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Abstract
Post-tetanic potentiation of fast-twitch skeletal muscle is dependent on muscle length, with greater potentiation observed at 
shorter compared to longer lengths. The structural effects of the primary potentiation mechanism, phosphorylation of the 
regulatory light chain (RLC) of myosin, are thought to explain this relationship. The purpose of these experiments was to 
determine whether the length-dependence of potentiation would be attenuated in the absence of RLC phosphorylation. To 
this end, we compared isometric twitch potentiation of mouse extensor digitorum longus (EDL) muscles with (wildtype, 
WT) and without (skeletal myosin light chain kinase knockout,  skMLCK−/−) phosphorylation. Force was measured at five 
muscle lengths (0.90 Lo, 0.95 Lo, Lo, 1.05 Lo, 1.10 Lo, where Lo refers to optimal length) prior to and following a tetanic 
train. In accordance with prior findings, potentiation was dependent on muscle length, with greater values observed at short 
(e.g., 44.3 ± 4.6% for WT, 33.5 ± 6.2% for  skMLCK−/−, at 0.90 Lo) compared to long lengths (e.g., 16.9 ± 1.3% for WT, 
9.1 ± 1.8% for  skMLCK−/−, at 1.10 Lo) in both genotypes. WT muscles displayed greater potentiation compared to their 
 skMLCK−/− counterparts across lengths (e.g., 16.9 ± 1.6% vs 7.3 ± 1.5% at Lo). However, the relationship between potentia-
tion and muscle length was not different between genotypes. Thus, the alternative mechanisms of potentiation, present in 
the  skMLCK−/− EDL, display a length-dependence of post-tetanic potentiation similar to RLC phosphorylation-dominant 
potentiation. Additional mechanisms may be required to explain the length-dependence of potentiation.
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Introduction

Skeletal muscle contraction is facilitated by the translocation 
of actin thin filaments by myosin. This process is coupled to 
ATP hydrolysis and product release (Sweeney and Houdusse 
2010; Houdusse and Sweeney 2016). In mammals, myosin-
actin interactions are regulated at two levels: release of  Ca2+ 
from the sarcoplasmic reticulum (SR) during excitation–con-
traction coupling (ECC) results in  Ca2+ binding to troponin 
C (Gordon et al. 2000; Lehman 2016). Subsequent structural 
changes allow for the movement of tropomyosin on actin, 
revealing the myosin-binding sites and permitting interaction 
(Gordon et al. 2000; Lehman 2016). At the same time, the 
number of myosin heads extending from the thick filament 

backbone to bind to actin is regulated at the level of the thick 
filament; this occurs through thick filament mechanosensing 
(Linari et al. 2015; Fusi et al. 2016), and also likely through 
interfilament communication mechanisms (Woodhead & 
Craig 2015; Irving 2017), which remain largely unknown. 
In addition to these main regulatory pathways, modulatory 
mechanisms can also affect contraction.

A main modulatory mechanism is phosphorylation of 
the regulatory light chain (RLC) of myosin (Sweeney et al. 
1993; Vandenboom 2017). RLC phosphorylation is medi-
ated by skeletal Myosin Light Chain Kinase (skMLCK), 
which in turn is activated by a  Ca2+–calmodulin complex 
(Stull et al. 2011). This cascade is initiated during ECC, 
but occurs on a slower timescale than the contractile events 
(Stull et al. 2011). Due to the slow rates of skMLCK inac-
tivation and RLC dephosphorylation, phosphorylation can 
be cumulative over multiple  Ca2+ release events and thus 
act as a “molecular memory” mechanism (Stull et al. 2011). 
In permeabilized mammalian fibers, RLC phosphorylation 
results in increased  Ca2+ sensitivity of steady-state force 
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at submaximal but not maximal  [Ca2+] (Persechini et al. 
1985; Sweeney and Stull 1986, 1990; Metzger et al. 1989; 
Stephenson & Stephenson 1993; Szczesna et al. 2002), as 
well as rate of force redevelopment at intermediate  [Ca2+] 
(Metzger et al. 1989; Sweeney and Stull 1990) (c.f. Szczesna 
et al. 2002). In intact skeletal muscle, RLC phosphorylation 
is the main mechanism of post-tetanic potentiation (PTP) 
(Zhi et al. 2005) i.e., the increased twitch force observed 
following a tetanic stimulus (Close and Hoh 1968). Exten-
sor digitorum longus (EDL) muscles from skMLCK knock-
out mice  (skMLCK−/−), which do not exhibit stimulation-
induced increases in RLC phosphate content, display either 
completely ablated (Zhi et al. 2005) or attenuated (Gittings 
et al. 2011; Overgaard et al. 2022) isometric PTP. The dis-
crepancy between the initial observation of ablated PTP by 
Zhi et al. (2005) and the decreased PTP observed later in 
our lab (Gittings et al. 2011; Overgaard et al. 2022 and find-
ings here) is likely related to the different stimulation pro-
tocols utilized. Importantly, this remnant PTP observed in 
the  skMLCK−/− EDL (Zhi et al. 2005; Gittings et al. 2011, 
2017; Bowslaugh et al. 2016) and other RLC-phosphoryl-
ation void models, such as wildtype (WT) mouse lumbri-
cal muscles (Smith et al. 2013), indicates that additional 
mechanisms exist. Structurally, RLC phosphorylation dis-
rupts the folded-back conformation of myosin heads on the 
thick filament backbone, known as the “interacting heads 
motif” (reviewed in Alamo et al. 2017, 2018), thus radially 
displacing the heads towards the thin filament (Levine et al. 
1996; Yang et al. 1998; Yamaguchi et al. 2016). This has 
been demonstrated in isolated mammalian thick filaments 
(Levine et al. 1996; Yang et al. 1998) and permeabilized 
fibers (Yamaguchi et al. 2016), and is thought to result in 
enhanced probability of myosin-actin interactions, explain-
ing the observed effects in functional studies (Levine et al. 
1996; Yang et al. 1998).

Post-tetanic potentiation is inversely related to muscle or 
sarcomere length (Rassier et al. 1997, 1998; Rassier and 
MacIntosh 2000, 2002a; Rassier and Herzog 2002) (c.f. 
Moore and Persechini 1990). This relationship has been 
attributed to the aforementioned structural effects of RLC 
phosphorylation. Interfilament lattice spacing (i.e., the 
distance between thin and thick filaments) is decreased at 
longer sarcomere lengths (Millman 1998), and it has been 
proposed that this makes the displacement of the heads 
redundant (Yang et al. 1998; MacIntosh 2010). The phe-
nomenon of length-dependent activation (LDA) might also 
explain the length-dependence of potentiation; LDA refers to 
the increased  Ca2+ sensitivity observed at longer sarcomere 
lengths in striated muscle (Rassier et al. 1999; de Tombe 
et al. 2010). The mechanisms of LDA remain unclear, but 
likely include both the reduction in interfilament lattice spac-
ing and structural mechanisms downstream of titin mechano-
sensing (Rassier et al. 1999; de Tombe et al. 2010; Williams 

et al. 2010, 2013; Mateja et al. 2013; Ait-Mou et al. 2016; 
Li et al. 2016; Zhang et al. 2017); in skeletal muscle, the 
latter might be related to partial thick filament activation 
(Reconditi et al. 2014; Fusi et al. 2016), as well as effects of 
other sarcomeric components like Myosin-Binding Protein-
C (MyBP-C) (Reconditi et al. 2014). Thus, RLC-phospho-
rylation mediated increases in  Ca2+ sensitivity would be 
expected to be less impactful at longer sarcomere lengths.

The length-dependence of potentiation has not been 
previously investigated in the context of RLC-phospho-
rylation independent potentiation. To this end, we utilized 
 skMLCK−/− and WT mouse EDL muscles, and assessed 
PTP at a range of muscle lengths. As mentioned above, 
despite the absence of increased RLC phosphorylation fol-
lowing stimulation,  skMLCK−/− EDL muscles still display 
a smaller amount of potentiation. We hypothesized that 
potentiation length-dependence would be attenuated in 
 skMLCK−/− compared to wildtype muscles. In turn, this 
would become apparent as a significantly different pat-
tern of length-dependence of potentiation between the two 
genotypes.

Methods

All experimental procedures were approved by the Brock 
University Animal Care and Use Committee. Wildtype 
mice with a C57BL/6 background (male and female, aged 
10–24 weeks) were obtained from Charles River Laborato-
ries (St. Constant, QC), while age-matched  skMLCK−/− mice 
were obtained from our on-site colony (for information 
regarding the generation of the  skMLCK−/− mouse see 
Zhi et al. 2005). Body mass was similar between geno-
types (22.7 ± 1.1 g for WT, 23.9 ± 0.6 g for  skMLCK−/−, 
mean ± SEM) (p > 0.05). Prior to the initiation of an experi-
ment, mice were anaesthetized via inhalation of isoflurane 
gas and euthanized by means of cervical dislocation. Subse-
quently, both EDL muscles were excised and attached either 
vertically to a jacketed organ bath of the experimental appa-
ratus (Model 1200A, Aurora Scientific Inc., Aurora, ON), 
or to a resting bath, using surgical silk suture. In both cases, 
muscles were incubated in continuously gassed (95%  O2, 5% 
 CO2) Tyrode’s solution (in mM: 121 NaCl, 24  NaHCO3, 5 
KCl, 0.34  NaH2PO4, 0.23MgCl, 1.8 CaCl, 5.5 D-glucose, 
0.07 EDTA). Experiments were done at 25 °C, and stim-
ulation voltage was set at 1.25 the threshold required for 
maximal twitch force production (25–80 V depending on the 
muscle). Pulse duration was 0.1 ms for all the stimuli used 
during the experiments. Following suspension, each mus-
cle underwent an equilibration period (≥ 30 min), with one 
twitch elicited every 3 min. Data were collected (1000 Hz 
sampling frequency) and monitored using Aurora Scien-
tific’s 600A software (Aurora Scientific Inc., Aurora, ON). 
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Contractile forces (either twitch or tetanic, in mN), + df/dt 
and − df/dt (i.e., rates of force development and relaxation, 
respectively, in mN/ms) were determined directly from the 
600A analysis function. + Df/dt and − df/dt refer to peak 
values observed during a given twitch. Time to peak tension 
(TPT, in ms) and half-relaxation time (½ RT, in ms) were 
calculated from the raw data using custom Microsoft Excel 
(Microsoft Corp., 2018) spreadsheets.

Determination of optimal length (Lo)

Following equilibration, doublets (3 ms spacing) were uti-
lized to approximate optimal length for tetanic force (see 
Rassier and MacIntosh 2002b). An initial stimulus was given 
at 5 mN passive tension and subsequently at 0.5 mN inter-
vals above and below this value, with 20 s between suc-
cessive doublets. When maximal active force was detected 
(total force—passive force prior to initiation of stimulation), 
muscle length was measured using digital vernier calipers 
and defined as optimal length (Lo). In cases where force val-
ues were similar between lengths, the shorter length was 
selected. Baseline twitch force at Lo was then measured 
(mean of two twitches).

Experimental protocol

Post-tetanic potentiation (PTP) was assessed at five rela-
tive muscle lengths (0.90 Lo, 0.95 Lo, Lo, 1.05 Lo, 1.10 Lo). 
The experimental protocol included an initial 200-s isomet-
ric twitch pacing period (one twitch every 20 s). For each 
contractile property, the mean of the last 3 twitches of the 
pacing period was considered as the “Pre” (i.e., unpotenti-
ated) value. Thirty s after the pacing period, a conditioning 

stimulus was administered, consisting of 4 × 100 Hz, 400 ms 
isometric tetani within a 20-s window. Importantly, the CS 
was done at the same muscle length as the prior and follow-
ing twitches, and not always at Lo. Peak tetanic force  (Po) 
was defined as the highest active force value (total force—
passive force prior to initiation of stimulation) recorded dur-
ing the CS, at each length. Finally, at 10 and 30 s follow-
ing the 20-s CS window, twitches were elicited to assess 
potentiation. Values from these twitches were considered 
as the “Post 10” and “Post 30” values respectively, for all 
contractile properties. To assess changes following the CS, 
post values were divided by pre values and expressed as % 
change (i.e., Post/Pre × 100%). Each muscle underwent this 
protocol at every experimental length in a randomized order, 
with 20 min of rest between lengths to allow for the effects 
of potentiation and fatigue to dissipate (see Fig. 1 for a visual 
summary of the main experimental protocol). After the end 
of this process, muscles were taken to Lo and went through 
a 30-min rest period, with one twitch elicited every 3 min. 
Subsequently, twitch force was assessed again (mean of two 
twitches) and compared to baseline values. Muscles were 
excluded from analysis if active force had declined by > 5%.

Statistical analysis

Body mass was compared between genotypes using an 
independent samples t-test. A two-way mixed ANOVA 
was utilized for  Po, with muscle length and genotype as 
the factors. For twitch force  (Pt) and all other contractile 
properties as well as their potentiation values, three-way 
mixed ANOVAs were used with muscle length, genotype 
and time as the factors. Data were assessed for existence 
of outliers through boxplot inspection. Outliers detected 

Fig. 1  Overview of the main experimental protocol. Initially, there 
was a 200 s isometric twitch pacing period (1/20 s) (i.e., Pre). Thirty 
seconds following the end of pacing, a conditioning stimulus (CS) 
was elicited, comprising 4 × 100 Hz, 400 ms isometric tetani within 
a 20 s window. Isometric twitches were elicited 10 (Post 10) and 30 
(Post 30) s after the CS 20-s window to assess potentiation. Each 
muscle underwent this protocol at five relative muscle lengths (0.90 

Lo, 0.95 Lo, Lo, 1.05 Lo, 1.10 Lo) in a randomized order, with 20 m of 
rest between successive lengths. Please note that the CS and resting 
period took place at the same relative muscle length as the Pre and 
Post twitches in each case, and not always at Lo. Pre values for each 
measured variable were defined as the mean of the last three twitches 
of the pacing period, in each case
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were included in the final analyses, as no differences 
were apparent regarding the significance of interactions 
and main effects when tests were repeated without them. 
Normality was evaluated using Shapiro–Wilk’s test in all 
cases. Homogeneity of variance for the between-subjects 
factor was assessed using Levene’s test. Both for normal-
ity and homogeneity of variance, violations were noted 
in some cells of the design for all measured dependent 
variables. These were always in a minority of the cells, 
and the decision was made to carry on with the analyses. 
The tables of the assumption tests are provided in Online 
Resource 1, so the interested reader can assess our deci-
sions. Mauchly’s test of sphericity was used where appro-
priate and a Greenhouse–Geisser correction was applied 
in cases where the assumption was violated. Post-hoc 
pairwise comparisons with Bonferroni corrections, or 
polynomial contrasts for trend analysis were utilized to 
further evaluate significant simple main effects or main 
effects. For each significant trend (linear, quadratic, cubic 
or higher order), its sum of squares was divided by the 
sum of squares of the total observed trend in each case, to 
assess the percentage of variance it could explain. Mul-
tiple simple main effect testing within a given interac-
tion was also controlled for with Bonferroni corrections. 
Significance level was α = 0.05 and data are reported as 
mean ± SEM (standard error of the mean). All analyses 
were done in IBM SPSS Statistics for Windows, versions 
27 and 28 (IBM Corp., Armonk, NY, USA).

Results

Po and unpotentiated (i.e., Pre)  Pt were not significantly dif-
ferent between WT and  skMLCK−/− muscles at any mus-
cle length (both p > 0.05) (e.g., Pre  Pt at Lo was 51.3 ± 3.4 
mN for WT and 48.9 ± 3.7 mN for  skMLCK−/−). In con-
trast, while both genotypes exhibited PTP, WT Post 10 
and Post 30  Pt were significantly greater compared to 
 skMLCK−/− values at every muscle length (both p < 0.001) 
(e.g., 16.9 ± 1.6% potentiation for WT compared to 
7.3 ± 1.5% for  skMLCK−/− muscles at Lo, at Post 10). In 
both genotypes, Post 10  Pt values were greater than Post 
30  Pt values, again at every muscle length (all p < 0.001) 
(e.g., at Lo, Post 10 potentiation was 16.9 ± 1.6% for WT and 
7.3 ± 1.5% for  skMLCK−/−, while Post 30 potentiation was 
13.9 ± 1.4% for WT and 2.77 ± 1.2% for  skMLCK−/−). All 
the above data are summarized in Table 1.

Length‑dependence of potentiation

PTP was dependent on muscle length in the WT muscles 
(p < 0.001 at both Post 10 and Post 30). For example, PTP 
was 44.3 ± 4.6% at 0.9 Lo compared to 16.9 ± 1.3% at 1.10 Lo, 
at Post 10. This was also observed in the  skMLCK−/− mus-
cles (p < 0.001 at both Post 10 and Post 30); PTP was 
33.5 ± 6.2% at 0.9 Lo compared to 9.1 ± 1.8% at 1.10 Lo, 
at Post 10 (see Table 1 and Fig. 2) Contrary to our initial 
hypothesis, the pattern of potentiation length-dependence 
was not significantly different between genotypes, (p > 0.05 
for the muscle length x genotype x time and muscle length x 

Table 1  Summary force data for WT (top, n = 11) and  skMLCK−/− (bottom, n = 12) mouse EDL muscles

Absolute values for twitch force  (Pt, in mN) are presented for all relative muscle lengths (L/Lo), at Pre, Post 10 and Post 30. Absolute tetanic 
force values  (Po, in mN) at all relative muscle lengths are also displayed. Values are mean ± SEM. *Significantly different than  skMLCK−/− at 
the same time point and muscle length (p < 0.05).✝Significantly different than corresponding value at Post 30 within genotype (p < 0.05)

Condition Wildtype

Muscle length

0.90 0.95 1.00 1.05 1.10

Pre 36.7 ± 3.3 47.6 ± 3.6 51.3 ± 3.4 49.3 ± 3.5 45.0 ± 3.3
Post 10 52.0 ± 3.7*✝ 56.8 ± 3.9*✝ 59.8 ± 3.8*✝ 58.0 ± 3.9*✝ 52.5 ± 3.8*✝

Post 30 49.5 ± 3.6* 55.0 ± 3.8* 58.3 ± 3.7* 56.8 ± 3.8* 51.7 ± 3.7*
Po 180.3 ± 12.1 198.7 ± 12.7 211.7 ± 13.1 199.2 ± 12.9 179.2 ± 12.9

Condition skMLCK−/−

Muscle length

0.90 0.95 1.00 1.05 1.10

Pre 32.9 ± 3.1 45.2 ± 3.3 48.9 ± 3.7 47.4 ± 3.9 41.1 ± 4.1
Post 10 42.1 ± 3.2✝ 49.9 ± 3.1✝ 52 ± 3.5✝ 51.5 ± 3.7✝ 44.3 ± 4.0✝

Post 30 38.9 ± 3.1 47.4 ± 3.1 49.9 ± 3.4 49.3 ± 3.7 42.8 ± 3.9
Po 180.3 ± 17.8 210.8 ± 18.5 224.1 ± 20.4 217.2 ± 20.3 187.1 ± 18.8
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genotype interactions) (see Fig. 3). Additionally, trend analy-
sis indicated that this pattern was similar between Post 10 
and Post 30, and not distinctly linear; for example, at Post 
10, there were significant linear, quadratic and cubic trends 
(all p < 0.001), which could explain 55.6%, 34.4% and 9.8% 
of the observed variance in potentiation with muscle length, 
respectively. These data are presented in Table 2.

Force development and relaxation kinetics

Unpotentiated (i.e., Pre) + dF/dt was not significantly differ-
ent between genotypes at any length (p > 0.05) (e.g., 6.3 ± 0.4 

mN/ms for WT and 6.3 ± 0.3 mN/ms for  skMLCK−/− at Lo). 
Post 10 and Post 30 values were significantly increased com-
pared to Pre values for both genotypes at every length (all 
p < 0.001), but were significantly greater for WT muscles 
at both timepoints and at all lengths (p = 0.014 for Post 10 
and p = 0.007 for Post 30) (e.g., 17.5 ± 1.7% potentiation 
for WT and 10.6 ± 1.6% potentiation for  skMLCK−/− at 
Lo, at Post 10) (Fig. 4). -DF/dt, while also similar between 
genotypes at Pre across lengths (p > 0.05) (e.g., -2.8 ± 0.2 
mN/ms for WT and -2.6 ± 0.3 mN/ms for  skMLCK−/− at 
Lo), was increased to the same extent (p > 0.05) in both 
WT and  skMLCK−/− muscles at both Post 10 and Post 30, 

Fig. 2  Representative twitch 
traces from WT (left) and 
 skMLCK−/− (right) mouse EDL 
muscles, at 0.90 Lo (top), Lo 
(middle) and 1.10 Lo (bottom). 
Post 10 twitches (solid lines) are 
superimposed on Pre twitches 
(dotted lines) to demonstrate 
potentiation. Force is normal-
ized to Pre maximum values 
in each case. Potentiation was 
greater in WT muscles at every 
muscle length. In both geno-
types, potentiation was greater 
at 0.90 Lo compared to the other 
two lengths shown
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again at all lengths (all p < 0.001) (e.g., 28.9 ± 4.3% poten-
tiation for WT and 40.7 ± 5.7% for  skMLCK−/− at Lo, at 
Post 10) (Fig. 5). ½ RT was not different at Pre between 
WT and  skMLCK−/− muscles at any length (p > 0.05) (e.g., 
13.7 ± 0.5 ms for WT and 14 ± 0.4 ms for  skMLCK−/− at 
Lo). Following the CS, it was decreased at both Post 10 and 
Post 30, with no significant differences between genotypes 
(both p > 0.05), again at every length (all p < 0.001) (e.g., 
11 ± 0.3 ms for WT and 9.7 ± 0.4 ms for  skMLCK−/− at 
Lo, at Post 10) (Fig. 6). Pre TPT was significantly greater 
at every length in WT muscles (main effect of genotype, 

p < 0.05) (e.g., 17.1 ± 0.3 ms for WT and 16.6 ± 0.3 ms for 
 skMLCK−/− at Lo). At Post 10 and Post 30, it was decreased 
in both genotypes (all p < 0.001) and values remained 
significantly higher for WT muscles at all lengths (e.g., 
16.1 ± 0.2 ms for WT and 15 ± 0.3 ms for  skMLCK−/− at Lo, 
at Post 10) (Fig. 7).

The length-dependence of force kinetics properties was 
assessed through trend analysis. + Df/dt displayed a curvilin-
ear relationship with muscle length, with values decreasing 
above and below Lo at all timepoints (quadratic trend could 
explain 94.3%, 97.5% and 99.7% of the total variance at Pre, 
Post 10 and Post 30, respectively; all p < 0.001) (Table 3); 
− dF/dt was maximal at 0.95 Lo and decreased above and 
below it, both before and after the CS. The − dF/dt—mus-
cle length relationship was dominated by linear trends at 
all timepoints (linear trend could explain 74.8%, 92.2% 
and 90.2% of the total variance at Pre, Post 10 and Post 
30, respectively; all p < 0.001) (Table 4). ½ RT and TPT 
increased with increasing muscle length, and this relation-
ship was similar at all time points. For ½ RT, linear trends 
could explain 74.8%, 97.3% and 97% of the total variance 
at Pre, Post 10 and Post 30, respectively (all p < 0.001) 
(Table 5), while for TPT, there was no significant time x 
muscle length interaction (p > 0.05) and at all timepoints 
the linear trend could explain 99.4% of the total variance 
(p < 0.001) (Table 6).

Discussion

The main finding of this study was that the length-depend-
ence of post-tetanic potentiation was not significantly dif-
ferent between WT and  skMLCK−/− mouse EDL muscles. 
Previous findings in rat gastrocnemius in situ (Rassier et al. 
1997; 1998; Rassier and MacIntosh 2000) and mouse EDL 
fiber bundles in vitro (Rassier and Herzog 2002; Rassier 
and MacIntosh 2002a) have consistently demonstrated 
that both PTP and staircase potentiation are dependent on 
muscle or sarcomere length, with potentiation diminishing 
as length is increased (c.f. Moore and Persechini 1990). 
However, all previous works have utilized wildtype mod-
els, and the length-dependence of RLC-phosphorylation 
independent potentiation had not been explored. Here, 
using  skMLCK−/− EDL muscles we demonstrated that even 
though the absence of RLC phosphorylation results in lower 
potentiation magnitudes across the examined range of mus-
cle lengths, it does not appear to alter its length-dependence, 
at least under the experimental conditions utilized. This 
finding extends prior knowledge on the alternative mecha-
nisms of PTP, and provides additional information regarding 
potentiation length-dependence in general. Although we did 
not directly assess RLC phosphorylation here, between-gen-
otype differences at rest and following conditioning stimuli 

Fig. 3  Relative force (i.e., potentiation)—relative muscle length rela-
tionship for WT (top, n = 11) and  skMLCK−/− (bottom, n = 12) mouse 
EDL muscles. WT values were significantly greater than  skMLCK−/− 
values at both timepoints and at every muscle length. For both geno-
types, Post 10 values (triangles) > Post 30 values (squares) at every 
muscle length. The length-dependence of potentiation was not differ-
ent between genotypes (time × muscle length × genotype and mus-
cle length × genotype interactions were not statistically significant). 
Additionally, potentiation length-dependence was similar between 
Post 10 and Post 30, as indicated by trend analysis (see Table  2). 
Error bars represent SEM. *Significantly different than  skMLCK−/− 
at the same time point and muscle length, p < 0.05, †Significantly dif-
ferent than corresponding Post 10 value within genotype, p < 0.001
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similar to the one used in the current study have been docu-
mented repeatedly by our lab (Gittings et al. 2011, 2016, 
2018; Bowslaugh et al. 2016; Bunda et al. 2018; Fillion 
et al. 2019; Morris et al. 2018).  SkMLCK−/− EDL muscles 

Table 2  Trend analysis table for relative force (i.e., potentiation)

The ANOVA F-values are presented for the time x muscle length interaction as well as the simple main effect of muscle length at each time 
point. Trend components of the polynomial contrast analysis (linear, quadratic, cubic, 4th order) are displayed as percentage of variance they can 
explain. Values are presented for Post 10 and Post 30. *p < 0.001, NS = non-significant

Relative force (post/pre)

Time × muscle length − F: 22.646* Post 10 − F: 47.503* Post 30 − F: 44.893*

% variance accounted Post 10 Post 30

Linear 55.62%* 50.18%*
Quadratic 34.40%* 39.61%*
Cubic 9.85%* 10%*
4th order NS NS

Fig. 4  +dF/dt–relative muscle length relationship for WT (top, 
n = 11) and  skMLCK−/− (bottom, n = 12) mouse EDL muscles. 
Unpotentiated values were not significantly different between geno-
types (p > 0.05). Post 10 (p = 0.014) and Post 30 (p = 0.007) values 
were significantly greater in WT compared to  skMLCK−/− muscles, 
at every muscle length. In addition, within each genotype, Post 10 
values (triangles) > Post 30 values (circles) > Pre values (squares) at 
every muscle length (all p < 0.001). Error bars represent SEM. *Sig-
nificantly different than  skMLCK−/− at the same time point and mus-
cle length, p < 0.05, †Significantly different than corresponding Post 
10 value within genotype, p < 0.001

Fig. 5  −  dF/dt—relative muscle length relationship for WT (top, 
n = 11) and  skMLCK−/− (bottom, n = 12) mouse EDL muscles. There 
were no significant differences between genotypes at any time point 
and muscle length (p > 0.05). At every muscle length, Post 10 val-
ues (triangles) < Post 30 values (circles) < Pre values (squares) (all 
p < 0.001). Error bars represent SEM. *Significantly different than 
corresponding Pre value within genotype, p < .001, †Significantly dif-
ferent than corresponding Post 10 value within genotype, p < 0.001
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consistently display reduced resting RLC phosphate content 
compared to WT muscles (e.g., Gittings et al. 2011; Bunda 
et al. 2018), and an absence of post-stimulation increases. 
In contrast, WT muscles typically display 2–4fold increases 
post-CS compared to baseline (e.g., Gittings et al. 2011, 
2016). A difference between these data and our current 
experiments is that here we included conditioning stimuli at 
varying muscle lengths instead of Lo. However, past findings 
in rat gastrocnemius indicate that RLC phosphorylation is 
not significantly different across lengths (0.90 Lo, Lo, 1.10 
Lo), at least following a staircase protocol (Rassier et al. 
1997) (c.f. Moore and Persechini 1990).

The similar length-dependence of potentiation in the 
presence and absence of RLC phosphorylation is not readily 
explainable. Two main alternative potentiation mechanisms 
have been proposed; increased resting  Ca2+ following stimu-
lation (Smith et al. 2013, 2014), and S-glutathionylation of 

troponin-I, which increases calcium sensitivity of steady-
state force in permeabilized fast, but not slow rat fibers 
(Mollica et al. 2012; Dutka et al. 2017). These mechanisms 
may interact with LDA in a currently unknown manner, and 
thus, regardless of the underlying mechanism, potentiation 
length dependence might simply be due to a ceiling effect 
of  Ca2+ sensitivity at longer sarcomere lengths, as has been 
proposed before for RLC-phosphorylation dominant poten-
tiation (Rassier et al. 1998; Rassier and MacIntosh 2000, 
2002a; Rassier and Herzog 2002). However, if this were the 
case, a different length-potentiation relationship would be 
expected for the  skMLCK−/− muscles since the magnitude 
of RLC-phosphorylation independent potentiation is smaller. 
Potentiation mechanisms might interact with both thin- and 
thick-filament related mechanisms of enhanced activation 
at longer sarcomere lengths (de Tombe et al. 2010; Mateja 
et al. 2013; Reconditi et al. 2014; Ait-Mou et al. 2016; Li 

Fig. 6  Half-relaxation time (½ RT)–relative muscle length relation-
ship for WT (top, n = 11) and  skMLCK−/− (bottom, n = 12) mouse 
EDL muscles. There were no significant differences between geno-
types at any time point or muscle length. Post 10 values (triangles) 
and Post 30 values (circles) were significantly different than Pre val-
ues (squares) at every muscle length (all p < 0.001), but they were not 
significantly different from each other (all p > 0.05). Error bars repre-
sent SEM. *Significantly different than Pre value at the same muscle 
length, p < 0.001

Fig. 7  Time to peak tension (TPT)–relative muscle length relation-
ship for WT (top, n = 11) and  skMLCK−/− (bottom, n = 12) mouse 
EDL muscles. WT values were significantly greater than  skMLCK−/− 
values at all time points and muscle lengths (main effect of geno-
type: p < 0.05). Within each genotype, Post 10 values (triangles) and 
Post 30 values (circles) were significantly greater than Pre values 
(squares) at every muscle length (all p < .001) but they were not sig-
nificantly different from each other (all p > 0.05). Error bars represent 
SEM. *significantly different than Pre within genotype, p < 0.001
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et al. 2016; Zhang et al. 2017), as well as with the effects of 
spatial changes of the myofilament lattice on unitary actin-
myosin interactions (Williams et al. 2010, 2013). As an 
example, thick filaments become partially activated at long 
sarcomere lengths in skeletal muscle (Reconditi et al. 2014; 
Fusi et al. 2016), and interactions of MyBP-C with the thin 
filaments might be lost (Reconditi et al. 2014). Both these 
factors could interact with RLC phosphorylation and/or 
other potentiation mechanisms and result in less potentiation 
at longer sarcomere lengths. Nevertheless, details regarding 
the molecular underpinnings of the alternative potentiation 

mechanisms and LDA are lacking, and any proposed model 
can currently only be speculative. On the other hand, the 
fact that potentiation is enhanced at short sarcomere lengths 
may be related both to increased interfilament lattice spacing 
(Millman 1998), as has been proposed before (Levine et al. 
1996; Yang et al. 1998), and to the inhibited  Ca2+ release at 
short sarcomere lengths that has been observed in mamma-
lian skeletal muscle (Rassier and Minozzo 2016). However, 
the latter has only been seen with high-frequency stimula-
tion, and it is unclear whether this effect could somehow 
influence PTP. As with long sarcomere lengths, changes in 

Table 3  Trend analysis table for + dF/dt

The ANOVA F-values are presented for the time x muscle length interaction as well as the simple main effect of muscle length at each time 
point. Trend components of the polynomial contrast analysis (linear, quadratic, cubic, 4th order) are displayed as percentage of variance they can 
explain. Values are presented for Pre, Post 10 and Post 30. *p < 0.001, NS = non-significant

+ dF/dt

Time × muscle length − F: 29.359* Pre − F: 47.694* Post 10 − F: 23.817* Post 30 − F: 24.138*

% variance accounted Pre Post 10 Post 30

Linear NS NS NS
Quadratic 94.31%* 97.57%* 99.76%*
Cubic 2.5%* NS NS
4th order NS NS NS

Table 4  Trend analysis table for − dF/dt

The ANOVA F-values are presented for the time × muscle length interaction as well as the simple main effect of muscle length at each time 
point. Trend components of the polynomial contrast analysis (linear, quadratic, cubic, 4th order) are displayed as percentage of variance they can 
explain. Values are presented for Pre, Post 10 and Post 30. *p < 0.001, NS = non-significant

− dF/dt

Time × muscle length − F: 24.869* Pre − F: 71.892* Post 10 − F: 143.961* Post 30 − F: 126.776*

% variance accounted Pre Post 10 Post 30

Linear 74.85%* 92.28%* 90.22%*
Quadratic 19.04%* 6.5%* 8.42%*
Cubic 5.78%* 1.16%* 1.28%
4th order NS NS NS

Table 5  Trend analysis table for ½ RT

The ANOVA F-values are presented for the time x muscle length interaction as well as the simple main effect of muscle length at each time 
point. Trend components of the polynomial contrast analysis (linear, quadratic, cubic, 4th order) are displayed as percentage of variance they can 
explain. Values are presented for Pre, Post 10 and Post 30. *p < 0.001, **p < 0.05, NS = non-significant

½ RT

Time × muscle length − F: 32.821* Pre − F: 267.395* Post 10 − F: 576.818* Post 30 − F: 317.889*

% variance accounted Pre Post 10 Post 30

Linear 74.85%* 97.35%* 97%*
Quadratic 19.04%* 2.39% 2.97%
Cubic NS NS NS
4th order 0.15%** NS NS
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lattice spacing at short sarcomere lengths and consequent 
effects on unitary myosin-actin interactions (Williams et al. 
2010, 2013) could also be a factor in the length-dependence 
of potentiation.

Our findings for force kinetics are in agreement with prior 
literature, both regarding the influence of muscle length 
(Wallinga-de Jonge et al. 1980; Rassier et al. 1997; Rassier 
and MacIntosh 2002b) and in relation to genotype differ-
ences prior to and following the CS (Vandenboom 2017). 
The greater post-tetanic increase in + dF/dt in WT compared 
to  skMLCK−/− muscles has been previously observed in 
our lab for concentric twitches (Gittings et al. 2016) and 
may be a direct effect of RLC phosphorylation, parallel to 
increased force (Vandenboom 2017). The current findings 
complement earlier observations of correlations between 
post-tetanic increases in isometric + dF/dt and RLC phos-
phate content in WT mouse EDL (Vandenboom et al. 1995, 
1997), and of RLC phosphorylation-mediated increases 
in rate of force redevelopment (i.e., ktr) in permeabilized 
mammalian fibers (Metzger et al. 1989; Sweeney and Stull 
1990). The enhanced + dF/dt was accompanied by a slight, 
but significant decrease in TPT in both genotypes. Notably, 
TPT values were significantly greater in WT muscles both 
prior to, and following the CS. The reason for this differ-
ence is unknown, but it has been previously observed in our 
lab (Bunda et al. 2018). In regard to − dF/dt, it is known 
that the post-tetanic increase of twitch relaxation rate does 
not appear to be related to RLC phosphorylation, as this 
effect has been observed in mouse lumbrical muscles, which 
display potentiation without phosphorylation (Smith et al. 
2013, 2014). Here, this observation has been recapitulated, 
as − dF/dt was increased to the same extent in both gen-
otypes following the CS. Similarly, ½ RT was decreased 
post-CS with no significant differences between genotypes, 
in accordance with past findings (Gittings et al. 2011). The 

decreased relaxation time is likely related to the increased 
− dF/dt in both genotypes, the mechanisms of which remain 
unknown (Vandenboom 2017).

Limitations

It is known that active force calculation using the traditional 
method (total force—passive force prior to stimulation ini-
tiation, used here) might be problematic in fixed-end con-
tractions, due to internal sarcomere shortening (MacIntosh 
and MacNaughton 2005; see MacIntosh 2017 for a review). 
Specifically, in whole muscle preparations sarcomeres are 
able to pull on in-series elastic components of the experi-
mental apparatus and tendon, and thus passive tension at 
the peak of force production would be lower than prior to 
its initiation (MacIntosh 2017). Sarcomere or fascicle length 
measurements can be used to control for this change (Mac-
Intosh and MacNaughton 2005; de Tombe and ter Keurs 
2016), but unfortunately were not available here. This dif-
ference in active force calculation can result in effects that 
are pronounced at long muscle lengths, where passive ten-
sion is high: underestimation of active force, overestimation 
of potentiation due to force relaxation over time (i.e., pas-
sive tension would become progressively lower giving the 
impression of greater force increase than actually occurred) 
and potential influence of shortening-induced force depres-
sion (MacIntosh 2017). While this makes mechanistic inter-
pretation of our findings more difficult, it is not yet clear 
exactly what the implications of internal shortening are at 
the molecular level (e.g., MacDougall et al. 2020). Regard-
less, our findings can be compared to existing potentiation 
length-dependence literature, as previous works also utilized 
the traditional method to calculate active force.

Conclusion

The pattern of potentiation length-dependence does not 
differ significantly in the presence and absence of RLC 
phosphorylation, with potentiation being greater at short 
compared to long muscle lengths. While the current find-
ings are not sufficient for a mechanistic interpretation of this 
similarity, they provide additional information regarding 
the alternative mechanisms of potentiation. Further work 
is necessary to understand how potentiation without RLC 
phosphorylation is facilitated at the molecular level, and how 
these mechanisms interact with sarcomere length, as well as 
with RLC phosphorylation when it is present.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10974- 022- 09620-6.

Table 6   Trend analysis table 
for TPT

The ANOVA F-value is pre-
sented for the main effect of 
muscle length. Trend compo-
nents of the polynomial con-
trast analysis (linear, quadratic, 
cubic, 4th order) are displayed 
as percentage of variance 
they can explain. *p < 0.001, 
**p < 0.05, NS non-significant

TPT

Main effect: muscle length F: 
242.568*

% variance accounted
Linear: 99.46%*
Quadratic: NS
Cubic: 0.37%**
4th order: NS
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