary was also considered. In contrast with Experiment 1, high pre-time bound-
ary accuracy rates were evident in a number of conditions. Specifically, accuracy
rates above 80% were observed for eight-person lineups from both videos, as well
as for the four-person lineups from the car thief video. The remaining conditions
evidenced pre-time boundary accuracy rates less than 65%.

Discussion

This experiment provided more evidence of the instability of the optimum time
boundary with another new set of stimulus materials. Specifically, the optimum time
boundary increased with lineup size and mean response latency. The consistency of
this finding (at least in conditions where an optimum time boundary was identifi-
able) across two sets of stimulus materials, which differed markedly in difficulty,
provides a particularly strong demonstration that this variability is not the product
of either a particularly easy or difficult lineup. Thus, the conclusion that neither the
10–12 s window or the optimum time boundary are satisfactory markers of identifi-
cation accuracy in the applied context is further supported.

Again the observation of increased overall latency with later optimum time
boundary is consistent with recognition memory theories (Ratcliff, 1978; Van Zandt,
2000). Additionally, as in Experiment 1, the observed variability in the optimum
time boundary could be due to a low proportion of automatic decisions. Although
this explanation is consistent with the low accuracy observed for shoplifter lineups,
given the high accuracy rates for the car thief lineup, this explanation seems un-
satisfactory. An alternative explanation is that the participants who reached their
decision automatically may not have responded immediately. In other words, af-
ter reaching a rapid, automatic decision some participants may have continued to
examine the lineup. As the both the average duration of and the likelihood of en-
gaging in this supplementary examination are plausibly associated with the nominal
size of the lineup, this delayed responding may account for the observed association
between lineup size and the optimum time boundary.

GENERAL DISCUSSION

Two important findings regarding the response latency–accuracy relationship
emerged from these experiments. First, using two novel sets of stimulus materials
and two forensically relevant manipulations we found clear evidence that the time
boundary that best discriminates correct from incorrect identifications is not invari-
ant across lineups or stimulus viewing conditions. Indeed, the fact that the optimum
time boundary varied from 5 to 36 s is clear evidence that a simple 10–12 s rule is
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not sufficient to diagnose correct or incorrect identification decisions. Thus, these
results suggest that, although time boundary analysis is a useful research tool, it is
not a practically useful marker of identification accuracy. Second, consistent with
the findings of Weber et al. (2004) the optimum time boundary was observed to
vary with overall response latency. It is significant that the changes in both overall
response latency and the optimum time boundary were produced by manipulation
of retention interval and lineup size. The automatic–deliberative process account of
eyewitness identification decision making (Dunning & Perretta, 2002; Dunning &
Stern, 1994) predicts that the latency of deliberative, but not automatic decisions,
will be influenced by such manipulations. As this account posits that the optimum
time boundary is determined by the latency of automatic decisions, it predicts that
these manipulations should influence overall latency, but not the optimum time
boundary. Therefore, our findings are consistent with the predictions of recogni-
tion memory models (Ratcliff, 1978; Van Zandt, 2000), but apparently inconsistent
with the automatic–deliberative account of the eyewitness identification decision
process.

One potential account of the results, consistent with Dunning and Stern’s
(1994) theory, is that the instability of the optimum time boundary is the result of
variation in the proportion of automatic decisions. Specifically, Dunning and Per-
retta (2002) argued that their observation of a stable optimum time boundary was
potentially caused by the presence of a significant proportion of fast and accurate
automatic decisions. Based on this argument, the stability of the optimum time
boundary would be predicted to depend on the proportion of automatic decisions.
Thus, the observed variability in optimum time boundary could be the result of
a low overall proportion of automatic decisions or a change in the proportion of
automatic decisions as a result of the manipulation. An understanding of the factors
that influence the relative proportions of automatic and deliberative decisions is,
therefore, an important step towards understanding the variables that influence the
optimum time boundary. Consideration of the work of Treisman and colleagues
(Treisman & Gelade, 1980; Treisman & Gormican, 1988) in the area of visual search
suggests a mechanism by which the proportion of automatic and deliberative deci-
sions may be influenced. They argued that when the target in a visual search task can
be discriminated from the distractor stimuli by a single distinguishing feature, the
target will be identified rapidly, as the result of a pre-attentive, unconscious search
of the stimulus array. Therefore, it seems reasonable to suggest that when a witness
with a good memory of the offender is presented with a target-present simultaneous
lineup, their attention may be drawn unconsciously to the target. If the match be-
tween the target and the witness’s memory is close enough, as it is likely to be if the
witness has a good memory, the witness may then identify the target as the offender
without consideration of the remaining lineup members. This mechanism would
seem to produce the same kind of rapid, unconscious, and likely to be accurate
decisions that Dunning and Stern (1994) characterize as automatic. Importantly, for
this mechanism to operate, the target must be distinguishable from the foils by some
feature or featural configuration (features that are not necessarily describable by
the witness). Consequently, in situations where the target does not possess a unique
feature or featural configuration or where that feature is not present in the witness’s



Eyewitness Identification Accuracy and Response Latency 49

memory of the offender, rapid identification of the target without consideration of
the foils is unlikely. Such a mechanism could account for our findings. Specifically,
the variability in the time boundary and accuracy rate of choosers for the car thief
and overall data from Experiment 2 could be due to a reduction in the proportion
of automatic decisions with greater lineup sizes. In contrast, the consistent accuracy
and the variable time boundary observed for the shoplifter data could be attributed
to a consistently small proportion of automatic decisions across conditions, accom-
panied by slower deliberative decisions for longer retention intervals and greater
lineup sizes. As the car thief stimuli produced higher accuracy rates for choosers
than the shoplifter stimuli, this account appears plausible. Importantly, this mech-
anism also suggests a potential explanation for the discrepancy between the results
of Dunning and Perretta (2002) and those found here and by Weber et al. (2004).

Another plausible explanation of these findings is that the automatic–
deliberative processes account of the eyewitness identification decision process
(Dunning & Perretta, 2002; Dunning & Stern, 1994) is fundamentally flawed. Specif-
ically, the response latency of automatic decisions is not invariant across stimuli and
viewing conditions. As already discussed, this idea is consistent with the predictions
of basic recognition memory theories (Ratcliff, 1978; Van Zandt, 2000). These the-
ories predict that manipulations of the discriminability of old from new stimuli will
affect the response latency of both correct and incorrect decisions. Consistent with
the theories, the optimum time boundary was observed to vary with overall latency.
As this variation was observed in situations where the accuracy of identification
decisions was not affected (i.e., for the shoplifter data in both experiments), this
suggests that response latency, and the optimum time boundary, are more sensitive
indicators of discriminability than accuracy itself.

These experiments provide further support for Weber et al.’s (2004) conclu-
sion that the optimum time boundary is not invariant and that the 10–12 s rule is
not a valid method for the identification of accurate decisions and is, therefore, not
suitable for use in an applied setting. Furthermore, these findings highlight two is-
sues that are likely to be important in furthering our understanding of the eyewit-
ness identification process. One is the determinant of witnesses’ attention to specific
stimuli in the lineup and the impact of this attention on the decision process; the
other is the time course of the identification decision process.

In summary, our results provide further evidence for the robust relationship
between identification accuracy and response latency. However, they also demon-
strate that our understanding of this relationship is as yet insufficient to allow the
reliable diagnosis of identification accuracy in the applied context. Perhaps most
importantly, however, these findings (a) underscore the need for a comprehensive
theoretical approach to the investigation of the eyewitness identification decision
process, and (b) demonstrate that a sensible basis for such a theory is provided by
work from basic cognition research.
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