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Abstract Since 40 years, it is known that omega-3 poly-

unsaturated fatty acids (x3 PUFAs) have cardioprotective

effects. These include antiarrhythmic effects, improvements

of autonomic function, endothelial function, platelet anti-

aggregation and inflammatory properties, lowering blood

pressure, plaque stabilization and reduced atherosclerosis.

However, recently, conflicting results regarding the health

benefits of x3 PUFAs from seafood or x3 PUFAs supple-

ments have emerged. The aim of this review is to examine

recent literature regarding health aspects of x3 PUFAs

intake from fish or supplements, and to discuss different

arguments/reasons supporting these conflicting findings.

Keywords x-3 PUFA � Sarcomere proteins � Cardiac
arrhythmias � Controversies

Introduction

Fish is a good source of protein and, unlike fatty meat

products, it is poor in saturated fat. Fish is also a good

source of omega-3 poly-unsaturated fatty acids (x3
PUFAs). Forty years ago, the cardiovascular beneficial

effects of x3 PUFAs were first noticed when researchers

identified lower rates of cardiovascular disease among

Greenland Inuit, whose diet consisted of foods rich in x3
PUFAs, such as whale, fish and seal, compared to the

Danish population (Bang et al. 1976). By comparing

plasma and food lipid profiles of both populations, the

authors concluded that there was an association between

dietary pattern and the incidence of cardiovascular disease.

Also, a diet rich in x3 PUFAs is associated with lower

serum cholesterol and triglycerides, slower atherosclerotic

plaque growing rate, and slightly lower arterial blood

pressure (De Caterina 2011). Since then, epidemiological,

clinical, animal and cellular studies confirmed these ben-

eficial effects (Billman 2013). Consequently, the American

Heart Association (AHA) recommends eating at least two

serving (particularly oily) fish per week. x3 PUFAs have

thus generated considerable interest as well as controver-

sies regarding their impact on cardiovascular physiology. A

number of observational studies have shown that con-

sumption of fish leads to a reduction of sudden cardiac

death incidence (Burr et al. 1989; Siscovick et al. 1995).

However, from the end of the 20st century, researchers

failed to demonstrate a convincing cardioprotective effect

and ignited the debate on whether PUFAs have healthy

effects (Salonen et al. 1995; Ascherio et al. 1995;

Kromhout et al. 1996; Pietinen et al. 1997; Guallar et al.

1999; Gillum et al. 2000; Oomen et al. 2000; Rissanen

et al. 2000; Iso et al. 2006; Wilhelm et al. 2008; Yamagishi

et al. 2008). As reviewed by Moreno et al. (2012), x3
PUFAs have various effects on cardiac ion currents that

could explain the contradictory effects of x3 PUFAs.

These differences appeared to depend on whether the x3
PUFAs were applied to cells or formerly incorporated in

membranes modifying its composition and, thus, the

effects on cell signalling. In this paper, we review the

experimental evidence supporting that the actions of x3
PUFAs are due to pleiotropic mechanisms.
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Environmental parameters

x3 PUFAs have pleiotropic actions including cardiopro-

tective effects, especially against post-infarction arrhyth-

mias (Saravanan et al. 2010; Schuchardt et al. 2011).

Recently, new drugs have been added to the standard

treatment of cardiac pathologies, such as statins. The

introduction of statins, a drug class used to lower LDL-

cholesterol level by inhibiting HMG-COA reductase, can

modulate x3 PUFAs effects by interfering with their

metabolism (de Lorgeril et al. 2013). The mechanism of

action is still not well understood, but it seems that mito-

chondria could be involved, especially coenzyme Q10. In

agreement with this hypothesis, a European secondary

prevention clinical trial reports that x3 supplementation

(alpha-linolenic acid, Eicosapentaenoic acid; EPA and

docoxahexaenoic acid; DHA) reduces the incidence of

cardiovascular events by half only when statins were not

prescribed (Eussen et al. 2012). Surprisingly, x3 PUFAs

cardioprotective effects are still observed in diabetic

patients on statins (Kromhout et al. 2011), the same applies

for the effects of x3 PUFAs heart rate (Kim et al. 2011), on

plasmatic triglyceride level and on the threshold of

occurrence of ventricular palpitations induced by electrical

stimulation (Durrington et al. 2001; Schrepf et al. 2004;

ORIGIN Trial Investigators et al. 2012). An inhibition of

x3 PUFAs effects by statins cannot be simply explained by

loss of efficiency of these lipids, which was demonstrated

by the most recent clinical trials and meta-analysis. For

example, in a diabetic population, it is possible to have a

metabolic pathway altered by this pathology, which is

sensitive to x3 PUFAs and not to statins and vice versa.

Also, patients included in randomized clinical trials

(RCT) using x3 PUFAs can differ from the general pop-

ulation in an important way, which could explain the var-

ious results between RCTs (where there is intervention)

and epidemiological studies. It was reported that patients

who volunteered to join RCTs are frequently healthier and

more active than the average population, which could

affect the results in an unknown way. Furthermore, patients

dropping out of the trials are often more ill and could be the

ones benefiting most from x3 PUFAs.

Nutritionally, cooking method are of importance. Con-

suming boiled fish is associated with a lower rate of fatal

arrhythmias when compared to fried fish consumption

(Mozaffarian et al. 2003). Also, mortality linked to coronary

heart disease was lower in individuals consuming oily fish as

opposed to white meat fish or no fish at all (Oomen et al.

2000).

The AHA nutrition recommendations advise to limit

oily fish consumption of children. Indeed, fat fishes, such

as farmed salmon, swordfish, king mackerel, or tilefish, are

known to accumulate high levels of mercury, polychlori-

nated biphenyls, dioxins, organochlorines and other envi-

ronmental contaminants (Hites et al. 2004). The levels of

these substances are generally higher in older, larger,

predatory fishes and marine mammals. Also, although a

high rate of plasmatic DHA was associated with a reduc-

tion of the acute coronary artery events, this effect is sig-

nificantly attenuated when increased levels of mercury are

found in patient’s hair (Rissanen et al. 2000), suggesting an

interaction between x3 PUFAs and mercury. Also, it was

suggested that a high intake of mercury from non-oily

freshwater fish and the subsequent mercury accumulation

in the body were associated with a higher an risk of

myocardial infarction in Eastern Finnish men and this

increased risk may be due to the promotion of lipid per-

oxidation by mercury (Salonen et al. 1995). More recently,

Hu et al. (2016) studied the relationship between Canadian

Inuit traditional diet and myocardial infarction risk in 2072

participants aged 18–79. They found that Inuit traditional

diet contains high levels of EPA, DHA and mercury. A

careful analysis of their results indicates that beneficial

effects of EPA and DHA on myocardial infarction are

diminished by the adverse effect of mercury (by 5% for

men and 4% for women) (Hu et al. 2016). Thus, dietary

mercury levels could partially explain certain contradictory

results.

Finally, an important factor that is rarely taken into

account in these studies is the inter-individual variability of

incorporation of x3 PUFAs in cell membranes (Arterburn

et al. 2006; Bougnoux et al. 2009). In 2010, it has been

shown that cardioprotective properties ofx3 PUFAs depend
on their incorporation into cell membranes (von Schacky

2010), which suggests that positive effects needing incor-

poration can be masked in a sub-population which do not

efficiently incorporate x3 PUFAs in their cell membrane.

Cellular parameters

The controversy about x3 PUFAs effects also extends to

the cellular level (Billman 2013). The majority of elec-

trophysiological single cell studies found an inhibition of

ion currents such as fast sodium current (INa) (Xiao et al.

1995; Kang and Leaf 1996; Leifert et al. 2000), ultrafast

activating delayed outward potassium current (IKur) (Hon-

oré et al. 1994; Li et al. 2009), rapidly activating delayed

rectifying outward potassium current (IKR) (Guizy et al.

2005), L-type calcium current (ICaL) (Xiao et al. 1997;

Hazama et al. 1998; Rodrigo et al. 1999; Ferrier et al. 2002;

Verkerk et al. 2006), and Na?–Ca2? exchanger current

(INCX) (Xiao et al. 2004; Ander et al. 2007). On the other

hand, x3 PUFAs were found to enhance slowly activating
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delayed rectifying outward potassium current (IKS) (Doolan

et al. 2002) and outwardly rectifying potassium current

(ITO) (Macleod et al. 1998; Judé et al. 2003; Li et al. 2009).

Also, incorporation of x3 PUFAs has been positively

correlated with mitochondrial proton leak (Hulbert 2003),

and increased mitochondrial DHA content through lipid

infusion or dietary intervention augments proton move-

ment and state 4 respiration (Stillwell et al. 1997). In

addition, DHA enhances Na? membrane permeability

(Stillwell and Wassall 2003) and Na?/K?-ATPase activity

(Else and Wu 1999; Turner et al. 2003; Wu et al. 2004).

Collectively, these studies have led to the idea that x3
PUFAs influence mitochondrial activity, and excitation–

contraction coupling through modulation of ion channels.

However, it is surprising that in a lot of epidemiological

studies, if not all, no effects on electrocardiogram param-

eters were observed in agreement with such molecular

effects as it is observed with drugs having comparable

multi-ion channels effects.

Such contradictory and unspecific effects of x3 PUFAs

on ion membrane channels activity challenge the hypoth-

esis that cardioprotective effects of x3 PUFA could be due

to the modulation of these channels or that in vivo, x3
PUFAs have any effect on ion channels.

In parallel, some scientists were more interested in the

regulation of intracellular Ca2?, which is known to play a

role in physio-pathological situations and to be a key actor in

cardiacmuscle and skeletal excitation–contraction coupling.

Acute application of x3 PUFAs leads to numerous

effects on intracellular Ca2? and on cellular mechanisms

that ensue from it (Judé et al. 2006; Billman 2012). Besides

the fact that x3 PUFAs inhibit many voltage-dependent

calcium channels activity, it has also been shown that they

inhibit pro-arrhythmic diastolic depolarization due to

intracellular calcium elevation and this can be explained by

a reduction of NCX exchanger activity (Szentandrássy

et al. 2007; Berecki et al. 2007; Den Ruijter et al. 2008;

Sankaranarayanan and Venetucci 2012).

x3 PUFAs have direct effects on mechanisms that regu-

late sarcoplasmic Ca2? level by decreasing Ca2? released by

the sarcoplasmic reticulum. Mechanistically, a decreased

frequency of the occurrence of spontaneous calcium events

(sparks) in isolated ventricular cardiomyocytes has been

observed (Negretti et al. 2000; O’Neill et al. 2002; Honen

et al. 2003; Sankaranarayanan and Venetucci 2012). In

agreement with this observation, x3 PUFAs reduce the

opening probability of ryanodine receptor type 2 (RyR2),

responsible for these calcium events (Swan et al. 2003). In

1993, Taffet observed that a x3 PUFAs-enriched diet is

associated with increased DHA incorporation in the cardiac

sarcoplasmic reticulum membrane (Taffet et al. 1993). This

effect is associated with a reduction of sarcoplasmic reticu-

lum content and a decreased SERCA2a pump activity by

dietary interventions that change the composition, and pos-

sibly the structure of phospholipid membranes thereby

affecting enzyme turnover. However, these observations are

in contradiction with other studies (Leifert et al. 2000;

Billman et al. 2012). It must be noted that the acute appli-

cation of x3 PUFAs induces an augmentation of the sar-

coplasmic reticulum calcium content (Negretti et al. 2000;

O’Neill et al. 2002; Swan et al. 2003). Also, delayed after-

depolarization and early after-depolarization are both pre-

vented by an acute or chronic exposition to x3 PUFAs (Den
Ruijter et al. 2008; Milberg et al. 2011).

In conclusion, x3 PUFAs can regulate intracellular

Ca2? homeostasis, decreasing the risk of arrhythmias, in

particular when these originate from a change of intracel-

lular Ca2? homeostasis such as during an ischemia/reper-

fusion episode (Billman 1991).

Dietary supplementation with x3 PUFAs leads to their

incorporation in cardiac membrane phospholipids. This

incorporation in mitochondria, sarcoplasmic reticulum and

cell membranes plays an essential role in the regulation of

excitation–contraction coupling. Thus, several studies have

investigated the effects of this incorporation. One impor-

tant point is that after their incorporation, these lipids can

undergo enzymatic and non-enzymatic oxidation, leading

to new products derived from x3 PUFAs. The effects of

enzymatic metabolites such as prostaglandins or leuko-

trienes have been well studied (Calder 2010). However, it

is important to note that in presence of a lipid antioxidant,

alpha-tocopherol, the beneficial effects of x3 PUFAs are

totally abolished (such as anti-arrhythmic properties)

whereas in presence of a pro-oxidant (low concentrations

of hydrogen peroxide) enhancing non-enzymatic oxidation,

the beneficial effects of these lipids are potentiated (Roy

et al. 2015). This might be linked with a similar observa-

tion about the effects of DHA on rat ion currents (Judé

et al. 2003). Recently, we focused our attention on certain

non-enzymatic metabolites of x3 PUFAs (NEO-PUFAs).

We found that some NEO-PUFAs, namely the 4(RS)-4-F4t-

neuroprostanes and the 10(S)-10-F4t-neuroprostane, can

normalize RyR2 function and thus reduce the occurrence of

abnormal extrasystoles (Roy et al. 2015). These results, and

others, suggest that the beneficial effects of x3 PUFAs can

be obtained in conditions of oxidative stress (characteristic

of many chronic pathologies).

Also, these discoveries open new perspectives for non-

enzymatic oxygenated metabolites of x3 PUFAs as potent

healthy mediators in diseases associated with an oxidative

stress (Burton et al. 1990; Janero et al. 1991; Sano 2010;

Anderson and Taylor 2012; Anderson et al. 2012).

This element of oxidation must be taken into account,

because it differs from one individual to another. The

intensity of oxidative stress and antioxidant capacity are

highly inter-individually different, thus even for a
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comparable level of PUFAs, the production of NEO-

PUFAs will be variable.

Conclusion

To conclude, all these contradictory data leads the scien-

tific community to consider effects and cellular targets of

x3 PUFAs (acutely or chronically applied).

Recently, it has been found that low x3 PUFAs blood

level and dietary intake can potentially increase the risk of

non beneficial outcomes and could explain the difference and

the contradiction in the effects observed (Stark et al. 2016).

Many factors can explain the contradictory observations

made in cells, animal and human studies as described in

this review.

Therefore, it is important and essential to take into con-

sideration these parameters in future studies that, otherwise,

could generate other contradictory results. Notably, given

the challenges of fatty acid analysis and reporting, an inter-

national initiative should be considered to lead to standard-

ized approaches and methods before all studies. To limit the

conflicting findings, a standardization of study method

(taking into account dose and type of fatty acids, rate of

oxidation) should be proposed such as the x3 PUFAs index

proposed by Von Schacky (von Schacky 2010).
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