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Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle wasting disease. The disease is due to mutations in the 
DMD gene that encodes for a large intracellular protein called dystrophin. Dystrophin plays a critical role in linking the 
internal cytoskeleton of the striated muscle cell with the extracellular matrix as well as having cell signalling functions. In 
its absence muscle contraction is associated with cycles of damage, repair, inflammation and fibrosis with eventual loss of 
muscle and replacement with fat. Experiments in animal models of DMD have generated a number of different approaches 
to the induction of dystrophin including viral vector mediated delivery of a recombinant dystrophin gene, antisense oligo-
nucleotide mediated exon-skipping to restore the open reading frame in the dystrophin mRNA, read-through of premature 
stop mutations, genome modification using CRISPR-Cas9 or cell based transfer of a functional dystrophin gene. In all 
cases, it will be important to understand how much dystrophin expression is required for a clinically effective therapy and 
this review examines the data from humans and animal models to estimate the percentage of endogenous dystrophin that is 
likely to have significant clinical benefit. While there are a number of important caveats to consider, including the appropri-
ate outcome measures, this review suggests that approximately 20% of endogenous levels uniformly distributed within the 
skeletal muscles and the heart may be sufficient to largely prevent disease progression.
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Introduction to Duchenne muscular 
dystrophy (DMD)

Duchenne muscular dystrophy (DMD) is a fatal X-linked 
muscle wasting disorder characterised by repeated rounds 
of muscle degeneration, inflammation and repair. Over time, 
the inflammation leads to fibrosis, which in turn, possibly 
associated with satellite cell senescence, leads to a failure 
of regeneration and replacement of muscle with fat. Clinical 
signs include delayed motor milestones and using the arms 
to get up from the floor and to straighten the back (Gower’s 
manoeuvre). The gait becomes progressively stiffer and most 
boys become wheelchair dependent between 8 and 12 years 
old. With good medical management, the average longevity 
is into the late 20s although some patients live into their 40s. 

The most common causes of death are respiratory compli-
cations and cardiomyopathy, as also the heart is affected. 
DMD occurs in 1 in 5000 male births (Mendell et al. 2012; 
Mah et al. 2014; Gatheridge et al. 2016) and is due to muta-
tions in the DMD gene at position Xp21. A few unlucky 
girls with substantially skewed X-inactivation have clinical 
symptoms with the degree of skewedness correlating with 
disease severity (Pegoraro et al. 1995; Azofeifa et al. 1995). 
The DMD gene, isolated in 1986 (Koenig et al. 1987), is the 
largest known mammalian gene at 2.4 million base pairs 
long and encodes a 427 kDa protein called dystrophin (Hoff-
man et al. 1987). Mutations associated with DMD come in 
all forms, deletions, duplications, nonsense and missense 
mutations but in almost all cases they lead to loss of the 
open reading frame and a premature stop codon. The gene 
has a high rate of spontaneous mutation and this accounts for 
over a third of cases. Consequently, there is a pressing unmet 
clinical need for novel therapies for this disease.

There is an allelic condition, called Becker muscular dys-
trophy (BMD), where the mutation in the DMD gene does 
not disrupt the open reading frame. BMD patients produce 
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an internally truncated dystrophin with intact amino and 
carboxyl termini. In general, BMD is a milder disease than 
DMD and in some cases BMD patients are asymptomatic 
(e.g. Melis et al. 1998; Ferreiro et al. 2009; Zimowski et al. 
2017).

Dystrophin has an amino terminal portion, which contains 
an actin-binding domain, 24 spectrin like repeat domains, 
four hinge regions, a cysteine rich domain and a carboxyl 
terminal portion. Dystrophin forms part of a link between 
the internal cytoskeleton of the striated muscle and the extra-
cellular matrix. The amino domain binds to filamentous 
actin, whereas the cysteine rich domain binds to beta-dys-
troglycan, a membrane association protein that is bound to 
the highly glycosylated alpha dystroglycan that in turn binds 
to proteins in the extracellular matrix including the laminin 
alpha two chain of laminin 211. The carboxyl terminus of 
dystrophin interacts with a number of intracellular molecules 
including dystrobrevin and syntrophins that interact with cell 
signalling molecules such as neuronal nitric oxide synthase 
(nNOS). Dystrophin is essential for maintaining the integrity 
of striated muscle. When dystrophin is missing, the muscle 
is damaged during contractile activity.

A wide range of potential therapies have been consid-
ered for DMD. They fall broadly into three categories. First 
is the induction of dystrophin in the striated muscles. The 
second is upregulation of other genes to replace dystrophin, 
focussed primarily on the autosomal homologue utrophin. 
The third strategy is to deal with the downstream conse-
quences of the dystrophin deficiency: unstable membranes, 
accumulation of intracellular calcium, poor vascular perfu-
sion, oxidative stress, nitrosylation of proteins, inflamma-
tion and fibrosis. This review focusses on the induction of 
dystrophin in striated muscle.

Animal models of DMD

A wide range of animal models have been discovered or 
generated for DMD. The best known is the dystrophic mdx 
mouse (Bulfield et al. 1984) that has a premature stop muta-
tion in exon 23 of the murine DMD gene (Sicinski et al. 
1989). Consequently, the mdx fails to produce dystrophin 
except in a small subset of fibres where idiosyncratic splic-
ing leads to restoration of the open reading frame (rever-
tant fibres). The mdx mouse has been the most widely used 
model of DMD with more than 2800 papers published 
and it is on the C57Bl10ScSn background. However, it is 
getting increasingly hard to access congenic control mice 
and so many investigators have used C57Bl6 controls. The 
mdx mouse is a good biochemical model of DMD but does 
not exhibit clear clinical signs of disease. Lifespan is only 
moderately reduced, the limb muscles show a hypertrophic 
response to muscle damage and only the diaphragm shows 

substantial fibrosis although other muscles show increased 
fibrosis in old age (e.g. Chamberlain et al. 2007).

The original mdx has been backcrossed onto a variety 
of genetic backgrounds including BALB/cJ, C57BL/6 J 
and FVB/Nj genetic backgrounds and these appear very 
similar to the original mdx mouse (McGreevy et al. 2015; 
Wasala et al. 2015). A backcross onto the DBA/2 J appears 
to worsen the phenotype of the dystrophic mouse such as 
lower hind limb muscle weight, fewer myofibres, increased 
fibrosis and fat accumulation, and marked muscle weakness 
that may be the consequence of reduced regeneration follow-
ing muscle damage (Fukada et al. 2010; Coley et al. 2016; 
Rodrigues et al. 2016; van Putten et al. 2019). Initial studies 
suggested that this cross also caused earlier cardiomyopathy 
but this pathology was observed also in the DBA/2 J wild-
type controls (Hakim et al. 2017).

A series of variants with mutations in different parts of 
the murine DMD gene were developed using  N-ethylni-
trosourea treatment of male mice and were termed mdx2cv, 
mdx3cv, and mdx4cv. (Chapman et al. 1989). Subsequently, the 
mdx5cv was also identified (Danko et al. 1992). These mice 
have all been backcrossed onto the C57Bl6 background. 
The mdx4cv and mdx5cv dystrophic mice have approximately 
10-fold fewer revertants than the mdx mouse whereas the 
mdx3cv has a low level of full-length dystrophin expression 
(Danko et al. 1992). Another mouse mutant, lacking many 
of the smaller isoforms of dystrophin, has been generated by 
gene targeting, the mdx52 mouse (Araki et al. 1997).

In dystrophic mice utrophin, an autosomal homologue of 
dystrophin that preceeds dystrophin during skeletal muscle 
development (Helliwell et al. 1992), is upregulated in mature 
myofibres. Therefore, mdx mice were crossed with utrophin 
knockout mice to produce a mouse commonly referred to as 
the double knockout mouse, which has a more severe pheno-
type than the mdx mouse (Deconinck et al. 1997; Grady et al. 
1997). While this mouse is arguably a better phenocopy of 
DMD, patients do not lack both dystrophin and utrophin. 
The mdx or mdxcv variants have also been crossed with a 
variety of other genetically manipulated mice to exacerbate 
the pathology. Because these mice show continued good 
regeneration, the mdx4cv has been crossed with a knockout 
for telomerase to produce the mdx4cv/mTR−/− mouse. This 
is a complex model as the loss of telomerase results in rapid 
ageing that increases with each generation. Second genera-
tion mdx4cv/mTR−/− mice show a skeletal muscle phenotype 
closer to DMD with a defect in muscle regenerative response 
(Sacco et al. 2010). Sialic acids are a class of cell-surface 
glycans that are involved in extracellular signalling. Mam-
mals have two forms of sialic acids, Nacetylneuraminic acid 
(Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). How-
ever, humans completely lack Neu5Gc. Thus, to “humanise” 
the mdx mouse, they were crossed with a mouse knockout 
for the enzyme that catalyzes the synthesis of Neu5Gc 
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(Cmah−/−). Mdx/Cmah−/− mice were reported to show 
enhancement of DMD pathophysiology (Chandrasekharan 
et al. 2010) and show earlier cardiac pathophysiology than 
the standard mdx mice, although skeletal muscle physiology 
defects appeared less severe in a separate study (Betts et al. 
2019). These and additional models are reviewed in more 
detail by Yucel et al. (2018).

Dog models are also available, the most commonly 
used being a Golden Retriever with Muscular Dystrophy 
(GRMD), also known as CXMD, which has a splice site 
mutation that leads to the loss of exon 7 and thus a failure to 
produce dystrophin (Cooper et al. 1988; Sharp et al. 1992). 
Another dog model, this time with a splice site mutation 
leading to the loss of exon 50 is undergoing a natural history 
study at the Royal Veterinary College (London, UK) based 
on an index case identified in 2009 (Walmsley et al. 2010). 
This latter dog model has been used to assess dystrophin lev-
els arising from skipping of exon 51 using a CRISPR-Cas9 
single cut strategy (Amoasii et al. 2018). New spontaneous 
mutations in the DMD gene continue to be recorded in dogs 
on a regular basis (e.g. Nghiem et al. 2017; Mata López 
et al. 2018).

A number of other animal models have been developed 
but have not yet been used in published examples of dystro-
phin induction. These include dystrophic rats (Larcher et al. 
2014; Nakamura et al. 2014), dystrophic cats (Gaschen et al. 
1992), dystrophic rabbits (Sui et al. 2018) and dystrophic 
pigs (Klymiuk et al. 2013). The main features of these dif-
ferent animal models of DMD have been reviewed by Wells 
(2018).

Induction of dystrophin

Therapeutic induction of dystrophin expression potentially 
can be achieved by a number of different methods including 
viral vector mediated delivery of a recombinant dystrophin 
gene, antisense oligonucleotide mediated exon-skipping to 
restore the open reading frame in the dystrophin mRNA, 
read-through of premature stop mutations, genome modifi-
cation using CRISPR-Cas9 or cell based transfer of a func-
tional dystrophin gene. In all cases, it will be important to 
understand how much dystrophin expression is required for 
a clinically effective therapy.

The use of viral vectors for gene therapy of DMD has 
been considered ever since the DMD gene was first reported. 
A number of systems were developed ranging from a heavily 
engineered version of adenovirus capable of accommodating 
the full coding sequence of the 11.5 kb dystrophin cDNA 
(Kochanek et al. 1996) through to small adeno-associated 
virus (AAV) only capable of accommodating 4.8 kb of exog-
enous DNA, thus requiring a compact promoter and a highly 
recombinant micro-dystrophin (Wang et al. 2000). Vari-
ants of the latter are currently in three human clinical trials 

(NCT03362502, NCT03368742 and NCT03375164). There 
is an excellent recent review by Duan (2018) of the devel-
opment and use of AAV vectors to introduce recombinant 
microdystrophins into dystrophic muscle. In addition, a very 
recent paper by Ramos et al. (2019) has described problems 
with some of the existing microdystrophin constructs. The 
paper also suggests solutions for some of these problems.

Another approach to induction of dystrophin is to use 
an antisense oligonucleotide (AO) to modulate splicing of 
the primary RNA transcript. The AO is designed to either 
target exon recognition sequences or splice site sequences 
to prevent binding of the splicesosome and thus exclude one 
or more exons to restore the open reading frame in the dys-
trophin mRNA (exon-skipping). This approach, first pub-
lished by the Dickson laboratory (Dunckley et al. 1998) and 
subsequently by other groups, was shown to be effective 
by inducing expression of dystrophin in murine and human 
cells in culture and in dystrophic mouse and dog models. 
Consequently, this approach was taken into human clinical 
trials using two different oligonucleotide chemistries. Both 
sets of trials targeted skipping of exon 51, as this would 
treat approximately 13% of DMD patients. One set of trials 
used a phosphorodiamidate morpholino oligomer (PMO)—
eteplirsen—delivered via the intravenous route (Sarepta) 
and the other used a 2′OMethyl modified phosporothioate 
oligonucleotide (2OmePS)—drisapersen—delivered by the 
subcutaneous route (Prosensa/Biomarin). Drisapersen was 
rejected by the FDA on the basis of toxicity whereas etep-
lirsen was given accelerated approval in 2016 and is mar-
keted as ExonDys51. In contrast, the European Medicines 
Agency did not approve eteplirsen.

Approximately 13–15% of DMD patients have nonsense 
mutations that form a premature stop mutation. Aminoglyco-
side antibiotics have the ability to cause read-through these 
mutations, and this was demonstrated in the mdx mouse 
using gentamicin (Barton-Davies et al. 1999). Unfortunately, 
this was only achieved at high doses that have the potential 
to cause ototoxicity and nephrotoxicity and, although sev-
eral small short clinical trials in DMD were subsequently 
undertaken, this was not a realistic long-term treatment for 
DMD. However, this observation inspired the search for 
small molecule drugs that could achieve the same effect with 
less toxicity and resulted in the identification of PTC124, 
also known as ataluren (Welch et al. 2007). The efficacy and 
safety of ataluren were assessed in two randomised, double-
blind, placebo-controlled, trials. Pre-specified subset analy-
sis was considered sufficient for a conditional authorisation 
by the European Medicines Agency in 2014 and the drug is 
now marketed as Translarna. In contrast, the FDA did not 
approve Translarna.

Another approach to inducing dystrophin is to perform 
genome editing, in most cases by using CRISPR-Cas9 tech-
nology. A series of papers were published in Science in 2016 
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reporting in vivo gene editing in the mdx mouse (Long et al. 
2016; Nelson et al. 2016; Tabebordbar et al. 2016). Subse-
quently, issues relating to dose have been examined in long-
term studies in the mdx mouse (Hakim et al. 2018) and one 
group has reported initial studies in a dystrophic dog model 
(Amoasii et al. 2018). The latter showed the potential for 
highly efficient gene editing but clinical application will 
require a greater understanding of the potential off-target 
effects with this technology (Nelson et al. 2019).

The final approach to induction of dystrophin utilises 
the ability of myoblasts to fuse with existing muscle fibres 
in both growth and repair. This enables cell based transfer 
of a functional dystrophin gene and was demonstrated by 
transferring congenic wild-type C57Bl10 myoblasts into the 
mdx mouse which resulted in good local levels of dystrophin 
(Partridge et al. 1989). This led to human clinical trials that 
were unsuccessful. Considerable effort was expended in test-
ing potential stem cell therapies acting via myoblast fusion 
and one of the most promising, the use of mesoangioblasts 
(pericytes), led to a clinical trial which unfortunately failed 
to confirm the promising results in dystrophic mice and dogs 
(Cossu et al. 2015).

Quantification of dystrophin

In order to be able to predict the amount of dystrophin 
required for a clinically effective therapy it clearly will be 
important to understand the advantages and disadvantages 
of different methods of assessing the quantity of dystro-
phin protein. It is also important to understand whether the 
expression of dystrophin is patchy or uniform, as this may 
also influence the clinical effectiveness of any therapy that 
induces expression of dystrophin. Patchy expression can best 
be assessed by immunostaining, ideally calibrated against 
another membrane associated protein that does not change 
significantly with muscle pathology. Spectrin is commonly 
used when examining transverse sections of skeletal mus-
cle, although it should be noted that spectrin expression is 
increased in dystrophic muscle. Whether this is the result of 
an increased number of small fibres or a genuine upregula-
tion is unclear but clearly spectrin should be used with cau-
tion. A number of investigators have developed methods of 
quantifying the level of dystrophin expression in individual 
fibres in a section.

The variation between quantitative immunohistochemis-
try and western blotting and between laboratories has been 
examined in a five laboratory study of a blinded sample set 
from BMD and DMD patients. After careful standardisation 
of the protocols, this study showed very similar quantifi-
cation with minimal inter- and intra-laboratory variability 
(Anthony et al. 2014). This was particularly true of the quan-
titative immunohistochemistry and results from the quanti-
tative immunohistochemistry closely matched those from 

western blot. Quantitative immunohistochemistry should 
cover the whole section and not just a region of interest. It 
is recommended that several different methods of quanti-
fication are used to increase confidence in the quantity of 
dystrophin detected. It is important that the same antibody 
is used to allow comparison of levels of dystrophin as dif-
ferent antibodies will have different affinities for dystrophin.

Since then, additional refinements and novel technologies 
have been developed to improve the quantification of dystro-
phin. These include a new high throughput semi quantita-
tive fluorescent immunofluorescence method for quantifying 
dystrophin expression in the whole of a transverse sections 
of skeletal muscle (Sardone et al. 2018) and the Protein-
Simple capillary immunoassay (Wes) method, a gel- and 
blot-free method (Beekman et al. 2018). Another approach 
is to use mass spectroscopy of trypsin digests to quantify 
dystrophin. This approach was reported as having a lower 
detection limit of 5% of endogenous (Brown et al. 2012) but 
methods are in development with a lower detection limit of 
about 1% (see the following workshop report).

Most recently, representatives of academia, patient 
organisations, industry and the United States Food and Drug 
Administration met in March 2018 to discuss the potential 
and problems of techniques currently used in translational 
research (western blot and immunofluorescence) and emerg-
ing techniques (mass spectrometry and capillary western 
immunoassay). The workshop concluded that it is now 
clear that dystrophin expression levels can vary considerably 
between healthy individuals and so there is a need for a pri-
mary reference standard for human clinical trials (Aartsma-
Rus et al. 2019).

Samples from patients

Studies of patients with Duchenne and BMD have been used 
to assess the effects of low levels of dystrophin expression 
on clinical outcome. Early studies suggested that a delay 
in the loss of ambulation in DMD patients was due to low 
(trace) levels of dystrophin in otherwise dystrophic muscles 
(Nicholson et al. 1993) although this was in the absence of 
our current understanding about disease modifying genes in 
DMD (see for example Bello et al. 2016; Weiss et al. 2018). 
Dystrophin levels as low as 30% were reported as sufficient 
to prevent the development of muscular dystrophy in man 
(Neri et al. 2007). There are also several case reports of 
individual patients with no significant muscle impairment 
and low levels of dystrophin. For example, Nakamura et al. 
(2016) report a patient with a deletion of exons 3–9 and 
dystrophin protein expression 15% that of control level who 
had no muscle involvement at the age of 27 years old. While 
the above reports suggest that even low levels of dystrophin 
might be beneficial for patients, the quantification was based 
on muscle biopsies of a single muscle and so may not be 
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representative of the body wide level of dystrophin in differ-
ent muscles, yet clinical assessment is generally performed 
at the whole body level.

The issue of problems quantifying the effects of treatment 
from single muscle biopsies is clearly outlined by studies in 
dystrophic mice. For example, both Alter et al. (2006) and 
Vila et al. (2015) have clearly shown that induction of dys-
trophin varies between muscles in mice systemically treated 
with antisense morpholino oligomers.

Another caveat about patient studies is that internally 
truncated forms of the dystrophin protein, as seen in patients 
with BMD, may be substantially less functional that the nor-
mal full length isoform of dystrophin. A study by Anthony 
et al. (2011) examined 17 BMD patients with a confirmed 
in-frame exon deletions equivalent to skipping of exons 51, 
53 or 45–55 multi-exon skipping in Duchenne muscular dys-
trophy. Patients in the model 51 group were either asympto-
matic (three patients), or mildly affected (five patients). In 
the model 53 group, three patients were classified as mild; 
one asymptomatic and one severe; all four patients in the 
model 45–55 group were classified as mild. All had levels of 
dystrophin 50% or more compared to normal controls. The 
authors concluded that “all varieties of internally deleted 
dystrophin assessed in this study have the functional capabil-
ity to provide a substantial clinical benefit to patients with 
Duchenne muscular dystrophy”. However, modelling of dif-
ferent deletions has predicted substantial differences in the 
extent of disorganisation of the central rod domain of dys-
trophin (Delalande et al. 2018) that might cause important 
differences in clinical benefit.

Assessing the effects of different levels 
of dystrophin in animal models

A number of different outcome measures have been used to 
assess the response to treatment in animal models of mus-
cular dystrophy. In order to ensure a degree of comparison 
between laboratories, a number of standard operating pro-
cedures (SOPs) have been developed with the animal model 
community (Grounds et al. 2008). These SOPs are currently 
available at the Treat-NMD website (http://www.treat -nmd.
eu/resou rces/resea rch-resou rces/dmd-sops/).

Histological and gene expression assays in the mouse

Historically much has been made of changes in muscle 
pathology and gene expression. However, these are not in 
themselves a direct assessment of the functional result of 
dystrophin induction, but rather are an indirect assessment 
that can be misleading. SOPs exist on the above webpage 
for: Quantitative determination of muscle fibre diameter 
(minimal Feret’s diameter) and percentage of centralized 
nuclei (Treat-NMD SOP DMD_M.1.2.001); Quantification 

of histopathology in Haemotoxylin and Eosin stained muscle 
sections (Treat-NMD SOP DMD_M.1.2.007); and Serum 
Creatine Kinase analysis in mouse models of muscular dys-
trophy (Treat-NMD SOP MD_M.2.2.001).

Changes in gene expression have been used to infer a 
functional benefit but some quantitative RT-PCR studies 
are marred by the wrong choice of genes used to normalise 
the data. A comprehensive analysis of suitable housekeep-
ing genes in normal and dystrophic mice of different ages 
and different muscles has recently been published (Hildyard 
et al. 2019).

Conscious functional assays in the mouse

In order to assess the functional effects of treatment, a num-
ber of assays of the locomotor system have been developed 
for use in conscious mice. SOPs exist on the above webpage 
for: Behavioural and Locomotor Measurements Using Open 
Field Animal Activity Monitoring System (Treat-NMD SOP 
DMD_M.2.1.002); Use of treadmill and wheel exercise to 
assess dystrophic state (Treat-NMD SOP DMD_M.2.1.003); 
The use of hanging wire tests to monitor muscle strength and 
condition over time (Treat-NMD SOP DMD_M.2.1.004); 
Use of grip strength meter to assess the limb strength of mdx 
mice (Treat-NMD SOP DMD_M.2.2.001); and Whole body 
tension measurements (Treat-NMD SOP DMD_M.2.2.006). 
A potential problem with all of the above is that the perfor-
mance of treated mice may vary with the central nervous 
system effects of the treatment. Activation of CNS centres 
or side-effects such as nausea may give a misleading impres-
sion of the magnitude of the functional improvement.

SOPs also exist for the assessment in conscious mice of 
the respiratory system (Treat-NMD SOP DMD_M.2.2.002) 
and the cardiovascular system (Treat-NMD SOP 
DMD_M.2.2.003). These are potentially less problematic 
than the locomotor system tests. There is also an SOP for 
cardiac assessment in anaesthetised mice (Treat-NMD SOP 
DMD_M.2.2.004).

Muscle physiology in the mouse

As an alternative to functional assessments in the conscious 
mouse, muscle physiology in the anaesthetised mouse or 
ex  vivo, measures changes in performance without the 
potential confounding effects of motivational state. Dys-
trophic muscle generates a lower specific force and is more 
vulnerable to eccentric (lengthening) contractions that wild-
type muscle. An SOP has been developed for in situ meas-
urement of muscle physiology in the lower hindlimb muscles 
(Treat-NMD SOP DMD_M.2.2.005). Alternatively, muscle 
physiology can be performed ex vivo provided the muscles 
are small enough to ensure adequate perfusion to supply 
oxygen and substrate and to remove waste metabolites. Thus, 

http://www.treat-nmd.eu/resources/research-resources/dmd-sops/
http://www.treat-nmd.eu/resources/research-resources/dmd-sops/
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this approach is suitable for small limb muscles such as the 
soleus and extensor digitorum longus muscles and for strips 
from the diaphragm. Again, an SOP is available (Treat-NMD 
SOP DMD_M.1.2.002).

Assessments in the dystrophic dog

As the dystrophic dogs show clear clinical signs of mus-
cular dystrophy, in contrast to dystrophic mice, there are a 
number of functional tests that can be applied in the con-
scious animal, such as gait measures. It is also possible to do 
similar muscle physiology tests but as non-terminal anaes-
thetised procedures with needle electrodes and measuring 
torque using a pedal (Childers et al. 2002; Treat-NMD SOP 
DMD_D.2.2.001). The response to eccentric exercise can 
also be measured using a similar approach (Treat-NMD SOP 
DMD_D.2.2.002).

Effects of different levels of dystrophin in mouse 
models

The mdx3cv mouse shows low levels of full-length dystro-
phin, estimated at 5% of wild-type levels, and this is associ-
ated with higher muscle forces, and a reduced force drop 
associated with eccentric exercise, despite dystrophic pathol-
ogy similar to the mdx4cv mouse (Li et al. 2008). The same 
strain showed a reduced muscle stiffness compared to the 
mdx4cv mouse (Hakim and Duan 2012). Similarly, the same 
low level uniform expression of dystrophin in the  mdx3cv 
mouse also partially preserved heart function compared to 
the mdx4cv mouse (Wasala et al. 2017). The same level of 
dystrophin also ameliorated the pathology and increased the 
lifespan in the double knockout mouse when the utrophin 
knockout mouse was crossed with the  mdx3cv mouse (Li 
et al. 2010).

A number of studies have reported the effects of restor-
ing different levels of dystrophin in the mdx mouse. 20% 
of normal levels of dystrophin induced by treatment with 
high doses of gentamicin significantly reduced the force 
deficit associated with eccentric exercise when compared 
to untreated mdx mice (Barton-Davis et al. 1999).

Sharp et al. (2011) examined the functional effects of 
exon-skipping arising from increasing intramuscular doses 
of the M23D phosphorodiamidate morpholino oligomer 
(PMO) sequence that was originally developed by Gebski 
et al. (2003). They showed a good correlation between the 
percentage of dystrophin positive fibres and the induction of 
dystrophin and that this also correlated with the reduction in 
force drop following eccentric exercise. They concluded that 
a minimum of 20% of dystrophin-positive fibers is required 
for any meaningful improvement in muscle physiology.

Godfrey et al. (2015) examined the functional conse-
quences of inducing dystrophin expression using a cell 

penetrating peptide (Pip6a) coupled to the M23D PMO. 
They concluded that 15% of normal levels of dystrophin 
were sufficient to prevent the force drop associated with 
eccentric exercise in the tibialis anterior muscle of termi-
nally anaesthetised mdx mice. Further studies performed 
in the Wells laboratory (in preparation) using a lower dose 
of Pip6aPMO confirm that expression of 15% of endog-
enous levels of dystrophin following chronic dosing stud-
ies is indeed sufficient to prevent the force drop associated 
with eccentric contractions and that lower levels offer some 
reduction in the force drop.

The Aartsma-Rus laboratory have developed a mouse 
model expressing low dystrophin levels, based on non-
random X-inactivation. They crossed the mdx mouse with 
a transgenic mouse that shows a skewed X-inactivation 
(Xist∆hs) that generates mice with a range of different levels 
of dystrophin (van Putten et al. 2012). They have used these 
mice to examine the effects of different levels of dystrophin 
on locomotor performance and response to chronic exercise. 
The 2012 study concluded that “while even dystrophin levels 
below 15% can improve pathology and performance, lev-
els of > 20% are needed to fully protect muscle fibers from 
exercise-induced damage”. They have subsequently used 
the same model system to look at the effects of low levels 
of dystrophin on slowing the development of heart failure 
in the mdx-Xist∆hs mice (van Putten et al. 2014) but failing 
to normalize the neuromuscular synaptic abnormalities of 
mdx-Xist∆hs mice (van der Pijl et al. 2018). The same strat-
egy was used in the dystrophin/utrophin double knockout 
mice with low levels of dystrophin increasing survival and 
improving muscle pathology and function (van Putten et al. 
2013). However, it is not possible to directly compare the 
results from the mdx-Xist∆hs studies with those in the mdx3CV 
mice and the Pip6aPMO studies as in the latter two examples 
there was fairly uniform expression of dystrophin between 
muscle fibres whereas the mdx-Xist∆hs mice show a mosaic 
pattern of dystrophin expression within and between muscle 
fibres. In contrast, the patchy expression in the mdx-Xist∆hs 
mice may be a good model of a less than optimal response 
to gene therapy. It should also be noted that the mdx-Xist∆hs 
and the mdx3CV mice have expressed dystrophin prior to the 
onset of the 3 week necrotic phase seen in the mdx mouse, 
whereas the Pip6aPMO studies were conducted in adult mdx 
mice that had already developed muscular dystrophy.

Effects of different levels of dystrophin in dog 
models

There are relatively few studies of induced dystrophin 
expression in dystrophic dogs. While recent studies such as 
(Yue et al. 2015; Le Guiner et al. 2017) show the effective-
ness of systemic delivery in the GRMD model, they do not 
allow a quantification of the minimum levels of dystrophin 
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required for clinical benefit. Le Guiner et al. (2014) used 
rAAV8-U7snRNA to promote permanent exon-skipping by 
locoregional delivery to the forelimb in GRMD. They deter-
mined a minimum threshold of dystrophin expressing fibres 
(> 33% for structural measures and > 40% for strength) under 
which there was no clear-cut therapeutic effect. Gentil et al. 
(2016) examined some of the same samples and compared 
the percentage of dystrophin-positive fibres with western 
blots of key proteins such as neuronal nitric oxide synthase 
mu (nNOSμ), inducible nitric oxide synthase (iNOS), and 
ryanodine receptor-calcium release channel type 1 (RyR1). 
They concluded that 40% of the fibres need to be dystrophin 
positive for normalisation. Neither of the two locoregional 
perfusion studies measured the quantity of dystrophin in the 
positive fibres. Thus, to date we really have no measure of 
the minimum amount of dystrophin required to be therapeu-
tic in the dog.

Conclusions

A number of different strategies have been developed to 
restore dystrophin expression in skeletal and cardiac muscles 
and a wide range of animal models of DMD are available 
for testing these strategies. To date, the majority of such 
studies have been conducted in dystrophic mice and dogs. 
Data from man and animal models shows that any increase 
in dystrophin is likely to have some benefit and the more 
dystrophin the better. It is more difficult to assign a minimal 
level of dystrophin expression required for effective therapy 
of DMD. The most promising of the current strategies for 
induction of dystrophin result in an internally truncated dys-
trophin protein, which may have different properties from 
the normal full-length isoform. There are likely to be dif-
ferences in the amount of dystrophin required to prevent 
the development of muscular dystrophy compared to that 
required to address existing disease. In the case of exist-
ing disease, there may well be differences between animal 
models and man, particularly in the case of the mdx mouse 
that manifests a relatively mild version of the disease and 
shows limited fibrosis compared to humans with DMD. The 
amount of dystrophin required is likely to vary with the stage 
of disease progression. Finally, the longevity of the treat-
ment effect is also likely to be dependent on the level of 
dystrophin expression achieved and the uniformity of this 
expression both within and between individual myofibres 
or cardiomyocytes.

As a working hypothesis, it would appear that about 20% 
of normal levels of a functional version of recombinant dys-
trophin with a uniform expression is likely to be sufficient 
to essentially stop disease progression and thus offer major 
clinical benefit for DMD patients.
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