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Abstract
Ternary hybrid nanofluids (Thnf) are used in several fields, including enhancements of heat transfer, solar power systems, 
medical devices, electronics cooling, aviation industry, and automotive sector. Furthermore, Thnf provide a versatile solution 
to boost energy transport for the industrial applications. In the current analysis, an incompressible magnetized Thnf flow 
with the natural convection through a curved surface using Darcy–Forchheimer medium is addressed. The heat transfer is 
simulated by using the Cattaneo–Christov (C–C) heat flux model. Aluminum alloys  (Ti6Al4V, AA7072 and AA7075) are 
dispersed in water  (H2O) and ethylene glycol  (C2H6O2) to synthesize the modified hybrid nanofluid. The model equations 
are reform into ODEs (ordinary differential equations) by using the similarity substitution. The non-dimensional set of ODEs 
is further numerically estimated through PCM (Parametric continuation method). The physical behavior of velocity, energy 
outline, Nusselt number and skin friction for distinct values of emerging variables are computed and analyzed in detail. The 
finding reveals that an improvement in entropy generation has been observed versus the rising values of unsteadiness and 
variable porosity parameters. The rising effect of permeability parameter enhances the velocity curve; whereas, fluid velocity 
drops with the influence of inertia coefficient.

Keywords Entropy generation · Cattaneo–Christov heat flux · Aluminum alloys · Thermal radiation · Variable Darcy–
Forchheimer law · Curved surface

List of symbols
K   Curvature parameter
P  Pressure (Kg  m−1  s−2)
�  Similarity variable
T∞   Ambient temperature (K)
F′   Dimensionless velocity
�   Dynamic viscosity ( Kg m−1s−1)
Br   Brinkman number
�   Permeability parameter
�   Kinematic viscosity  (m−1  s−2)
Ra   Radiation variable
qw   Heat flux
Q   Temperature-dependent heat source
�   Length dimension
Tw   Wall temperature (K)
�   Porosity of the porous medium
d1   Variable permeability
kr   Chemical reaction rate (mol  L−1  s−1)
�∞   Surface porosity
Qe   Exponential heat source
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k   Thermal conductivity (W  m−1  K−1)
Cb   Drag coefficient
Ec  Eckert number
�1  Temperature ratio parameter
Res   Reynold number
�∗   Thermal diffusivity
F   Stream function
u, v   Velocity components
B0   Magnetic field strength
Cp   Specific heat capacity ( J Kg K−1)
b < 0  Shrinking sheet
M   Dimensionless magnetic field
�   Dimensionless temperature
�   Density ( Kg m−3)
Pr  Prandtl number
T  Temperature of fluid ( K)
S   Dimensionless heat source parameter
�∗   Stefan–Boltzmann constant
d2   Variable porosity
�1   Thermal relaxation parameter
k̂   Porosity term
�   Unsteadiness parameter
k ∗   Coefficient of mean absorption (m−1)

k1   Boltzmann constant ( 8.314 J mol−1 K−1)
b = 0   Static sheet
k∞   Surface permeability
uw   Stretching velocity
�   Inertia coefficient
b > 0   Stretching sheet
�rs   Shear stress
�E   Relaxation time heat flux

Subscripts
Thnf   Ternary hybrid nanofluid
hnf   Hybrid nanofluid
f    Fluid
nf   Nanofluid
bf   Base fluid

Introduction

The researchers are taking interested in energy transfer with 
fluid flow across a curved surface due to its practical signifi-
cance in various manufacturing sectors including the aero-
dynamics of vehicles, extraction of polymeric sheets, tur-
bine blades, glass fiber, ship design, heat exchangers, hot 
rolling, paper production, wind turbines sports equipment, 
and biomedical applications. Ullah et al. [1] examined ther-
mal transfer in hybrid nanofluid Darcy–Forchheimer flows 
subjected to various shape impact across a curved stretch-
ing surface (CSS). Incorporating carbon nanotubes and iron 
ferrite nanoparticles (NPs), Gohar et al. [2] investigated the 

movement of Casson Hnf (hybrid nanofluid) across a CSS. 
The flow of Hnf across a porous exponential CSS with 
thermal slip and suction/ injunction effect was assessed by 
Abbas et al. [3]. According to the outcomes, the positive 
coefficient of curvature factor increased the velocity field 
for both the injection and suction scenarios. Raza et al. [4] 
examined the thermal transportation characteristics of a 
radiative Hnf flow over a CSS. The findings revealed that 
the curvature factor has a moderating effect on the velocity 
field. Ahmed et al. [5] described the dynamics of magneto-
hydrodynamic (MHD) steady 2D flow of Hnf across a CSS 
with the homogeneous–heterogeneous reactions. Xiong et al. 
[6] investigated the magnetized Darcy laminar flow of vis-
cous fluid over a CSS with the effects of second-order slip. 
Ali and Jubair [7] explored the rheological features of Hnf 
flow with heat source and thermal emission across a CSS. 
The outcome demonstrates that the velocity field is raised 
but the energy is decreased for greater curvature coefficient. 
Hayat et al. [8] reported the flow of radiative hybrid nano-
materials via a porous curving surface with Joule heating 
and inertial features. The results indicated that the velocity 
curve is enhances when the curvature factor rises; while, the 
opposite tendency is found concerning the magnetic param-
eters. Using a stretchable curved oscillatory surface, Imran 
et al. [9] considered the impact of Soret and Dufour on the 
MHD flow of unsteady couple stress fluid. Employing joule 
heating and viscous dissipation effect, Haq and Ashraf [10] 
evaluated the entropy generation of MHD convective flow 
of Carreau fluid on a CSS. Recently several authors have 
reported on curved stretching surface [11–14].

As the world's population continues to expand at a rapid 
rate, there will be an ever-increasing demand for energy 
consumption that is more efficient. Efficient and rapid heat 
transfer inside a thermal system necessitates the use of 
high-performance thermal management systems due to the 
elevated temperatures concerned. Nanofluids have garnered 
significant interest in recent times, especially regarding their 
use in renewable energy systems and techniques to enhance 
heat transfer. Nanofluids are considered to comprise parti-
cles with diameters of nanometers suspended in base fluids, 
such as water or motor oil, creating a completely new class 
of fluids called nanofluids. Metal or carbon are the most 
common materials for nanoparticles utilized in nanofluids. 
There are numerous applications for nanofluid as a coolant 
in the engineering, automotive industry, nuclear coolant, 
renewable energy and healthcare sectors. The term "nano-
fluid" (NF) was 1st used by Choi and Eastman [15] in 1995 
and Buongiorno [16] demonstrated that NF are formed by 
combining nanoparticles with base fluids. The effects of 
MHD convective free stream NF flow across a stretching 
cylinder were studied by Makkar et al. [17]. Hnf and Thnf 
exhibit enhanced thermal properties when compared to 
standard NF. A base fluid is used to synthesize Thnfs and 
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Hnfs, respectively, by incorporating two or more distinct 
NPs into the base fluid. The numerical analysis emphasizes 
the flow of a nano-liquid containing hybrid nanoparticles 
(AA7072, AA7075) via an endless disc was performed by 
Ullah et al. [18]. With the use of aluminum alloys, Hanif 
et al. [19] examined the two-dimensional water-based Hnf 
flow through an inclined sheet with suction and Joule heating 
effect. A 3-D Hnf flow of methanol and AA7072–AA7075 
with slip effect was studied by Tlili et al. [20] on an irregular 
surface. Archana et al. [21] considered the effect of radiative 
heat transfer on the mobility of ternary alloys consisting 
of Nimonic 80A and aluminum alloys (AA7072–AA7075) 
over a melting surface. Manjunatha et al. [22] investigated 
the Thnf flow across a two-dimensional enlarging surface. 
Recently significant results are presented by Ref. [23–29].

Understanding a system's irreversibility factor in heat 
transfer processes requires an understanding of entropy gen-
eration, especially in conventional industrial sectors where 
fluid fluxes and heat transmission are involved. The forma-
tion of entropy is a significant feature of thermodynamics. 
In a thermal system that is isolated from other systems, the 
second law of thermodynamics asserts that entropy does not 
diminish. Total entropy is continually increasing in irrevers-
ible phenonium; whereas, it is always remaining identical 
in reversible processes. The entropy formation is the idea 
that plays an essential role in comprehending and increas-
ing the efficiency of a wide variety of systems and proce-
dures including air conditioning, heat transfer devices, air 
conditioning units, combustion, vehicle engines, reactors, 
chillers, and desert coolers [30]. Khan and Alzahrani [31] 
and Naveed [32] used the Joule heating, thermophoresis and 
Brownian motion effect for Blasius flow on a curving surface 
to analyze the entropy formation of a chemically reactive 
nanofluid. Ibrahim and Gizewu [33] investigated the biocon-
vective formation of entropy and gyrotactic microbes incom-
pressible, viscous flow over a curving extended surface. The 
entropy formation in MHD Hnf flow with variable porosity 
was investigated by Hayat et al. [34]. Employing Arrhenius 
activation energy and entropy optimization, Alsallami et al. 
[35] simulated the Marangoni Maxwell nanofluid flowing on 
a spinning disc. Murtaza et al. [36] addressed the numeri-
cal simulation for entropy formation and thermal transport 
through tri-hybrid nanoliquid. Sakkaravarthi and Reddy [37] 
employed blood as the base fluid to assess the formation of 
entropy in MHD Hnf flow comprised of silver and aluminum 
oxide NPs across a porous surface with Joule heating and 
convective boundary circumstances. The references [38–41] 
provide some of the additional investigations that are associ-
ated with the entropy formation of a fluid flow over a curv-
ing extended surface.

Based on the above literature, no one has described the 
C–C heat flux model using Thnf flow with viscous dissipation 

across a porous curved surface. In order to fill such gap, the 
current research work focuses on the Thnf flow encompassed 
of aluminum alloys  (Ti6Al4V, AA7072 and AA7075) across 
curved stretching surface. The flow has been numerically 
assessed under the consequences of heat radiation, Joule heat-
ing and C–C theory, viscous dissipation, and exponential heat 
source. Some core novelties are:

• To investigate the heat transfer subject to C–C heat flux, 
viscous dissipation, thermal radiation and EHS.

• To study the Thnf flow across a permeable curved surface.
• To examine the consequences of  Ti6Al4V, AA7072 and 

AA7075-NPs on the fluid velocity and heat transfer rate.
• What is the impact of thermal time relaxation factor on 

temperature?
• What is the effect of Darcy medium with varying porosity 

and permeability has on the flow of the Thnf?

Mathematical modeling

The 2D incompressible Thnf flow across a porous CSS of 
radius R is considered. Variations on the Darcy–Forch-
heimer relation are employed to characterize the flow in 
permeable surface. The addition of C–C heat flux, radiation 
and Joule heating to the energy expression contributes to 
the enhancement of the thermal field. The velocity of 
stretching surface along the s-axis is denoted by uw =

bs

(1−�∗t)
 

where b > 0 (see Fig. 1). Here b = 0 correspond to static 
sheet and b > 0 describes the stretching of curved surface. 
In r-direction, a magnetic field with intensity ���⃗B0 is inte-
grated. The surface's temperature is described as Tw. 
Entropy generation is also computed using the 2nd law of 
thermodynamics. The following equations are based on the 
above assumptions [34, 42]:

For incompressible fluid � is constant so ��
�t

= 0, Eq. (1) 
become

In a curvilinear coordinate the continuity equation become,

(1)
��

�t
+

⇀

∇ ⋅ (�
⇀

V) = 0,

(2)
⇀

∇ ⋅

⇀

V = 0,

(3)
(
−R

�u

�s

)
=

�((r + R)v)

�r
,

(4)
�p

�r
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(
u2

r + R

)
,
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where
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k
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.

In the above equations, (�Cp)Thnf is the volumetric heat 
capacity, k* demonstrates the porosity term, (u, v) are 
the component of the velocity, � is the constant length 
of dimension, �∞ is the surface porosity, �E is the time 
relaxation heat flux, k∞ is the surface permeability, B0 is 
the magnetic field strength,  �∗ is the thermal diffusivity, Cb 
is the drag coefficient, d1 is the variable permeability kThnf 
demonstrates the thermal conductivity, d2 is the variable 
porosity, �Thnf is the density, �Thnf is the electrical conduc-
tivity,  �∗ is the Stefan Boltzmann coefficient and �Thnf is 
the kinematic viscosity as show in Table 1.

The appropriate boundary conditions (BCs) are:

The thermal characteristics of the tri-hybrid nanofluid are (
�1 = �Ti6Al4V

, �2 = �AA7072, �3 = �AA7075

)
:

Viscosity

(9)
u(r) =

uw

(1−�∗t)
, T(r) = Tw, v(r) = 0, at r= 0,

u(r) → 0, T(r) → T∞, v(r) → 0, when r → ∞.

}

�Thnf

�f

=
1

(1 − �Ti6Al4V
)2.5(1 − �AA7072)

2.5(1 − �AA7075)
2.5

,

Fig. 1  Physical visualization of 
the flow H2O + C2H6O2

Ti6Al4V

AA7072

AA7075

Tri-hybrid nanofluid
B0 u,s

, rν

α

B0

T(r) = Tw

u(r) =

B0

R

Curve
d stre

tching surfa
ce

uw

(1 –    * t)

Table 1  Numerical values of thermophysical characteristics of base 
fluid and NPs ∕�1 = �AA7075, �2 = �Ti6Al4V

∕ [20, 43, 44]

Properties �∕kg m−3
Cp∕J kg

−1K−1
k∕kg ms−3K−1 �∕Ωm−1

H2O + C2H6O2 1063.8 3630 0.387 9.75 × 10−4

Ti6Al4V 4420 0.56 7.2 5.8 × 105

AA7072 2720 893 222 34.83 × 106

AA7075 2810 960 173 26.77 × 106
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Density

Specific heat

Thermal conduction

Electrical conductivity

Considering the variables

Using Eq. (10), Eq. (3) is satisfied, whereas Eqs. (4)–(6) 
are converted into:

�Thnf

�f
=
(
1 − �Ti6Al4V

)[(
1 − �Ti6Al4V

){(
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)
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Putting Eq. (12) into Eq. (11) we have

The following are transformed boundary conditions:

In above expressions

The dimensionless variables are:
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Magnetic factor
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�f
,

A41 =
kThnf

khnf
, A42 =

khnf

knf
, A4 =

knf

kf
, A5 =

(�cp)Thnf�
�cp

�
f

.

⎫
⎪⎪⎬⎪⎪⎭



10022 A. U. Hayat et al.

Parameters Symbols Expression

Eckert number Ec Ec =
u
2
w

(Tw−T∞)(Cp)f

Permeability term � � =
k∞

�∞

�fuw(1−�
∗
t)

�f

Unsteadiness parameter � � =
�∗

b

Non-uniform inertia factor � � =
1

k
1∕2
∞

Cbr�∞

Exponential heat source Qe Qe =
Q

uw(Cp)f

Prandtl number Pr Pr =
(�Cp)f

kf

Curvature parameter K
K = R

√
b

�(1−�∗ t)

Thermal relaxation parameter �1 �1 =
b�E

(1−�∗ t)

Brinkman number Br Br =
�f(bs)

2

(Tw−T∞)kf

Rate of entropy generation NEG NEG =
Sgen�fT∞

kfb(Tw−T∞)

Temperature ratio parameter �1 �1 =
Tf−T∞

T∞

The required skin friction and Nusselt number values are 
as follows:

In Eq. (17) heat flux qw and wall shear stress �rs are given 
as:

By using Eq. (9), the above equations become:

where Reynolds’s number Res =
bs2

�f
.

Entropy optimization

The present problem's entropy development is defined as 
[34]:

(17)Cfs =
1

�f

(
�rs

u2
w

)
, Nus =

1

kf

(
sqw

(Tw − T∞)

)
,

(18)
qw = −kThnf

(
�T

�r

)(16�∗T3
∞

3kfk
∗

kf

kThnf
+ 1

)||||||r=0
,

�rs = −�Thnf

(
u

r + R
−

�u

�r

)||||r=0,

(19)

(
Res

) −1

2 Nus = A41A4

(
1 +

Ra

A41A4

)
��(0),

(
Res

) 1

2Cfs =
−1

A2

(
1

K
f
�(0) − f

��(0)

)
,

Equation (20) can be modified as follows with the use 
of Eq. (9):

Numerical technique and problem 
validation

The numerical technique PCM is employed for the solution 
of the proposed model [11, 45, 46]. Scientific study often 
experiences challenging nonlinear boundary value prob-
lems (BVPs) that are challenging to resolve. Many prob-
lems, usually addressed by the Newton–Raphson lineariza-
tion technique, have numerical convergence that depends 
on differential topology, initial guesses and  relaxation 
variables. In this work, the alternative approach-known 
as the parametric continuation method—is emphasized. 
The methodology is consisting of the following steps:

Step 1: simplifications of ODEs to lowest order

The system of Eqs. (13, 14 and 22) along with Eq. (15), 
is further reset into the lowest order by selecting the fol-
lowing variables:

(20)

Sgen =
kThnf

T2
∞

(
�T

�r

)2

+
kThnf

T2
∞

16�∗
T
3
∞

3kk∗

(
�T

�r

)2

+
�Thnf

T
∞

(
�u

�r

)2

+
�ThnfB

2
0

T∞

u
2

+
Q

∗
e(

�Cp

)
Thnf

(T − T∞) exp

(
−

(
uw

�f

) 1

2

r

)

+
�Thnf

(�Cp)Thnf

�(r)

k∗(r)
u
2 +

�Thnf

(�Cp)Thnf

�(r)

(k∗(r))
1

2

u
3.

(21)

NEG = A4A41�1�
�2 + A4A41�1Ra�

�2

+
Br

A2

f
��2 + A3A31BrMF

�2 + PrS�

+
PrQe

A5

e−nη� +
Br

A2A5�Res

(
1 + d2e

−η

1 + d1e
η
F
�2

)

+
A1�

A5

(
1 + d2e

−η
)2

(
1 + d1e

−η
) 1

2

F
�3.

(22)
F =ℑ1,F

� = ℑ2, F
�� = ℑ3, F

��� = ℑ4,

� =ℑ5, �
� = ℑ6, NEG = ℑ7.
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By incorporating Eq. (22) in Eqs. (13, 14 and 22), we get:

The transformed boundary conditions for the first-order 
fractional differential equations are as:

Step 2: introducing continuation parameter “p”

(23)

ℑ�
4
+ 2

ℑ4

(�+K)
+ A1A2

�
ℑ1

�
ℑ4 +

ℑ3

(K+�)

�
−

�
ℑ3 −

ℑ2

(�+K)

�
ℑ2 −

ℑ1

(�+K)

����
K

K+�

�

+
ℑ2

(�+K)3
− A2A3A31A32

�
Mℑ3 +

1

(K+�)
Mℑ2

�
−

A1A2�

2(K+�)

�
2ℑ2 + (K + �)�
3ℑ3 + �ℑ4

�
+ �ℑ3

�

+
Kℑ3

�(K+�)2

�
e−�d2 −ℑ2

�
(1+d2e−�)

(1+d1e−�)
2 e

−�d1

��
1+d2e

−�

1+d1e
−�

��
−

ℑ3

(�+K)3

−
�K

(K+�)2

�
2ℑ1ℑ3

�
(1+d2e−�)

2

(1+d1e−�)
1
2

�
+

�
(1+d2e−�)

2

2(1+d1e−�)
3
2

d1e
−� − 2d2e

−�
�
1 + d2e

−�
�2�

ℑ2
2

�
= 0,

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(24)

ℑ�
6
+

A5PrK

A4A41A42+Ra(�+K)
ℑ1ℑ6 +

A3A31A32

A4A41A42+Ra
BrMℑ2

2
+

PrS

A4A41A42+Ra
ℑ5

ℑ�
6
+

ℑ5

�+K
+

1

A4A41A42+Ra

�
Ec

��
ℑ3 +

1

�+K
ℑ2

�2
��

+
Br

A2A5�Res

�
1+d2e

−�

1+d1e
�
ℑ2

3

�

+Qe(e−n �)ℑ5 +
A1�

A5

(1+d2e−�)
2

(1+d1e−�)
1
2

ℑ
3
2
−

�

2
�(� + K)3ℑ6

+�1

⎛⎜⎜⎜⎝

+K(� + K)2
�
1

2
ℑ2�

� +ℑ1ℑ
�

6

�
�� −

3

4
�

2�(� + K)3ℑ6 −
1

4
�

2�2(� + K)3ℑ�

6

+
3K

2
�(� + K)2ℑ1ℑ6 − K2(� + K)ℑ2

1
ℑ

�

6
− K2

�
(� + K)ℑ1ℑ2 −ℑ

2
1

�
ℑ6

⎞⎟⎟⎟⎠
= 0,

⎫
⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(25)
ℑ1(0) = 0, ℑ2(0) = 0, ℑ5(0) = 1,

ℑ3(∞) → 0, ℑ2(∞) → 0, ℑ5(∞) → 0.

}

(26)

ℑ�
4
+

�
2

(�+K)
+ A1A2ℑ1 −

A1A2�

2
�

��
ℑ4 − 1

�
p + A1A2

�
−

�
ℑ3 −

ℑ2

(�+K)

�
ℑ2 −

ℑ1

(�+K)

���

�
K

K+�

�
− A2A3A31A32

�
Mℑ3 +

1

(K+�)
Mℑ2

�
+

ℑ2

(�+K)3
−

A1A2�

2(K+�)

�
2ℑ2 + 3ℑ3

(K + �) + �ℑ3

�

+
Kℑ3

�(K+�)2

�
e−�d2 −ℑ2

�
(1+d2e−�)

(1+d1e−�)
2 e

−�d1

��
1+d2e

−�

1+d1e
−�

��
−

ℑ3

(�+K)3
+ A1A2K

ℑ1ℑ3

(K+�)2

−
�K

(K+�)2

�
2ℑ1ℑ3

�
(1+d2e−�)

2

(1+d1e−�)
1
2

�
+

�
(1+d2e−�)

2

2(1+d1e−�)
3
2

d1e
−� − 2d2e

−�
�
1 + d2e

−�
�2�

ℑ2
2

�
= 0,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(27)

ℑ�
6
+

�
A5PrK

A4A41A42+Ra(�+K)
ℑ1 −

�

2
�(� + K)3 −

3

4
�1�

2�(� + K)3 +
3K

2
�1�(� + K)2ℑ1

�

�
ℑ6 − 1

�
p +ℑ�

6
+

ℑ5

�+K
+

1

A4A41A42+Ra

�
Ec

��
ℑ3 +

1

�+K
ℑ2

�2
��

+
Br

A2A5�Res

�
1+d2e

−�

1+d1e
�
ℑ2

3

�

+Qe(e−n �)ℑ5 +
A1�

A5

(1+d2e−�)
2

(1+d1e−�)
1
2

ℑ
3
2
+

PrS

A4A41A42+Ra
ℑ5 +

A3A31A32

A4A41A42+Ra
BrMℑ2

2

+�1

⎛⎜⎜⎝
+K(� + K)2

�
1

2
ℑ2�

� +ℑ1ℑ
�

6

�
�� −

1

4
�

2�2(� + K)3ℑ�

6

−K2(� + K)ℑ2
1
ℑ

�

6
− K2

�
(� + K)ℑ1ℑ2 −ℑ

2
1

�
ℑ6

⎞⎟⎟⎠
= 0,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Step 3: solving the Cauchy problems

By employing the implicit numerical scheme as:

The final iterative form is obtained as:

(28)
U

i + 1 − U
i

Δ�
= AU

i + 1 and
W

i + 1 −W
i

Δ�
= AW

i + 1.
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Validation of results

Comparing the present results to previously published 
work for m = 1 and numerous values of K is illustrated 

(29)Ui+1 =
Ui

(I − Δ�A)
and Wi+1 =

(Wi + Δ�R)

(I − Δ�A)
. in Table 2. It can be noticed that the both results show 

remarkable similarity.

Discussion and graphical results

This section examines the variances in entropy generation, 
velocity, temperature gradient, and skin friction, concern-
ing various physical features. The entropy formation in 

Table 2  Comparative analysis of current results with the published 
work

K Hayat et al. 
[42]

Hayat et al. 
[43]

Sajid et al. 
[47]

Present results

5.0 1.1576 1.1584 0.7576 1.158667
10 1.0735 1.0738 0.8735 1.074142
20 1.0356 1.0339 0.9356 1.034362
30 1.0235 1.0240 0.9569 1.024157
40 1.0176 1.0171 0.9676 1.017410
50 1.0141 1.0147 0.9741 1.014435

1.0

0.8

0.6

1 =    2 =    3 = 0.01, 0.02, 0.03

Ti6Al4V + AA7072 + AA7075
AA7072 + AA7075

AA7075

0.4

0.2

0.0
0 2 4

η

η

φ φ φ

F
'( 

 )

6 8 10

Fig. 2  Impact of volume friction parameters on F�(�)
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Fig. 3  Impact of inertia coefficient � on F�(�)
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Fig. 4  Impact of unsteadiness parameter � on F�(�)
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Fig. 5  Impact of permeability parameter on F�(�)
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Fig. 6  Impact of unsteadiness parameter � on �(�)
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a Thnf flow through a CSS under the influence of expo-
nential heat source/sink is assessed in the current inves-
tigation. The results are obtained through PCM. In these 
illustrations, solid lines represent the Thnf, dashed lines 
reflect the Hnf, and dot lines indicate the NF. The primary 
findings are addressed as follows:

Figures 2–5 demonstrate the outcome of volume frac-
tion 

(
�1, �2, �3

)
 inertia coefficient �, unsteadiness param-

eter �, permeability parameter � on the fluid velocity. 

The outcome of the volume fraction on the velocity is 
extensively represented in Fig. 2. As the numbers of NPs 
rises, the fluid velocity falls due to the intensified fluid 
resistance. In addition, Fig. 2 demonstrates that the ter-
nary hybrid nanofluid has a greater impact on reducing 
velocity compared to the binary and conventional nano-
fluids. Figure 3 depicts the effect of � on velocity. An 
improved internal force is produced by a higher value of 
�, which elevates velocity. Figure 4 shows an illustration 
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Fig. 7  Impact of variable permeability d1 on �(�)
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Fig. 8  Impact of variable porosity d2 on �(�)
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Fig. 9  Impact of curvature parameter K on �(�)
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Fig. 10  Impact of variable porosity d2 versus NG(�)
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Fig. 11  Impact of unsteadiness parameter � versus NG(�)
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Fig. 12  Impact of curvature parameter K versus NG(�)
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of the velocity curve F�(�) against the unsteadiness fac-
tor � . There is a correlation between higher values of 
the unsteadiness parameter � and an increase in veloc-
ity F�(�) . Figure 4 shows that ternary hybrid nanofluid 
boosted the velocity more than hybrid and nano-fluids. 
The consequences of permeability parameter � on velocity 
F�(�) are illustrated in Fig. 5. Rising values of  � led to a 

corresponding increase in velocity. Higher permeability 
coefficient enables fluid to flow more effortlessly, leading 
to increased velocities and flow rates. As seen in Fig. 5 
Thnf exhibits a greater impact on the increase in velocity 
when compared to both NF and Hnf.

The effects of the unsteadiness parameter �, varia-
ble permeability d1, variable porosity d2, and curvature 

Table 3  Numerical results for skin friction Cfs

Parameters Cfs

M d1 d2 � Hybrid nanofluid Tri-hybrid nanofluid

0.1 0.5 0.5 0.1 0.4812387 0.8084224
0.3 1.7324865 2.2642776
0.5 1.4242302 2.1871587
0.1 1.0 1.3780276 2.1119820

1.5 1.4230665 2.1311153
2.0 1.2178728 2.8281276
0.5 1.0 1.1416390 2.7517102

1.5 1.0328342 2.8023123
2.0 1.2762962 2.2960270
0.5 0.2 1.2220764 2.8103432

0.3 1.5148910 2.1612856
0.4 1.7923092 2.4439433

Table 4  Numerical outputs for Nusselt number Nus

Parameters Nus

Br d1 d2 � Qe Hybrid nanofluid Tri-hybrid 
nanofluid

0.1 0.5 0.5 0.1 0.2 1.710206 2.312538
1.543827 2.034628
1.230564 1.732731

0.1 0.632028 1.032138
0.4 0.722078 1.370281
0.7 1.172611 1.319611
1.1 1.0 0.622148 1.141571

1.5 0.732046 1.401528
2.0 0.892330 1.731105
2.5 1.0 0.812052 1.632801

1.5 0.721145 1.341207
2.0 0.609830 1.011386
2.5 0.1 2.247161 2.830412

0.2 2.014301 2.701212
0.3 1.880292 2.408911
0.4 0.2 0.816212 1.450850

0.5 0.695315 1.189146
0.8 0.402113 1.083181
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parameter K on the temperature distribution are illus-
trated in Figs.  6–9. Figure  6 describes the upshot of 
� on the temperature field �(�) . Greater values of the 
unsteadiness parameter � result in a more intense tem-
perature field �(�) and an increased thickness of the ther-
mal layer. As the unsteadiness variable � increases, there 
is a decrease in the amount of heat that flows from the 
surface to the fluid, consequently, the temperature �(�) 
falls. Variable permeability and porosity factors effect 
on temperature �(�) is seen in Figs. 7 and 8. The ability 
of a substance or substrate to permit fluids or substances 
to pass through it is called its variable permeability. An 
decline in �(�) is reported for higher values of d1 . Flu-
ids with higher permeability  d1 can move relatively eas-
ily which reduce the convective heat transfer. Figure 8 
exhibit the behavior of temperature �(�) against different 
values of d2. Lower flow resistance is usually the result 
of higher number of variable porosity d2, which increases 
the number of pores for fluid flow which boosts the flow 
rate of the fluid and consequently accelerates the heat 
transfer rates. The influence of the curvature parameter 
on  �(�) is addressed in Fig. 9.

Figures 10–12 discussed the generation of entropy against 
variable porosity d2 unsteadiness parameter � and curva-
ture parameter K. The influence of variable porosity d2 is 
depicted in Fig. 10. A rise in variable porosity d2 causes an 
upsurge in entropy production. As a result of the variation in 
variable porosity, non-uniform flow patterns emerge, or flow 
instabilities are induced. Additionally, the amount of entropy 
generation increased. A graphic representation of entropy 
formation  for varying values of � is shown in Fig.  11. 
Higher entropy formation is observed with larger values of 
the unsteadiness parameter. Figure 12 discussed the entropy 
generation against curvature parameter K. A spike in entropy 
production is caused by a rise in the curvature parameter. 
Due to the radial boundary's configuration, Fig. 12 revealed 
that an increase in the radius's curvature parameter will 
result in a decrease in the entropy profile. Furthermore, it is 
noted that ternary hybrid nanofluid improves entropy opti-
mization noticeably more than hybrid and nano-fluid.

Table 3 demonstrates the numerical outcomes of 
√
ReCfr . 

As the variable permeability, and magnetic parameter M 
increases, the coefficient of skin friction diminishes, while 
increase in permeability parameter �, variable unsteadiness 
parameter � and variable porosity improved the skin fric-
tion of the fluid. Table 4 illustrates the variation of the Nur 
as a function of the various physical parameters. Nur boosts 
as there is more heat owing to variable permeability d1, and 
Brinkman number and decline with increase in inertia coef-
ficient �1 , variable porosity, unsteadiness parameter � and 
Exponential heat source.

Conclusions

Optimizing the entropy production of magnetized 
Darcy–Forchheimer ternary hybrid flow of nanoliquid on a 
porous curved stretched surface is the focus of this study. In 
order to synthesize the modified hybrid nanofluid,  Ti6Al4V, 
AA7072 and AA7075-NPs are added to water and ethylene 
glycol (50% + 50%). The need to speed up heat transfer for 
industrial and engineering applications inspired the present 
study. The novel findings are as follows:

• In comparison with NF and Hnf, the Thnf exhibits domi-
nant behavior.

• Combining ethylene glycol and water improves efficiency 
of heat transfer.

• Heat transmission in base fluid is positively influenced 
by the addition of  Ti6Al4V, AA7072 and AA7075-NPs.

• The inertia coefficient has a negative effect on the veloc-
ity distribution; while, larger values of the permeability 
parameter have a positive effect on the distribution of 
velocity.

• Strengthening curvature parameter and fluctuating poros-
ity increased temperature.

• Improvements in the unsteadiness parameter and varying 
porosity lead to increases in Entropy production.

• Skin friction declines as the variable porosity increases.
• Higher Br values result in a higher Nusselt number; 

while, low Ra and Qe. values result in a smaller Nusselt 
number.
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