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Abstract
The study primarily focuses on the in situ synthesis of polystyrene (PS) and copper oxide (CuO) nanocomposites. An exten-
sive analysis was conducted on the optical, thermal, mechanical, and electrical properties of PS with different CuO concentra-
tions. The effective inclusion of CuO into PS was characterized by Fourier-transform infrared spectroscopy (FTIR), UV–vis-
ible spectroscopy, filed emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), differential scanning 
calorimetric analysis (DSC) and thermal gravimetric analysis (TGA). The reinforcement of CuO into the PS was established 
through FTIR. The optical bandgap energy deduced from UV–visible spectra decreases with CuO addition, whereas the 
refractive index rises significantly with the addition of CuO nanoparticles up to 7 mass%. The XRD analysis revealed the 
amorphous to crystalline transformation of PS with the homogeneous dispersion of nanoparticles. The SEM–EDX analysis 
revealed the uniform distribution of CuO nanofillers in the PS matrix. The CuO addition considerably increased the glass 
transition temperature and thermal stability of PS. The tensile strength, impact resistance and hardness of nanocomposite 
were significantly increased with the loading of CuO in the polymer matrix. The AC conductivity and dielectric constant of 
the PS was improved with the addition of CuO nanoparticles. The effect of temperature on conductivity, activation energy, 
and pre-exponential factor was determined using the universal power law and the Arrhenius equation. The highest electri-
cal and mechanical properties were observed for 7 mass% nanocomposite. The synthesized PS/CuO nanocomposites with 
excellent optical characteristics, thermal stability, electrical conductivity, dielectric constant and mechanical strength can 
be used in supercapacitors and flexible nano-electronic devices.

Keywords Polystyrene · Copper oxide · Nanocomposites · Mechanical properties · Electrical properties · Thermal 
properties

Introduction

The development of polymer nanocomposites in recent years 
has brought new technology and advantageous opportuni-
ties to business and society at large. The formation of a 
nanocomposite by dispersing nanoscale fillers into a pol-
ymer matrix has generated significant interest due to the 
enhanced mechanical, thermal, and electrical properties it 
can provide [1–3]. The nanocomposites offer superior char-
acteristics than the parent material. These nanocomposites 
have shown promising applications in various industries, 

such as automotive, aerospace, electronics, and packaging 
[4–6]. Additionally, the ability to tailor the properties of 
nanocomposites by controlling the type, size, and concentra-
tion of fillers has further fuelled their widespread adoption 
in different sectors [7]. There are different methods that have 
been reported for the synthesis of polymer nanocomposites 
such as in situ polymerization, emulsion polymerization, 
sol–gel reactions, and melt processing [8, 9]. The interac-
tions between the nanoparticles and polymer matrix deter-
mine the characteristics of the synthesized nanocomposites. 
Poor nanofiller–matrix interactions lead to poor composite 
properties. The in situ polymerization process can be uti-
lized to get around this restriction. This method involves the 
simultaneous formation of the polymer matrix and the dis-
persion of the nanofillers within it, leading to a more homo-
geneous distribution and stronger bonding between the two 
components [10]. Moreover, in situ polymerization allows 
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for better control over the size, shape, and orientation of the 
nanofillers, further enhancing the properties of the nanocom-
posites [11]. Thus, nanocomposites generated by the in situ 
polymerization method have enhanced mechanical proper-
ties compared to those prepared by solution compounding 
or melt mixing procedures [12].

Metal oxides have significant technological implications 
due to their ability to generate charge carriers, great chemi-
cal stability and affordable cost [13, 14]. Their unique struc-
tural and surface properties allow for precise control over 
their size, shape, and surface chemistry, further enhancing 
their potential for tailored applications. CuO [15],  CeO2 
[16], ZnO [17],  TiO2 [18],  Fe3O4 [19], NiO [20], etc., are 
the most commonly used metal oxide nanoparticles. They 
act as good fillers for polymer matrix due to their satisfying 
optical, electrical, mechanical, and antimicrobial proper-
ties. CuO nanoparticles have unique optical, thermal and 
electronic properties, widely used as optoelectronic devices, 
solar cells, high-tech superconductors, photoconductive and 
photothermal applications, ceramic resistors, etc. [21].

Polystyrene is an amorphous thermoplastic polymer with 
good transparency, dimensional stability, high rigidity, good 
electrical properties and low cost [22]. It is a good commer-
cial polymer with wide applications in packaging, electron-
ics, composites, construction and other areas. At the same 
time, polystyrene has a brittle nature, poor chemical resist-
ance, a relatively low melting point, weak impact resistance, 
low flexibility, poor scratch resistance, etc. [23]. In this 
regard, the addition of nanofillers will result in the property 
enhancement of polystyrene. The thermal degradation of 
polystyrene-zinc oxide nanocomposites was done by Mot-
awie et al. [24]. Similarly, Castro et al. studied the photoa-
coustic properties of polystyrene/Pd/TiO2 nanocomposites 
[6]. According to the literature reviews, no in-depth research 
has been done to improve the mechanical, electrical, optical 
and thermal properties of polystyrene nanocomposites. In 
this regard, we have chosen polystyrene and CuO nanopar-
ticles for the current investigation. In the current study, the 
thermal, optical, electrical, and mechanical characteristics 
of PS/CuO nanocomposites were systematically examined.

Materials and methods

Materials

Styrene, benzoyl peroxide, toluene, ethanol, copper sulphate, 
sodium hydroxide (purchased from Merk India) and deion-
ized water were used throughout the experiment. Stabilizers 
present in styrene are removed using a 10% NaOH solution 
followed by distillation. All other reagents are of 99% purity 
and used without further purification.

Synthesis of copper oxide nanoparticles

The co-precipitation approach was used to prepare copper 
oxide nanoparticles with copper (II) sulphate as a metal 
precursor. 0.1 M copper sulphate solution was prepared by 
dissolving it in deionized water. 0.2 M NaOH solution was 
added dropwise into it, and the resulting black precipitates 
were washed several times with deionized water and ethanol 
till pH reached 7. The purified precipitates were dried, and 
finally, the precursors were calcined at 400 °C for 4 h.

Synthesis of polystyrene/CuO nanocomposites

Polystyrene/ CuO nanocomposites were synthesized via 
in situ polymerization of styrene with varying mass frac-
tions (0, 3, 5, 7, and 10 mass%) of CuO. Initially, 5 g of puri-
fied styrene monomer was dissolved in toluene. CuO nano-
particles were dispersed in 25 mL toluene and mixed with 
the styrene monomer, and the mixture was stirred well and 
ultrasonicated for 20 min to produce a homogenous solution. 
Finally, 2.0 g benzoyl peroxide dissolved in 15 mL toluene 
was added to the above solution, and the polymerization 
reaction was carried out at 85 °C for 4 h in an inert atmos-
phere. The resulting product was isolated from the above 
reaction mixture by coagulating with excess methanol. The 
PS/CuO nanocomposite was finally dried in a vacuum oven 
at 60 °C for 24 h.

Instrumentation

The interactions between polystyrene and copper oxide nan-
oparticles were analysed by FTIR spectroscopy. The studies 
were carried out using the JASCO 4100 FTIR spectrom-
eter in the region 400–4000  cm−1. Potassium bromide tab-
let method was used for the sample preparation. The XRD 
analysis of PS/CuO nanocomposites was carried out by a 
Rigaku D/MAX 2200 Model X-ray Diffractometer using Cu 
Kα (λ = 1.5407Å) radiation. The experiment was conducted 
at a scanning rate of 2.0° min⁻1 and a 2θ range from 0 to 90°. 
The UV–visible absorption spectra of PS and its nanocom-
posites with different loadings of CuO nanoparticles were 
recorded using a JASCO V-770 spectrophotometer. The 
bandgap energy of PS/CuO nanocomposites was determined 
by Tauc plot. The surface analysis of the nanocomposites 
was done using (FE-SEM, Carl Zeiss [Germany] VP-500 
model) field-emission scanning electron microscopy. The 
thermal stability of the PS and nanocomposites was analysed 
using a Hitachi STA7200 thermogravimetric analyser. The 
samples were heated from ambient temperature to 700 °C in 
an inert environment at a heating rate of 10 °C  min−1. The 
glass transition temperature  (Tg) of PS/CuO nanocomposites 
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was analysed by Shimadzu DSC-50 differential scanning 
calorimetry. A sample of 8–10 mg was weighed and placed 
in an aluminium pan. It was heated from room tempera-
ture to 250 °C at a heating rate of 10 °C  min−1. The tensile 
strength was carried out on UTM G-410B with maximum 
load of 5 kN at a speed of 2 mm  min−1 at 25 °C as per the 
ASTM D 638. The Zwik 5102 impact-testing device was 
used to assess impact strength. Using ASTM D2240, the 
Shore D hardness of the polymer nanocomposites was cal-
culated. Eight readings were collected for each sample in 
different spots, and the average reading was reported. The 
Hioki impedance analyser (HIOKI 3570 model) was used 
to measure the electrical resistivity and dielectric charac-
teristics of the nanocomposites over a frequency range of 
100–1 MHz. The analysis was performed at varying tem-
peratures (30, 50, 70 and 90 °C).

Results and discussion

FTIR spectra

The FTIR spectra of CuO, PS and PS/CuO nanocomposites 
are shown in Fig. 1. The characteristic IR peaks of CuO 
nanoparticles are obtained at 607, 515  cm−1. The spectra 
of PS exhibit absorption peaks at 3075 and 3033  cm−1 due 
to aromatic C–H stretching vibration. The peak obtained at 
1604, 1498, and 1456  cm−1 corresponds to aromatic C=C 
stretching vibration in the PS matrix. The existence of ben-
zene ring is indicated by these peaks. The C–H out-of-plane 
bending vibration in PS is represented by the peaks at 795 
and 652  cm−1. This confirms that there is only one sub-
stituent in the benzene ring. The absorption bands at 2928 

and 2850  cm−1 show the existence of methylene groups [25, 
26]. The IR spectra of PS/CuO nanocomposites exhibit the 
characteristic absorption peaks of PS with the formation of 
nanoparticles at 505  cm−1, confirming the presence of CuO 
bond in the polymer matrix. Moreover, the aromatic C–H 
stretching vibration peaks are slightly shifted to 3069 and 
3026  cm−1 as compared to the spectra of PS. Similarly, the 
C–H out-of-plane bending vibration is also shifted to 762 
and 699  cm−1.

UV–visible spectroscopy

The UV–visible spectra of PS and its CuO nanocomposites 
are displayed in Fig. 2. The prominent absorption peak of 
PS at 252 nm, which is associated with the π-π* transition, 
is caused by forbidden transitions in the excited states of the 
polymer. The figure clearly shows that the nanocomposites’ 
UV peak has shifted slightly to the right (from 252–258 nm). 
The UV absorption peaks of the nanocomposites appear to 
be broader to those of pure PS. This redshift and broadening 
of the absorption peaks in the nanocomposites imply that the 
addition of CuO nanoparticles to the polymer matrix causes 
an increase in structural disorder or aggregation, which 
results in a wider range of permitted electronic transitions. 
This effect may be explained by interactions between the 
polymer chains and the CuO nanoparticles, which alter the 
electronic properties of the nanocomposites. The intensity 
of the absorption peaks of the nanocomposites is increasing 
with the loading of CuO nanoparticles. Maximum intensity 
and broadness are observed for 7 mass% nanocomposite. 
Beyond 7 mass%, the intensity decreases, and this is attrib-
uted to the particle agglomeration in the nanocomposites. 
Also, the nanocomposites do not show any UV absorbance 
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Fig. 1  FTIR spectra of CuO and CuO-incorporated PS nanocompos-
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behaviour above 400 nm. This indicates that the nanocom-
posites are transparent to UV radiation beyond the 400 nm 
range. This particular feature enables potential applications 
in a variety of industries, including optics and electronics, 
where UV protection is not necessary or desirable.

Optical bandgap energy

The study of the optical bandgap energy (Eg) provides sig-
nificant insights into the electronic properties of PS/CuO 
nanocomposites. Figure 3 illustrates a graphic representation 
(Tauc plot) of these results, enabling a clear comparison of 
the bandgap energies across various compositions. The Eg 
values for PS and PS/CuO nanocomposites are calculated 
using the Tauc equation:

where α is the linear absorption coefficient, β a constant, h 
is the planks constant, and υ is the frequency of light. The 
exponent m is a constant that represents the optical absorp-
tion process. The nature of the energy gap or the transition 
involved is decided by the value of m. It can have values 
½ and 2 for indirect allowed transition and direct allowed 
transitions, respectively. We have plotted (αhc/λ)2 against hυ, 
photon energy. The optical bandgap energy is obtained by 
extrapolating the straight-line portion of the curve to α = 0. 

(1)�h� = �(h� − Eg)m

It is evident from the graphs that the band gap energy value 
drops with the addition of CuO nanoparticles. This results 
from an increase in the valence and conduction band shift 
[27]. The 7 mass% sample of these composites exhibit the 
lowest bandgap energy, possibly as a result of the effective 
distribution of CuO on PS at that loading. Above this load-
ing, the bandgap energy value rises, possibly as a result of 
the aggregation of CuO particles in the polymer matrix.

The refractive index of PS/CuO nanocomposites can be 
calculated from the obtained Eg values using the equation

Figure 4 illustrates the variation of Eg values and related 
refractive index with CuO nanoparticle loading. As the 
dopant concentration increased, the refractive index rose 
until 7 mass% sample, after which it started to fall. The 
increase in packing density of the PS/CuO nanocomposites 
suggested by the reference may be the cause of the refrac-
tive index increases with concentration. On the other hand, 
structural abnormalities at higher loading 10 mass% result 
in a decline in n values. Nanocomposites with higher refrac-
tive index values are excellent for optoelectronic and anti-
reflective applications.
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XRD analysis

The presence of CuO nanoparticles in the synthesized 
PS polymer nanocomposites was confirmed by the XRD 
analysis. Figure 5 shows the XRD patterns obtained for 
CuO nanoparticles, PS and PS nanocomposites. The XRD 
pattern of the synthesized CuO nanoparticle shows charac-
teristic peaks at 2θ = 18.3° (020), 24.5° (021), 32.4° (002), 
33.16° (112) 35.53° (022), 38.47°(111), 42.29° (131), 
48.89° (151) representing its crystalline nature [28]. The 
average crystalline size (D) of CuO nanoparticle is calcu-
lated using the Scherrer equation.

where k is a dimension less shape factor (= 0.9), λ is the 
wavelength of X-ray beam (= 1.54Å for CuKα), β is the line 
broadening at half maximum intensity (FWHM) in radi-
ans, and θ is the Bragg angle [50]. The average crystalline 
size obtained is ~ 34 nm. The amorphous character of PS 
is indicated by the broad peak found at 2θ = 19.31° and a 
weak peak at 2θ = 10.43° in the XRD pattern. It is found 
that the characteristic peaks of CuO nanoparticle appears 
in the XRD pattern of PS/CuO nanocomposites, and at the 
same time the weak peak at 2θ = 10.43° is absent in PS/CuO 
nanocomposites. There is a decrease in the intensity and 
width of the amorphous peaks at 2θ = 19.31° is observed in 
nanocomposites. The intensity of CuO peaks in the nano-
composite pattern increased with filler loadings. All of these 
changes confirm the formation of nanocomposites and shows 
an increase in the crystallinity of the polymer reinforced 
with nanofiller.

FE‑SEM–EDX analysis

The surface morphology of PS and PS/CuO nanocompos-
ites, analysed by the FE-SEM, along with the EDX spectra 
for 7 and 10 mass% sample is shown in Fig. 6. The EDX 
spectrum of synthesized PS/CuO nanocomposites shows 
the presence of both copper and oxygen elements. The FE-
SEM image of PS exhibits a homogeneous smooth surface, 
while the incorporation of nanoparticles changes the plane 
surface into a rough surface. CuO nanoparticles are observed 
to be homogeneously distributed within the PS matrix in 
the FE-SEM images. Among the nanocomposites 7 mass% 
loading exhibits more uniform dispersion of CuO nanopar-
ticles. Since the 7 mass% sample possesses more effective 
and uniform dispersion of nanoparticles, the interfacial 
interaction between the nano CuO and PS matrix seemed 
to be enhanced. As the percentage composition increases 
the homogeneity of the nanofillers in the polymer matrix 
decreases and they begin to aggregate. At 10 mass% load-
ing the CuO nanoparticles undergo self-agglomeration, 
which negatively affects their compatibility with the poly-
mer matrix. This results in a reduced interfacial attraction 
between the polymer and nanofiller. Therefore, it may be 
inferred from FE-SEM images that the highest interfacial 
bonding is found in the 7 mass% nanocomposite, and it is 
supposed to show the best mechanical characteristics. 

DSC analysis

Figure 7 displays the DSC curves of PS and its nano-
composites with different loadings of CuO. The glass 
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transition temperature, or the temperature at which the 
polymer transforms from a glassy state to a rubbery one, 
is responsible for a dramatic endothermic dip in the DSC 
curve. The glass transition temperature for pure PS and 
the 3, 7 and 10 mass% nanocomposites are observed at 
124.7 °C, 132 °C, 134 °C, and 140 °C, respectively. The 
improved thermal stability of PS by the addition of CuO 
nanoparticles is evident from the DSC analysis. The XRD 
study has already shown that the PS/CuO nanocompos-
ites have acquired a crystalline character. Therefore, the 
strong filler–polymer interaction and the constrained 
mobility of the molecular chains in the spaces between 
the scattered nanoparticles are to blame for the improved 
thermal stability of the polymer nanocomposites [29]. The 
acquired crystalline nature of the PS/CuO nanocomposites 
is already evident from the XRD analysis.

TGA 

TGA was used to examine the thermal stability of PS and its 
nanocomposites with various loadings of CuO nanoparticles. 
The resultant TGA profiles are illustrated in Fig. 8. Pure PS 
and the nanocomposites follow single-phase degradation 
behaviour. It is clear from the TG analysis that the thermal sta-
bility of PS/CuO nanocomposites is higher than the parent PS. 

Also, the thermal stability of nanocomposites further increases 
with the addition of CuO nanoparticles. The thermal degrada-
tion of pure PS is observed around 280 °C. This is due to the 
decomposition of polystyrene into the styrene monomer. At 
the same time, the degradation temperature of nanocomposites 
is raised to 350 °C. PS/10 mass% CuO shows the maximum 
thermal stability. This enhanced thermal stability exhibited 
by the nanocomposites is due to the presence of metal oxide 
nanoparticles in them. CuO nanoparticles prevent the mobil-
ity of PS, which prevents volatile compounds in the polymer 
matrix from degrading and thus improves the heat stability of 
PS composites. Moreover, the analysis of the char residue left 
at 600 °C for each sample further supports the thermal stabil-
ity. The metal oxide nanoparticles in the polymer decreased 
the development of carbonaceous char layers, inhibiting the 
thermal decomposition process [29].

Mechanical properties

Tensile strength

Tensile strength is the capacity of a material to hold a mass 
while being stretched to a certain amount without breaking, 
and it is influenced mainly by the nature of the polymer 
matrix, the nanofillers used, the synthetic procedures and 

Fig. 6  FE-SEM image of PS 
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10 mass% CuO along with the 
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the extent of interaction [28]. Strong tensile mechanical 
strength is an important requirement for the commercial 
applications of polymer nanocomposites. Table 1 shows the 
impact of CuO nanoparticles on the tensile characteristics of 
PS. As we add more CuO nanoparticles, the tensile strength 
of polystyrene rises. PS/7 mass% CuO nanocomposite is 
found to have the highest tensile strength. About 40% of the 
increase in tensile strength is observed as compared to pure 
PS. The enhanced tensile strength of nanocomposites is a 
result of the insertion of nanoparticles, which enables the 
polymer matrix to sustain the stress created without ruptur-
ing [24]. The tensile strength slightly decreases with further 
loading of nanoparticles. 10 mass% nanocomposite shows 
decreased tensile strength. This is due to the aggregation of 
nanofillers in the polymer matrix and thereby diminishes 

the filler–polymer interaction. The tensile modulus also fol-
lows the above trend. The modulus value increases with the 
addition of CuO nanoparticles up to a particular loading. 
The 7 mass% nanocomposite exhibits the maximum tensile 
modulus due to the homogeneous dispersion of nanoparti-
cles. At higher loadings, the tensile modulus decreases due 
to decreased interfacial interaction.

Impact strength

Impact strength is a measurement of how much energy a 
material can hold when it is suddenly shattered. Low impact 
strength is a main disadvantage of polymers. So, enhance-
ment of impact strength is necessary to broaden the appli-
cation of nanocomposites. The particle size, the nature of 
the filler, the type of polymer, and the filler–matrix inter-
actions will greatly influence the impact strength of poly-
mer nanocomposites [30]. The impact strength of PS/CuO 
nanocomposites is listed in Table 1. As the CuO nanofiller 
loading increases, the impact strength of PS is increas-
ing. PS/7 mass% CuO loading exhibits maximum impact 
strength. About a 60% enhancement in impact strength is 
observed for the 7 mass% nanocomposite. This is attrib-
uted to the effective incorporation of CuO nanoparticles 
in the PS matrix, which is already evident from XRD and 
SEM analysis. Thus, the polystyrene is well reinforced 
with CuO nanofiller. Beyond 7 mass% loading, the impact 
strength slightly decreases due to the increased brittleness 
of nanocomposites.

Hardness

The hardness of polymer nanocomposites was measured 
using shore durometer. The shore D hardness of PS and 
PS/CuO nanocomposites is displayed in Table 1. The hard-
ness of polystyrene increases with the addition of CuO 
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Table 1  The mechanical properties of PS with different contents of 
CuO

Samples Tensile 
strength/
MPa

Modulus/MPa Impact 
strength/
KJ  m2

Hardness/
shore D

PS 29.13 500 12.41 42
PS/3 mass% 

CuO
32.81 522 14.21 43

PS/5 mass% 
CuO

35.68 546 16.75 44.5

PS/7 mass% 
CuO

39.96 556 19.26 46

PS/10 mass% 
CuO

37.45 550 18.45 48
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nanoparticles. During the measurement of hardness, the 
polystyrene matrix contains CuO nanoparticles with a high 
degree of stiffness, which results in elevated levels of inden-
tation resistance. The PS/10 mass% CuO nanocomposite 
exhibits the maximum hardness. About 16% of the enhance-
ment in hardness is observed at this loading. The polymers 
with hardness value less than 65 are considered soft materi-
als. Soft polymeric materials have flexible electronic appli-
cations and are also used in automotive applications [31].

AC conductivity at room temperature

The frequency-dependent ac electrical conductivity of PS 
and its CuO nanocomposites is demonstrated in Fig. 9. From 
the graph, it can be seen that for all samples, conductivity 
rises as applied frequency rises. The nonlinear increase in 
conductivity with frequency accounts for the existence of 
non-ohmic type conduction. Lower conductivities at lower 
frequencies are caused by insulating grain boundaries, and 
conducting grains are responsible for conductivity disper-
sions at higher frequencies [32]. The AC conductivity of 
PS is increased by the addition of CuO nanoparticles up to 
7 mass% loadings, and after this mass%, a drop in conductiv-
ity is seen. This increase in the conductivity of nanocompos-
ites in comparison with PS is due to the effective dispersion 
of CuO nanoparticles in the polymer matrix. The drop in 
conductivity above 7 mass% loadings of CuO nanoparticles 
can be due to the generation of agglomerates, which impede 
the flow of charge carriers. Agglomeration of nanoparticles 
reduces the effective surface area available for charge trans-
port, which lowers conductivity.

Temperature‑dependent AC conductivity

Figure 10 shows how the AC conductivity of PS and PS/
CuO nanocomposites varies with frequencies at various tem-
peratures. For all samples, the conductivity graphs increase 
linearly with frequency at all temperatures. It is evident 
from the plots that the AC conductivity of nanocomposites 
increases with temperature. The bipolar hopping mechanism 
refers to the movement of charge carriers between localized 
states, which becomes more prominent at low temperatures. 
On the other hand, at high temperatures, thermally induced 
polaron hopping occurs where charge carriers are able to 
move through the lattice by overcoming energy barriers. 
These distinct mechanisms contribute to the AC conduc-
tivity behaviour observed at different temperature ranges. 
The temperature-dependent conductivity is explained by the 
polaron hopping theory. This suggests that there are two 
kinds of polaron theories, big polaron (conductivity declines 
with frequency at all temperatures) and small polaron (con-
ductivity rises with frequency at all temperatures). Here, 

small polaron theory is relevant in the case of PS/CuO nano-
composites at all temperatures.

The energy needed by ions to break through the potential 
barrier and flow freely is known as the activation energy 
(Ea). The activation energy at different frequency ranges is 
calculated from the slope of the Arrhenius plot:

where σ0, k and T are the pre-exponential factor, Boltzmann 
constant and absolute temperature, respectively [33]. The 
Arrhenius plot (log σac vs. 1000/T) of PS and nanocompos-
ites is displayed in Fig. 11, and the corresponding activation 
energy is listed in Table 2. Thermally enhanced hopping of 
charge carriers is evident from the linear nature of Arrhenius 
plots. The activation energy of the samples decreases with 
an increase in frequency and filler concentration due to this 
hopping. The lower activation energy at higher frequency 
indicates the increased conductivity of the samples. The acti-
vation energy decreases with the loading of nanoparticle up 
to 7 mass%. The PS/10 mass% CuO nanocomposite shows 
s slightly increased activation energy due to agglomeration 
of CuO nanoparticles.

Dielectric constant

The dielectric constant (ε′) measures the ability of a mate-
rial to store electrical energy in an electric field. Figures 12 
and 13 show the frequency-dependent dielectric constants 
of pure PS and its nanocomposites at room temperature 
and various temperatures. Dielectric constant values are 
found to decrease exponentially with frequency. At lower 

(4)�ac = �0 exp
(−Ea∕kT)
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Fig. 10  The AC conductivity 
of PS and PS/CuO at various 
temperatures
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frequencies, the dielectric constant values are relatively 
higher for all samples. At these frequencies, the dipoles 
present in the nanocomposites will orient themselves in 
the direction of applied field [9]. However, in higher fre-
quency ranges, the electric field fluctuations are considera-
bly quicker than the oscillating charge carriers, preventing 
them from aligning themselves in the applied field’s direc-
tion. As a result, the dielectric constant value decreases 

[33, 34]. PS/CuO nanocomposites exhibit a consider-
able increase in dielectric constants in lower frequency 
domains when compared to pure PS. This is in consistent 
with the space charge polarization between the compo-
nents. The maximum (ε′) value is observed for 7 mass% 
loaded nanocomposite which may be due to the uniform 
dispersion of CuO nanofiller into the polymer matrix. 
The variation of dielectric constant with temperature is 
depicted in Fig. 13. On increasing temperature, a greater 
number of free charge carriers attain sufficient energy and 
orient more frequently against the applied field, thus the 
(ε′) value increases in the lower frequency region. At lower 
temperatures, the charge carrier polarization becomes less, 
which results in the lowering of dielectric constant values. 
Due to the lack of charge accumulations and interfacial 
polarization, the influence of temperature on the dielectric 
constant is minimal at higher frequencies [34].

Conclusion

Copper oxide nanoparticle-reinforced polystyrene nanocom-
posites were synthesized successfully by the single-step in situ 
free radical polymerization method, and their optical, thermal, 
mechanical, and temperature-dependent electrical properties 
were examined. The FTIR measurements revealed the attach-
ment of CuO nanoparticles in the polystyrene matrix. The 
enhancement in crystalline nature with the addition of CuO 
nanoparticles in PS is demonstrated by the rise in the inten-
sity of CuO peaks in the XRD pattern of nanocomposites. 
The significant red shift observed in the absorption spectra 
of PS nanocomposites strongly recommends the incorpora-
tion of CuO nanoparticles into polystyrene. The PS/7 mass% 
CuO nanocomposite has a lower bandgap energy and the 
maximum refractive index than the parent polystyrene due to 
the homogeneous dispersion of CuO. The SEM examination 
further supported the homogeneous nanoparticle dispersion 
in the 7 mass% nanocomposite. Due to the inclusion of CuO, 
the glass transition temperature of nanocomposites rose. The 

Table 2  Activation energy values of PS and PS/CuO nanocomposites 
at various frequencies

samples Activation energy/eV

104/Hz 106/Hz 106/Hz

PS 5.5089 5.2681 5.1778
PS/3 mass%CuO 5.4439 5.2175 4.9157
PS/5 mass%CuO 2.277 2.1710 1.8726
PS/7 mass%CuO 2.5041 2.0102 1.6866
PS/10 mass%CuO 2.8612 2.8784 2.6446
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Fig. 13  Variation of dielectric 
constant with frequency at dif-
ferent temperatures
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increase in  Tg and thermal stability with the reinforcement 
of nanoparticle was clearly evinced from the DSC and TGA, 
respectively. The mechanical strength, modulus, hardness, 
and impact strength of the PS nanocomposites were greatly 
enhanced with the addition of nanoparticles. The 7 mass% 
nanocomposite showed excellent mechanical characteristics 
due to the effective reinforcement of nanoparticles. The AC 
conductivity and the dielectric constant increase with tem-
perature, frequency, and filler concentration, and the activa-
tion energy decreases with the loading of CuO particles. PS/
CuO nanocomposites have excellent mechanical properties, 
enhanced thermal properties, good optical properties, and 
enhanced conductive capabilities, making them suitable for 
application in optoelectronic devices and flexible conducting 
materials.
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