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Abstract
A review of the existing literature on the theoretical study of peristalsis reveals that the results of a lot of investigations on 
peristaltic motion in a variety of complex geometries such as symmetry/asymmetric channel, tube, annulus, non-uniform 
channel, and curved channel are significantly improved referring to a wide range of biological, biomedical and engineering 
circumstances. However, as of now, the combined impacts of curvature and asymmetric displacement of walls on wall-
induced fluid motion are still kept open even though the structure of the channel may also exist in the form of a curved 
asymmetric channel in nature. In the current investigation, a theoretical analysis of the peristaltic motion of hybrid nanofluids 
within a curved asymmetric channel having systematically contracting and expanding sinusoidal heated walls is examined 
with reference to applications of physiological conduits. Moreover, According to theory, nanofluids are mono-phase liquids 
in which the base fluid and the floating nanoparticles are at local temperature equilibrium, preventing slippage. The severely 
nonlinear governing equations of hybrid nanofluid motion powered by peristalsis are restricted to approximations based 
on a long wavelength and minuscule Reynolds numbers. After that, exact analytical solutions of the hybrid nanofluid were 
found. Finally, diagrams for the impact of relevant parameters are efficiently used to discuss and conclude the results. The 
outcomes demonstrate that, in comparison to the base fluid, the hybrid nanofluid has a lower temperature. The difference 
in heat conductivity between copper (Cu) and silver (Ag) nanoparticles has a small influence, which may be the reason for 
the extremely small difference in importance between nanofluid and hybrid nanofluid. These findings have several practical 
implications, some of which, improved drug delivery systems where the lower temperature and efficient heat transfer proper-
ties of hybrid nanofluids can be leveraged to design more effective and reliable micro-pumps for drug delivery.

Keywords Hybrid nanofluid · Curved asymmetric channel · Peristaltic flow · Targeted drug delivery system · Heat transfer · 
Magnetic field

Introduction

Due to its large range of usages in biological systems, bio-
medical engineering, and industry, the fluid flow generated 
and regulated by continuous wave propagation on the pliable 

walls of the channel referred to as peristalsis has sparked the 
interest of numerous scientists, researchers, and physiolo-
gists. In the physiology system, the working rule of peristal-
tic pumping can be notified in many biological organs, such 
as the motion of a nutrient bolus through the gastrointestinal 
tract, blood movement within the arteries and veins, urine 
movement from the kidneys to the urinary bladder by the 
urethra, the passage of ovum in woman's Fallopian tubes, 
transportation of embryos in the uterus, and swallowing food 
through the esophagus. Extracorporeal membrane oxygena-
tion (ECMO) is a kind of artificial lung and/or heart that 
works based on peristaltic pumping. More recently, phy-
sicians have found during the ongoing pandemic situation 
due to the outbreak of Covid 19 that ECMO, according to 
the Extracorporeal life support organization, ECMO could 
save the lives of severely sick COVID-19 patients to whom 
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ventilation is not supported. Hemodialysis machines, roller 
pumps, and finger pumps are also operated depending on 
the phenomenon of peristalsis. The day-to-day applica-
tions of the peristaltic pump are often seen in the infusion 
of vitamins A & D, the circulation of cell suspension in 
fermentation, the supply of nutrients for cultures, the aspi-
ration of tissue culture media, the dispensing of cosmetics, 
handling of chemicals and transportation of fuels and lubri-
cants, among other uses. Latham [1] Peristaltic motion had 
significantly improved Fung and Yih [2]. Several practical 
applications in biomedical engineering, physiology, medi-
cal physics, industry, modern engineering, and technology 
led researchers and scientists to develop so many innovative 
concepts and theories in the field of peristaltic motion with 
reference to various plain and complex geometries of flow 
and references therein [3–5].

The magnetohydrodynamics (MHD) phenomenon has 
garnered wide attention due to its realistic uses in frequent 
industrial and engineering areas, including in MRI, detection 
of tumors, fusion reactors, Hydrogen combustion, plasma 
physics, geophysics, high electric conductivity fluid pump-
ing, optical filter manufacturing process, stops bleeding in 
surgeries, cell separation, MHD pumps and usage of mag-
netic nanoparticles as a drug-delivering agent for targeting 
tumor, to name a few. A study on the characteristics of the 
velocity of electrically conductive fluid acting upon the 
electromagnetic field is generally referred to as Magneto-
hydrodynamic (MHD) in the branch of fluid dynamics. The 
peristaltic movement with varying magnetic fields, parti-
cle–fluid suspension, and endoscope, has been investigated 
by Bhatti and Zeeshan [6]. Kumar et al.[7] reported MHD 
non-Newtonian fluid motion within an annulus of rotating 
cylinders.

In recent years, studying the momentum and mixed 
convection energy transfer in a channel/tube has been 
paid wide attention due to its fundamental and variety of 
uses in engineering, such as cooling and heating systems. 
A combination of forced and free convection to transfer 
heat is known as mixed (combined) convection. Energy 
transfer involves a critical role in industry, and biomedical 
engineering applications such as distillation, crystalliza-
tion, food processing, dynamics of lakes, and vasodila-
tion. Thermotherapy, which involves using heat to destroy 
cancerous cells, is one of the efficient therapeutic options 
for cancer treatment. Thermal ablation and hyperthermia 
are the two main types of heating being applied in ther-
motherapy. Hyperthermia is a form of thermotherapy in 
which heat is used to raise the temperature of the entire or 
a part of the human body from a standard temperature of 
37 °C to 41–45 °C. The heating created by hyperthermia 
can destroy cancer cells selectively without causing dam-
age to healthy tissue in the surrounding area. Since the 
heating caused by thermal ablation with an application to 

a high temperature (more than 45 °C) can kill cells in both 
the tumor and the underlying tissues, it must be used with 
care [8]. The consequence of heat transfer, variable, and 
endoscope wall-induced third-order fluid motion has been 
described by Nadeem et al. [9]. The influence of Dufour 
and Soret on rotating fluid flow within porous sheets has 
been discussed by Hayat et al. [10].

Researchers using heat and cooling fluids have been test-
ing new strategies for increasing the thermal conductivity of 
working fluids. After several attempts, a novel technique is 
applied to boost the thermal efficiency of the working fluid 
by dispersing nano-sized solid particles in the base fluid. 
Nanofluids are produced by mixing one or more nanopar-
ticles with a base fluid. As a result of exceptional physico-
chemical properties not found in single nanofluids and base 
liquids, hybrid nanofluids' thermal conductivity is higher 
compared to them. Nanoparticles possess various uses, 
including pharmaceutical, clinical diagnostic, therapeutic 
applications, cosmetics, energy, nutritional, environmental, 
and removing toxins from water. After introducing nanofluid 
by Choi et al. [16]. Its effect was successfully set into motion 
generated by peristalsis [17–22].

Even though the shape of the channel of flow geometry 
in reality, whether in industry or physiology, is not straight 
in nature and fluid induced by its rhythmically oscillatory 
movement of the walls having different amplitudes, phase 
differences, and asymmetric width, all the studies of peri-
staltic motion about a verity of biological and mechanical 
situations, as of now, have been addressed only in a flatted 
channel [4] and/or asymmetric channel [11–14], micro chan-
nel [15] or curved channel [23–37], or tube [16, 17] and/or 
annulus [6, 7] or circular rotating disk [40]. The fluid motion 
driven due to the coupled effects of electroosmosis and peri-
stalsis phenomenon has been analyzed numerically at length 
by Narla and Tripathi [34]. In a recent examination, Afridi 
et al. [35] have successfully studied aluminum oxide and 
copper nanoparticle-based nanofluid motion over an elastic 
curved surface under viscous dissipation, heat transfer, and 
entropy generation. The movement of hybrid (Cu∕blood) 
and (Cu − Ag∕blood) nanofluid caused by peristaltic motion 
inside an annulus tube having ciliated walls was presented 
by Saleem et al.[36]. Nadeem et al.[37] have focused on 
transporting 

(
Cu − Al2O3∕water

)
 over exponentially stretch-

ing channels and surprisingly observed that the hybrid 
nano liquid attains maximum heat transfer than nanofluid. 
The creeping flow of silica-titania/ ethylene glycol hybrid 
nanoliquid in a curved channel because of the metachronal 
waves through lubrication theory approximations has been 
examined by employing an explicit finite difference method 
for solving coupled equations by Javid et al.[38].

Based on the preceding description and a thorough litera-
ture review, it is easy to infer that no investigation has been 
made thus far to discuss the peristaltic movement of hybrid 
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nanofluids in a curved asymmetric conduit. As a result, 
momentum and thermal transfer characteristics of a hybrid 
nanofluid driven by peristalsis in the appearance of the radial 
magnetic field in an asymmetric curved channel are explored 
in this investigation. By solving the equations of motion and 
energy, the exact analytical solutions of temperature and 
stream function have been obtained after adopting lubrica-
tion approaches. The proposed mathematical research aims 
to determine the efficacy of magneto-nanoparticle-carrying 
drugs in a curved asymmetric channel during peristaltic 
motion. Eventually, the graphs for the impact of the relevant 
parameters are used to explain the key findings in more depth.

Mathematical structure

Consider an electrically conducting fluid motion of nanopar-
ticle liquid in a curved asymmetric channel in two dimensions 
with a non-uniform width d1 + d2. Describe 

(
R;S;Z

)
 the coor-

dinates in the cross, downstream, and vertical directions. The 
motion in a curved asymmetric channel is caused by rhythmic 
waves of modest amplitudes moving along the extensible walls 
see Fig. 1. The peristaltic waveform is depicted by

where �, d1 + d2 are wavelength, channel width, a1, b1 
are wave amplitudes, the phase difference  � varies 
0 ≤ � ≤ �, � = � the waves are in phase, � = 0 , the chan-
nel changes to a symmetric channel with waves out of phase, 
a1, d1, b1, d2 and  � obeys the following relation

(1)
H

�

1
= −d2 − b1 cos

[
2�

�

(
S − ct

)
+ �

]

H
�

2
= d1 + a1 cos

[
2�

�

(
S − ct

)]

(2)b2
1
+ a2

1
+ 2a1b1 cos� ≤ (d1 + d2)

2

When a magnetic field is applied in the transverse direc-
tion, an electrically conducting liquid flow can be obtained 
in the form of B =

(
B0

ℜ̃
, 0, 0

)
. Here B0 is the magnetic field 

s t r e n g t h ,  O h m ' s  l aw  l e a d s  a s  f o l l o w s , 

J × B =

(
0,−

𝜎B�2
0
U

ℜ̃2
, 0

)
.

where � is the electrical conductivity,J is the current 
density. 

The governing equations of the problems are

In the above equations, ℜ̃ = R + R∗.

In which are the coordinates of the down-
stream velocity U  and the cross-stream velocity 
V , �nf, �nf, P, �nf,T , (�cp)nf, knf, �nf represents the effec-
tive thermal diffusivity of the hybrid nanofluids, effective 
dynamic viscosity, pressure, effective density, temperature, 
effective heat capacitance, effective thermal conductivity, 
electrical conductivity, respectively which are defined as 
follows (Table 1).

In Table 2, kf, �, �f are the effective thermal conduc-
tivity, the solid fractional volume, base fluid's effective 
electrical conductivity of the hybrid nanofluid.

In the above laboratory frame, 
(
R, S

)
 the flow in the 

channel is unsteady. For steady analysis, we change from 
fixed to wave frame 

(
r, s

)
 by

Equations. (3)–(6) becomes

(3)
R∗

ℜ̃

𝜕

𝜕R

(
ℜ̃V

R∗

)
+

R∗

ℜ̃

𝜕U

𝜕S
= 0,

(4)

𝜌nf

(
𝜕V

𝜕t
+ V

𝜕V

𝜕R
+

UR∗

ℜ̃

𝜕V

𝜕S
−

U
2

ℜ̃

)
= −

𝜕P

𝜕R
+ 2𝜇nf

𝜕

𝜕R

(
𝜕V

𝜕R

)

+
R∗𝜇nf

ℜ̃

𝜕

𝜕S

(
𝜕U

𝜕R
−

U

ℜ̃
+

R∗

ℜ̃

𝜕V

𝜕S

)
−

2𝜇nf

ℜ̃

(
R∗

ℜ̃

𝜕U

𝜕S
+

V

ℜ̃

)

(5)

𝜌nf

(
𝜕U

𝜕t
+ V

𝜕U

𝜕R
+

R∗U

ℜ̃

𝜕U

𝜕S
+

VU

ℜ̃

)

= −
R∗

ℜ̃

𝜕P

𝜕S
+ 𝜇nf

𝜕

𝜕R

(
R∗

ℜ̃

𝜕V

𝜕S
−

U

ℜ̃
+

𝜕U

𝜕R

)

+ 2
𝜇nfR

∗

ℜ̃

𝜕

𝜕S

(
R∗

ℜ̃

𝜕V

𝜕S
+

V

ℜ̃

)
+ (𝜌𝛼)nfg

(
T − T0

)
−

𝜎nfB
�2
0
U

ℜ̃2

(6)

(
𝜌cp

)
nf

(
𝜕T

𝜕t
+ V

𝜕T

𝜕R
+

UR∗

ℜ̃

𝜕T

𝜕S

)
= knf

(
𝜕2T

𝜕R
2
+

(
R∗

ℜ̃

)2
𝜕2T

𝜕S
2

)
+ Q0,

(7)ṽ = V , s = S − ct, ũ = U − c, r = R,

(8)
R∗

ℜ

𝜕

𝜕r

(
ℜ

R∗
ṽ

)
+

R∗

ℜ

𝜕ũ

𝜕s
= 0,

d1 d2

b1

T0

a1

T1

R*

c

R

O
H’1 H’2

S

λ

φ

Fig. 1   Flow geometry
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Here ℜ = r + R∗.

The non-dimensional quantities are

(9)
𝜌
nf

(
R∗ũ

ℜ

𝜕ṽ

𝜕s
+ ṽ

𝜕ṽ

𝜕r
+

(ũ + c)2

ℜ

)
= −

𝜕P

𝜕r
+ 2𝜇

nf

𝜕

𝜕r

(
𝜕ṽ

𝜕r

)

+ 𝜇
nf

R∗

ℜ

𝜕

𝜕s

(
R∗

ℜ

𝜕ṽ

𝜕s
−

ũ + c

ℜ
+

𝜕ũ

𝜕r

)
− 2

𝜇
nf
R∗

ℜ

(
R∗

ℜ

𝜕ũ

𝜕s
+

ṽ

ℜ

)
,

(10)

𝜌nf

(
ṽ
𝜕ũ

𝜕r
+

ũR∗

ℜ

𝜕ũ

𝜕s
+

(ũ + c)ṽ

ℜ

)

= −
R∗

ℜ

𝜕P

𝜕s
+ 𝜇

nf

𝜕

𝜕r

(
R∗

ℜ

𝜕ṽ

𝜕s
−

ũ + c

ℜ
+

𝜕ũ

𝜕r

)

+ 2
𝜇
nf
R∗

ℜ

𝜕

𝜕s

(
R∗

ℜ

𝜕ṽ

𝜕s
+

ṽ

ℜ

)
+ (𝜌𝛼)

nf
g
(
T − T

0

)
−

𝜎
nf
B�2
0
(ũ + c)

ℜ2
,

(11)

(
𝜌cp

)
nf

(
ṽ
𝜕T

𝜕r
+

ũR∗

ℜ

𝜕T

𝜕s

)
= knf

(
𝜕2T

𝜕r
2
+
(
R∗

ℜ

)2 𝜕2T

𝜕s
2

)
+ Q0,

(12)

v =
ṽ

𝛿c
, s =

s

𝜆
,P =

d2
1

𝜇
f
𝜆c

p, 𝛿 =
d
1

𝜆
, k =

R∗

d
1

, 𝜃 =
T − T

0

T
1
− T

0

,

𝛽 =
Q

0
d2
1

k
f

(
T
1
− T

0

) , r = r

d
1

, Gr =
𝜌f g𝛼f d

2

1

(
T
1
− T

0

)

c𝜇f

,

a =
a
1

d
1

, h
1
=

H
�

1

d
1

, h
2
=

H
�

2

d
1

, H2 =
𝜎
f
B�2
0

𝜇
f

,

d =
d
2

d
1

, Re =
𝜌
f
cd

1

𝜇
f

, b =
b
1

d
1

, u =
ũ

c
,

Table 1  Water,Cu and Ag′ s thermo-physical properties

Properties H
2
O Cu Ag

cp∕J kg
−1 K−1 4179.0 385.0 235.0

�∕kg m−3 997.0 8933.0 10500.0
k∕Wm−1 K−1 0.613 400.0 429.0
� Sm−1 0.05 5.96 6.3

Table 2  Thermophysical 
properties of hybrid nanofluid

Property Correlation

Viscosity /  m2  s−1
�nf =

�f

(1−�Ag−�Cu)
2.5

Density / kg  m−3
�nf =

(
1 − �Ag − �Cu

)
�f + �Ag�Ag + �Cu�Cu� ,

Heat capacity / J  K−1 (
�cp

)
nf
=
(
1 − �Ag − �Cu

)(
�cp

)
f
+ �Ag

(
�cp

)
Ag

+ �Cu

(
�cp

)
Cu�

,

Electrical conductivity / S  m−1

�nf =
�Cu

(
1 + 2�cu

)
+ 2�bf

(
1 − �cu

)

�Cu
(
1 − �cu

)
+ �bf

(
2 + �cu

) �bf,

where �bf =
�Ag

(
1 + 2�Ag

)
+ 2�f

(
1 − �Ag

)

�Ag
(
1 − �Ag

)
+ �f

(
2 + �Ag

) �f,

Thermal conductivity / W  m−1  K−1

knf =
kCu + 2kbf + 2�Cu

(
kCu − kbf

)

kCu + 2kbf − �Cu

(
kCu − kbf

) kbf,

where kbf =
kAg + 2kf + 2�Ag

(
kAg − kf

)

kAg + 2kf − �Ag

(
kAg − kf

) kf,

Thermal expansion coefficient /  K−1
(��)nf =

(
1 − �Ag − �Cu

)
(��)f + �Ag(��)Ag + �Cu(��)Cu,

where Gr, �, Re, H are the Grashof number, heat source 
parameter, Reynolds number, and Hartmann number. T0, T1 
with conditions of T1 > T0 is the temperature of the lower 
and upper walls,

The values A1 to A5 for the conventional hybrid nano-
fluid as

Using the aforementioned dimensionless quantities in 
Eqs. (8)–(11) and applying lengthy wavelength and very 
small Reynolds number approximation, Eq. (8) vanishes 
and Eqs. (9)–(11) we have the following equations,

Equation (15) transforms to

To remove pressure, differentiate Eq. (17) with respect to r 
and with the help of Eq. (14) we get

(13)

A1 =

��
1 − �

Ag
− �

cu

�
+

�Ag�Ag

�f
+

�
cu
�cu

�f

�
, A2 =

�nf

�f
,

A3 =

⎡⎢⎢⎣
�
1 − �Ag − �cu

�
+

�
�cp

�
Ag�

�cp
�
f

+

�
�cp

�
cu�

�cp
�
f

⎤⎥⎥⎦
, A4 =

knf

kf
, A5 =

(��)nf

(��)f
.

(14)
�p

�r
= 0,

(15)

−
k

k + r

�p

�s
+

1

(1 − �
Ag

− �
Cu
)2.5

�

�r

(
�u

�r
−

u + 1

r + k

)

+ A
5
G

r
� − A

2
H2

(u + 1)

(r + k)2
= 0,

(16)A4

�2�

�r2
+ � = 0,

(17)

�p

�s
=

r + k

k(1 − �
Ag

− �
Cu
)2.5

�

�r

(
�u

�r
−

1 + u

k + r

)

+
(
k + r

k

)
A
5
G

r
� − A

2

H2

k

(
u + 1

k + r

)
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Now, introducing the following stream functions are

Equation (18) in terms of Eq. (19) as follows

Mean volume flow rate

In the fixed frame, the volume flow rate Q(S, t) is determined 
by

In the waveform, the volume flow rate is equivalently rep-
resented as

Applying Eq. (7) to Eq. (22) and use of Eq. (23) to get 
a relation between unsteady and steady volume flow rates 
Eq. (23), one can obtain,

Over a period, T , the time-average flow X is

Applying Eq. (25) into Eq. (23) and integrating,

(18)

�

�r

(
k + r

k(1 − �
Ag

− �
Cu
)2.5

�

�r

(
�u

�r
−

u + 1

k + r

))
+

A
5

k
G

r
�

+
(
k + r

k

)
A
5
G

r

��

�r
− A

2

H2

k

�

�r

(
u + 1

k + r

)
= 0,

(19)v =
k�s

k + r
, u = −�r

(20)

�

�r

(
k + r

k(1 − �
Ag

− �
Cu
)2.5

�

�r

(
−�

rr
−

1 − �
r

k + r

))
+

A
5

k
G

r
�

+
(
k + r

k

)
A
5
G

r

��

�r
− A

2

H2

k

�

�r

(
1 − �

r

k + r

)
= 0,

(21)�2�

�r2
+ N1� = 0,

(22)Q = (S, t) =

H�
2
(X,t)

∫
H1�(X,t)

U
(
S,R, t

)
dR

(23)q(x, t) =

H�
2

∫
H�

1

ũ
(
s, r

)
dr

(24)Q(S, t) = q + cH�
2
− cH�

1

(25)Q =
1

T

T

∫
0

Qdt.

(26)Q = cd1 + cd2 + q.

The dimensionless mean volume flow rate Θ and F are 
defined as

Equation (26) implies that

in which

By choosing �
(
h1
)
= −

F

2 , one can obtain �
(
h2
)
=

F

2
.

The boundary conditions are

The criterion for preventing a collision between 
two walls of an asymmetric curved channel is given as 
b2 + a2 + 2ab cos� ≤ (1 + d)2.

Result of the problem

The result of Eqs. (19) and (20) with the help of Eqs. (30) and 
(31), we get

The appendix gives all the constants appearing in Eqs. (31) 
and (32).

The pressure gradient is given by

In non-dimensional form, the pressure rise over a single 
wavelength is as follows.

(27)Θ =
Q

cd1
, F =

q

cd1
,

(28)Θ = d + F+

(29)F =

h2

∫
h1

��

�r
dr = �

(
h2
)
− �

(
h1
)

(30)
� = −

F

2
,
��

�r
= −1, � = 0, � = 0, at r = h1 = −d − b sin(2�s + �)

(31)

� =
F

2
,
��

�r
= −1, � = 1, � = 1 at = h2 = 1 + a sin 2�s
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The physical interpretation of numerical 
results

The results of axial velocity distribution, pumping charac-
teristics, temperature profiles, and the trapping phenomenon 
of MHD peristaltic movement of hybrid nano liquids in a 
curved asymmetric conduit under the influence of curva-
ture parameter (k) , magnetic parameter (H) , Grashof number 
(Gr) , heat sink/source parameter (�) , the phase difference ( � ) 
and upper wall amplitude ( a ) are presented in this section.

Figure  2a–d are prepared to note down the influ-
ences of k,H,Gr  and �  with constant values of 
d = 1.1, a = 0.4,� = �∕6, b = 0.3, x = 0.1, on the axial 
velocity across the radial direction of the curved asym-
metric channel h1 ≤ r ≤ h2. The salient feature of k on the 
hybrid nanofluid velocity is presented in Fig. 2a. Signifi-
cantly huge (k → ∞) and small (Near to k = 2) values of k 

(35)Δp� =

2�

∫
0

�p

�s
ds

represent straight and curved channels, respectively. From 
the figure, one can note that the amplitude of the veloc-
ity profile of hybrid nanofluids is moved downward when 
the centerline of a straight channel k is boosted. Figure 2b 
depicts to discuss the behaviour of H on the velocity field. 
It is concluded that owing to a magnetic field strengthening, 
the velocity profile becomes flatter in the channel's center as 
anticipated. A magnetic field introduced transversely to the 
flow direction of an electrically conducting fluid generates a 
resistive force known as the Lorentz force, which yields flow 
resistance of the fluid particle. The impact of Gr (Proposition 
of buoyancy force to the viscous force) on the axial velocity 
is computed in Fig. 2c. It demonstrates that when Gr grows 
the hybrid nanofluid, velocity improves in the upper part of 
the channel. This is because the fluid's internal resistance 
automatically decreases when viscosity lessens. On the other 
hand, the opposite behavior can be seen in the remaining 
part of the channel. The captured result of Fig. 2d indicates 
that the � acts similarly to the Grashof number on the hybrid 
nanofluids velocity profile.

To visualize the impact of sequential coordinated expan-
sion or contraction wave of the channel walls that propels 
fluid forward from lower pressure towards high pressure 

Fig. 2  Velocity profile for a 
Curvature parameter b Hart-
mann number c Grashof number 
d heat source parameter
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along wave velocity, the diagram of the pressure rise 
(
ΔP�

)
 

against the mean volume flow rate (Θ ∶ positive pumping) 
are depicted in Fig.  3a–d. This phenomenon naturally 
arises in various physiological conduits. These graphs 
demonstrate that the pressure rise/drop and volume flow 
rate are inversely connected. We have plotted Fig. 3a to 
see the upshot of the curvature parameter on ΔP� against 
Θ , wherein all other parameters are kept fixed. The fig-
ure shows that the ΔP� is increases in −0.2 ≤ Θ ≤ −0.054 
and diminishes Θ ∈ (−0.054, 1). Also, peristaltic pumping 
(△P𝜆 > 0,Θ > 0) , co-pumping 

(
△P𝜆 < 0,Θ > 0

)
 and free 

pumping 
(
△P� = 0

)
 . are slowed down as the curvature of 

the asymmetric channel rises. Furthermore, to maintain 
no pumping (Θ = 0), the straight channel provides resist-
ance to adverse pressure gradients (△P𝜆 > 0). The effect 
of Gr, � and � on ΔP� is demonstrated in Fig. 3b–d. It was 
evident from these figures that the regions of peristaltic, co-
pumping, backward, and free pumps are hindered by increas-
ing Gr, � and �.

Hybrid nanofluid/ nanofluid are mainly used to enhance 
heat transfer. Therefore, the heat transfer analysis of nano-
fluids for the proposed geometric configuration is examined 
through Fig. 4a–d with various pertinent parameters. The 
temperature curves are nearly parabolic in form, and a rise 

in the temperature with increasing phase difference values is 
seen in Fig. 4a. In heat transfer management, heat generation 
or absorption effects are critical in a wide range of demands 
and uses in the industry. The consequence of �on the tem-
perature of the hybrid nanofluid is captured in Fig. 4b . It is 
evident from this plot that the hybrid nano liquids tempera-
ture is improved when � boosted. The effect of the amplitude 
of a on the temperature is portrayed in Fig. 4c. From this 
figure, the temperature of the hybrid nanofluid is enhanced 
as a improved. Figure 4d is drawn for the temperature profile 
to visualize nanoparticles' role in enhancing the base fluid's 
thermal conductivity. It is apparent from the plotted graph 
that the temperature of the hybrid nanofluid is lower when 
comparing the nanofluid to the base fluid. However, the sig-
nificance between nanofluid and hybrid nanofluid is very 
minimal, which may be because the variation in thermal 
conductivity between copper (Cu) and silver (Ag) . nanopar-
ticles have a negligible effect comparatively.

The term "trapping" refers to the flow condition in 
which the boluses formed by the closed streamlines on 
either side of the center of the channel entirely block the 
fluid flow in the channel middle part, and a trapped bolus 
travels alongside the peristaltic wave velocity as a whole. 
Magnetic nanoparticles are employed as drug carriers for 

Fig. 3  Pressure rise against Θ 
for a k b Gr c � d �
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targeted therapeutic delivery and have prompted research 
into peristaltic flow in a magnetic field. Trapping is per-
haps more essential since the flow creates an internally 
circulating bolus that pushes forward along with peri-
staltic wave speed for the safe transportation of medi-
cal substances to a particular location [39]. In Fig. 5a–d, 
we have captured the impact of k on the trapping for 
� = 0.5, H = 2, Gr = 1.0 a = 0.5, b = 0.4, d = 1.1, � = �∕18  . 
Indeed, the small value of k corresponds to a curved 
channel, and when (k → ∞) . The curvature of the channel 
vanishes, and it becomes a flattened channel. It is fasci-
nating from the figure that the almost elliptical shape of 
the trapped boluses is formed in both halves of a curved 
asymmetric channel.

Further, the size and volume of boluses dimin-
ish in the lower part of the channel when the chan-
nel takes on a more curved shape. Meanwhile, the 

situation is fully reversed at the top of the wall. The 
magnetic parameter (H) effect on the streamlines for 
the fixed values and other appearing parameters is 
� = 0.1, k = 3, a = 0.4, b = 0.3, Gr = 0.5, d = 1.1, � = �∕18 
is illustrated in Fig. 6a–d. It is clear that by increasing the 
Hartmann number (H) from (a) to (d), the size and number 
of trapping bolus gradually decline at the lower part of the 
curved asymmetric channel. 

In contrast, trapping behavior is completely reversed 
in the opposite portion of the channel. The effect of 
the phase difference parameter (�) on the stream-
lines is examined with the help of Fig. 7a–d by fixing 
� = 0.1, k = 3, Gr = 0.5, H = 2, a = 0.4, b = 0.3, d = 1.1  . 
It is inferred that with an increasing phase difference 
between two channel walls, the bolus passes towards the 
left and shrinks in the sizes, and there is no trapping when 
the phase difference attains its maximum � = �.

Fig. 4  Temperature profile for 
a � b ∌̇ c a d comparison of 
base fluid, nanofluid and hybrid 
nanofluid
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 Concluding remarks

In this investigation, the sinusoidal oscillatory movement 
with varying amplitudes and phase differences of the walls 
of a curved channel has been used to develop a hybrid 
nano liquids novel mathematical model for the pressure-
driven flow. The governing equations are embedded with 
a radial magnetic field and heat sink/sour effects. Exact 
analytical solutions for velocity and temperature have 
been found by employing the long wavelength assumption. 
For validation, the results of this analysis have also been 
related to the analytical results of Mishra and Rao [11] at 
k → ∞,H → 0, Gr = 0 and found to be in fair agreement 
see Fig. 8. The following are a few of the most important 
findings from this study:
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• The amplitude of the walls, phase difference, and channel 
width all play important roles in determining the flow 
characteristics in the curved channel.

• Increasing the Grashof number (Gr) generally acceler-
ates the axial velocity in the upper region of the curved 
asymmetric channel, where things are entirely different 
in the rest of the channel.

• The amplitude of the velocity of the hybrid nanofluids 
is moved downward when the middle of a straight chan-
nel goes downward when the curvature of the channel is 
boosted.

• The regions of peristaltic, co-pumping, backward and 
free pumps are hindered by increasing Gr and �.

• The temperature curves are nearly parabolic in form, 
and an enhancement in the temperature is found with an 
enhancement of the phase difference.

• The number and shape of trapped bolus gradually decline 
at the lower part of the curved asymmetric channel with 
the growth of Hartmann number, whereas trapping 
behaviour is completely reversed in the opposite portion 
of the channel.
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