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Abstract
Cu–Al–Fe shape memory alloys are a new kind of smart materials with high phase transition temperature. However, poor 
thermal stability and poor shape memory effect limit the commercial application range. In this paper, the effect of Al content 
on microstructure, thermal stability, shape memory effect and mechanical properties of Cu–Al–Fe shape memory alloys 
was investigated systematically by changing Al content, so as to obtain the optimal composition ratio for better commercial 
application. The results show that in the as-cast state, the microstructure is a mixture of (Cu) phase, β′ martensite and Fe(Cu, 
Al) phase with Al content of 11 mass%, and a mixture of β′ martensite and Fe(Cu, Al) phase with Al content of 12 mass% 
and 13 mass%. After quenching, β′ martensite exists in all alloys, while (Cu) phase and Fe(Cu, Al) phase disappear, and 
γ′ martensite also exists at Al content of 13 mass%. The shape memory alloy effect of as-cast alloy is enhanced with the 
increase of Al content, while the shape memory effect of quenched alloy increases first and then decreases. Among them, 
 Cu82Al13Fe5 has the best shape memory effect, the recovery ratio reaches 84.38%, and it also has the best thermal stability.
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Introduction

Shape memory alloys (SMAs) have been used widely in sec-
tors of weapon-equipment, biomedicine and aero-space due 
to their unique shape memory effect (SME) [1–3]. Currently, 
Ti–Ni SMAs are considered the most successful smart mate-
rials for commercial applications [4]. However, due to the 
limitation of phase transition temperature, this type of SMAs 
cannot be used under high temperature conditions. There-
fore, in order to solve this problem, a large number of high 
temperature SMAs have been studied, such as Ti–Ni–(Hf/Zr/
Pt/Pd) [5–8], Ni–Mn–Ga [9], Zr–Cu [10] and Cu–Al–Fe [11] 
SMAs, etc. Among them, the phase transition temperature 
(PTT) of Cu–Al–Fe SMAs can not only reach 573 K, but 
also are cheap and easy to process, and have been widely 
studied [12–14].

As is known to all, due to the brittleness and poor thermal 
stability of Cu–Al-based SMAs, the SME decreases sharply 
[15]. The reason for high brittleness is the existence of a 

brittle precipitate phase γ with the structural characteristics 
of  Cu9Al4 at grain boundaries [16]. In addition, the PTT and 
SME of Cu–Al-based SMAs are closely related to the con-
tent of Al as well as the content of the third element, that is, 
to the structure and type of martensite [17–19]. This is due 
to the change of the valence electron by atom (e/a), which 
affects the range of PTT [20–24]. For example, Recarte 
et al. [25] found through research that with the increase of 
Al content, the martensite structure of Cu–Al–Ni SMAs 
gradually changed from β′ martensite to γ′ martensite. Chen 
et al. [26] found that with the increase of Al content, the 
SME of Cu–Al–Ga SMAs is gradually enhanced. Aydoğdu 
et al. [27] found that with the increase of Co content, the 
martensite of Cu–Al–Co SMAs gradually widens and pre-
cipitated phase is formed. Silva et al. [28, 29] found that Ag 
could effectively reduce the β′ phase decomposition reaction 
rate. However, Cu–Al–Fe SMAs, as a new high-temperature 
Cu–Al-based SMAs, have relatively little basic research in 
this respect [30].

Therefore, Cu–Al–Fe SMAs are systematically reported 
in this paper. The effects of Al content and heat treatment on 
microstructure, thermal stability, PTT, SME and mechani-
cal properties were investigated. This work has important 
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implications for material design and performance optimiza-
tion, thus promoting the applicability of Cu–Al–Fe SMAs.

Materials and methods

Cu95-xAlxFe5 (x = 11, 12, 13 mass%) SMAs were fabricated 
from the raw materials of pure Fe (purity: 99.9%, Tijo, 
China), Al (purity: 99.99%, Tijo, China) and Cu (purity: 
99.9%, Tijo, China). Each sample masses 30 g and was 
remelted 6 times to obtain as-cast sample with chemical 
homogeneity by arc-melting under an Ar atmosphere. And 
 CuAl11Fe5 SMAs,  CuAl12Fe5 SMAs and  CuAl13Fe5 SMAs in 
the as cast state were named ZC-1, ZC-2 and ZC-3, respec-
tively. Subsequently, the quenching process of  Cu95-xAlxFe5 
(x = 11, 12, 13 mass%) SMAs were annealed at 1173 K for 
24 h, followed by water quenching. And  Cu84Al11Fe5 SMAs, 
 Cu83Al12Fe5 SMAs and  CuAl13Fe5 SMAs in the quenched 
state were named QC-1, QC-2 and QC-3, respectively.

The phase analysis of these samples was detected using 
an X-ray diffractometer (XRD, 40 kV, 30 mA and 4°  min−1, 
Bruker D2, Germany). The surface morphologies of these 
samples were found by scanning electron microscopy (SEM, 
MIRA3 XMU, Czech) and optical microscopy (OM, EPI-
PHOT300U, Japan). Moreover, the chemical composition of 
these samples was determined by energy dispersive X-ray 
spectrometer (EDS). The PTT and thermal cycle stability 
were determined by using differential scanning calorim-
eter (DSC, DSC823e-*0303022601, Switzerland), and the 
rate of heating and cooling during heating and cooling was 
2 K  min−1. The cylindrical sample (Φ 4 mm × 4 mm) was cut 
from the parts, and the compression tests were carried out by 
universal tensile testing machine (SANS, China). The shape 
memory effect was tested using the dimensional variation 
of the samples. The length of these samples was estimated 
before loading (h0), after unloading (h1), after heating to 
873 K for 3 min and after air cooled to room temperature 
to restore shape (h2). Among them, the heating process was 

completed by a thermomechanical analyzer (TMA, TMA/
SDT840, Switzerland). The shape recovery strain and ratio 
after heating were calculated as:

Results and discussion

Figure 1 shows the X-ray diffraction patterns of  Cu95-xAlxFe5 
(x = 11, 12, 13 mass%) SMAs in the as-cast and quenched 
states, respectively. The diffraction peaks of β′ martensite 
and γ′ martensite can be observed in Fig. 1, and the mar-
tensite diffraction peaks of all SMAs expect QC-3 are β′ 
martensite, while the martensite diffraction peaks of QC-3 
are composed of β′ and γ′. According to the results, when the 
content of Al is high, the martensite will change from β′ to γ′ 
during quenching, while when the content of Al is low, the 
martensite structure will not change. It is worth noting that 
the main diffraction peak of β′ martensite of QC-1 is about 
44°; when the Al content increases to 12, the main diffrac-
tion peak of QC-2 moves to the right near 47°, but it is still 
the diffraction peak of β′ martensite; When the Al content 
is further increased to 13, the diffraction peak of QC-3 near 
72° is significantly enhanced, while the diffraction peak near 
47.2° is significantly weakened, at the time, the main diffrac-
tion peak also changes from is β′ martensite to γ′ martensite.

In addition, the diffraction peaks of Fe(Cu, Al) and α(Cu) 
phases are present in ZC-1, while only Fe(Cu, Al) phase is 
in other as-cast alloys. However, neither of these two phases 
exist in all alloys after quenching. In summary, with the 
increase of Al content, α(Cu) phase gradually disappeared 
and martensite content gradually increased. In addition, 
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Fig. 1  The X-ray diffraction 
patterns of  Cu95-xAlxFe5 (x = 11, 
12, 13 mass%) SMAs in the 
as-cast and quenched states. a 
the as-cast state; b the quenched 
state
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when the alloy is quenched, due to the increase of cooling 
rate, the solid solubility increases, resulting in the Fe ele-
ment does not precipitate, so only the diffraction peak of 
martensite is found. The change of structure and morphol-
ogy would be further studied in the following work.

Figures  2 and 3 show the OM and SEM images of 
 Cu95-xAlxFe5 (x = 11, 12, 13 mass%) SMAs in the as-cast 
and quenched states, respectively. The chemical composition 
was determined by EDS, as shown in Table 1. In this paper, 
two kinds of martensite produced are γ′ type and β′ type, 
which will be identified by the subsequent results. For the 
as-cast state, it can be seen from Fig. 2 and Table 2 that ZC-2 
and ZC-3 are mainly composed of β′ type martensite, while 
ZC-1 is mainly composed of β′ martensite and α(Cu) phase. 
This is due to the fact that with the decrease of Al content, 
martensite cannot be completely formed, resulting in the 
existing of α(Cu) phase. In addition, the snowflake-shaped 
Fe(Cu, Al) phase is detected in all alloys. For the quenched 
state, combined with Fig. 3 and Table 2, it can be seen that 

QC-1 and QC-2 are mainly composed of β′ martensite, while 
QC-3 not only found β′ martensite, but also found thicker γ′ 
type martensite. Additionally, there is no Fe(Cu, Al) phase 
in all quenched alloys, due to the increase in solid solubility 
caused by quenching, which results in the full dissolution of 
the Fe element into the matrix. On this basis, it can be found 
that the main reason leading to the gradual transformation 
of β′ martensite to γ′ martensite is the increase of electron 
concentration with the increase of Al content [23]. These 
results are consistent with those of X-ray diffraction.

Figure 4 exhibits the thermal cycle curves of  Cu95-xAlxFe5 
(x = 11, 12, 13 mass%) SMAs in the as cast state, and the 
data of their first measured PTT are shown in Table 2. It can 
be seen that PPT of SMAs is very sensitive to fluctuation 
of Al content. And the austenite transition start tempera-
ture (As) and martensite transition start temperature (Ms) of 
 Cu95-xAlxFe5 (x = 11, 12, 13 mass%) SMAs first increase 
and then decrease with the decrease of Al content. At the 
same time, it can be seen from Table 2 that As and Ms of 

Fig. 2  The OM (a–c) and SEM 
(d–f) images of  Cu95-xAlxFe5 
(x = 11, 12, 13 mass%) SMAs in 
the as-cast state. a and d ZC-1; 
b and e ZC-2; c and f ZC-3

Fig. 3  The OM (a–c) and SEM 
(d–f) images of  Cu95-xAlxFe5 
(x = 11, 12, 13 mass%) SMAs 
in the quenched state. a and d 
QC-1; b and e QC-2; c and f 
QC-3
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ZC-1 are 600 K and 455 K, respectively. When Al content 
increases by 1 mass%, them of ZC-2 increase by 20 K and 
55 K, respectively. However, when the Al content is further 
increased to 13 mass%, them of ZC-3 decrease by 7 K and 
25 K, respectively. According to the analysis results, since 
both ZC-1 and ZC-3 contain needle-like β′ martensite, while 
ZC-2 contains plane-like β′ martensite, the Ms and As of 
needle-like β′ martensite is significantly lower than that of 
plane-like β′ martensite. In addition, due to ZC-1 contains 
a large amount of α(Cu) phase, the Ms and As is lower than 
ZC-3, so it can be seen that the more needle-like β′ mar-
tensite contains, the higher the PPT.

It can be seen from Fig. 4 that after 15 thermal cycles, 
the phase transition types of ZC-1, ZC-2 and ZC-3 do not 
change significantly, but the width and location of phase 
transition peaks do. After 15 thermal cycles of ZC-1, The 
difference of temperature of the peak austenite transition 
(Ap) and martensite transition (Mp) is 30 K and 15 K, respec-
tively. When the content of Al is 12 mass%, the difference of 
Ap remains unchanged, while the difference of Mp increases 
to 63 K. When Al content is 13 mass%, the difference of Ap 
and Mp decrease by 3 K and 2 K, respectively. According 
to the results, the Ap and Mp of needle-like β′ martensite is 
more stable than that of plane-like β′ martensite, and the sta-
bility is better with more needle-like β′ martensite content. 
Figure 4g–i show the relationship between the enthalpy of 
phase transition and the number of cycles of  Cu95-xAlxFe5 
(x = 11, 12, 13 mass%) SMAs. By fitting the data, the rela-
tionship between enthalpy and cycle number in the process 
of endothermic and exothermic of ZC-1, ZC-2 and ZC-3 can 
be obtained as follows:

where x and y denote cycle number and enthalpy. It can be 
seen that the thermal stability of needle-like β′ martensite 
is better than that of plane-like β′ martensite, and the more 
needle-like β′ martensite content, the better thermal stability.

Figure 5 exhibits the thermal cycle curves of  Cu95-xAlxFe5 
(x = 11, 12, 13 mass%) SMAs in the quenched state, and the 
data of their first measured PTT are shown in Table 2. It can 
be seen that PPT of SMAs is very sensitive to fluctuation 
of Al content. And the austenite transition start tempera-
ture (As) and martensite transition start temperature (Ms) of 
 Cu95-xAlxFe5 (x = 11, 12, 13 mass%) SMAs in the quenched 
state first increase and then decrease with the decrease of Al 
content. At the same time, it can be seen from Table 2 that 
As and Ms of QC-1 are 580 K and 505 K, respectively. When 
Al content increases by 1 mass%, them of QC-2 increase by 
37 K and 4 K, respectively. However, when the Al content 
is further increased to 13 mass%, them of QC-3 decrease by 
25 K and 25 K, respectively. The results show that the higher 
the content of needle-like β′ martensite is, the higher the 

(3)y = −15.36 + 1.22x − 0.04x2

(4)y = −8.01 + 0.96x − 0.04x2

(5)y = −46.35 + 2.23x − 0.09x2

(6)y = −32.34 + 2.54x − 0.08x2

(7)y = −44.16 + 0.08x − 0.005x2

(8)y = −28.35 + 0.16x − 0.004x2

Table 1  EDS results from 
points of 1–9

Sample Point Cu Al Fe

Mass/% Atomic/% Mass/% Atomic/% Mass/% Atomic/%

ZC-1 1 86.78 78.62 7.03 15.00 6.19 6.38
2 84.68 72.38 12.24 24.63 3.08 3.00

ZC-2 3 83.23 70.41 13.07 26.03 3.70 3.56
ZC-3 4 85.85 73.84 12.16 24.53 1.99 1.94

5 82.54 69.81 13.00 25.89 4.47 4.30
QC-1 6 80.34 67.22 13.76 27.12 5.94 5.66
QC-2 7 81.33 68.62 13.11 26.04 5.56 5.34
QC-3 8 83.73 71.04 12.84 25.64 3.44 3.32

9 80.09 65.89 15.45 29.94 4.45 4.17

Table 2  The PTT of all alloy PTT ZC-1 ZC-2 ZC-3 QC-1 QC-2 QC-3

Ms/K 455 510 485 505 509 484
As/K 600 620 613 580 617 592
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PPT is. In addition, plate-like γ′ martensite has a lower aus-
tenite transition temperature than needle-like β′ martensite, 
and only a lower temperature is needed to achieve austen-
ite–martensite transition.

It can be seen from Fig. 5 that after 15 thermal cycles, the 
phase transition types of QC-1 and QC-2 do not change sig-
nificantly, while the phase transition type of QC-3 changes 
significantly. In addition, the width and location of phase 
transition peaks change. After 15 thermal cycles of QC-1, 
The difference of the temperature of the peak austenite tran-
sition (Ap) and martensite transition (Mp) is 4 K and 46 K, 
respectively. When the content of Al is 12 mass%, the dif-
ference of Ap increases to 19 K, while the difference of Mp 
decreases to 42 K. When the Al content is further increased 
to 13 mass%, the difference of Ap is further increased to 
37 K, while the difference of Mp is further reduced to 7 K. 
According to the results, with the increase of the number 
of cycles, the two-step phase transition of QC-3 in the 
endothermic process is transformed into a one-step phase 

transition, which indicates that with the increase of the num-
ber of cycles, the γ′ martensite disappears and only a sin-
gle β′ martensite exists. Figure 5g–i show the relationship 
between the enthalpy of phase transition and the number of 
cycles of  Cu95-xAlxFe5 (x = 11, 12, 13 mass%) SMAs. By 
fitting the data, the relationship between enthalpy and cycle 
number in the process of endothermic and exothermic of 
QC-1, QC-2 and QC-3 can be obtained as follows:
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where x and y denote cycle number and enthalpy. It can be 
seen that the thermal stability of β′ martensite is better than 
that of γ′ martensite, and compared with the cast state, the 
thermal stability after heat treatment is better.

Figure 6 exhibits the compressive strain and stress curves 
of  Cu95-xAlxFe5 (x = 11, 12, 13 mass%) SMAs in the as-cast 
and quenched states. For the as-cast state, the compressive 
stresses and strains were scaled to be 1205.4 MPa and 21.7% 
for ZC-1; 959.3 MPa and 13.6% for ZC-2; 1075.1 MPa and 
16.1% for ZC-3, respectively. It can be found that the com-
pressive strength and strain first decrease and then increase 
with the increasing Al content. The result indicates that 
ZC-1 has the best compressive stress and strain, which is 
due to the presence of a large amount of α(Cu) phase in the 

(13)y = −52.97 − 0.5x − 0.05x2

(14)y = −29.98 + 0.49x − 0.02x2

alloy. When the increasing Al content, the α(Cu) phase with 
excellent mechanical properties disappears, resulting in a 
decrease in mechanical properties. However, with the fur-
ther increasing Al content, a large number of needle-like β′ 
martensite is formed, which improved the mechanical prop-
erties. For the quenched state, the compressive stresses and 
strains were scaled to be 742.7 MPa and 12.3% for ZC-1; 
987.6 MPa and 15.2% for ZC-2; 675.8 MPa and 11.7% for 
ZC-3, respectively. It can be seen that the compressive stress 
and strain first increase and then decrease with the increas-
ing Al content. This is due to the fact that when the Al 
content is increased to 12, the structure consists of a single 
needle-like β′ martensite, thereby improving the mechani-
cal properties, but when the Al content is further increased, 
a thicker plate-like γ′ martensite is formed, resulting in a 
decrease in mechanical properties. In summary, compared 
with the three phases, α(Cu) phase has the best compressive 
stress and strain, followed by β′ martensite, and γ′ martensite 
has the worst.
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In order to study the SME of  Cu95-xAlxFe5 (x = 11, 12, 13 
mass%) SMAs in the as-cast and quenched states, the sam-
ples were compressed to 5% pre-strain, as shown in Fig. 7a 
and b. The recovery curves were given in Fig. 7c and d. 
In addition, all residual strains, recovery strains and recov-
ery ratios are shown in Table 3. It can be seen from Fig. 7 
and Table 3 that the SME of the studied alloy is different 
in different states. In the as-cast state, the recovery strain 
and recovery ratio gradually increase with the increase of 
Al content, and the recovery strain and recovery ratio of 
ZC-3 are the largest, which are 0.61% and 64.21%, respec-
tively. This is due to the existence of a large number of α(Cu) 
phases without SME in ZC-1, resulting in poor SME; with 

the increase of Al content, the α(Cu) phase in ZC-2 disap-
peared, which effectively improved the SME; with the fur-
ther increase of Al content, the SME is further improved due 
to the presence of a large number of needle-like β′ martensite 
in ZC-3. In addition to this, the recovery strain and recovery 
ratio first increase and then decrease with the increase of 
Al content in the quenched state. The main reason is that 
when the Al content increase to 12 mass%, the microstruc-
ture of QC-2 is a single needle-like β′ martensite, so it has 
a good SME; however, with the further increase of Al con-
tent, the SME is weakened, which is due to the formation 
of plate-like γ′ martensite in QC-3. In summary, compared 

Fig. 6  The compressive strain–
stress curves of  Cu95-xAlxFe5 
(x = 11, 12, 13 mass%) SMAs in 
a cast and b quenched states. a 
the as-cast state; b the quenched 
state
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with plate-like γ′ martensite, needle-like β′ martensite has 
the best SME.

Conclusions

In this paper, the microstructure, PPT, SME, thermal stabil-
ity and compressive mechanical properties of  Cu95-xAlxFe5 
(x = 11, 12, 13 mass%) SMAs in the as-cast and quenched 
states were researched. The main findings and conclusions 
can be summarized as follows:

1. The microstructure of ZC-1 is a mixture of α(Cu) 
phase, β′ martensite and Fe(Cu, Al) phase, and with the 
increase of Al content, the α(Cu) phase in the micro-
structure of ZC-2 and ZC-3 disappear into a mixture of 
β′ martensite and Fe(Cu, Al) phase. After quenching, 
Fe metal is completely soluble in the matrix, and the 
microstructure of QC-1 and QC-2 is a single β′ mar-
tensite. While the microstructure of QC-3 is a mixture 
of β′ martensite and γ′ martensite due to the relatively 
high Al content.

2. The As temperatures of all investigated alloys are greater 
than 573 K. In addition, the QC-3 undergoes a two-step 
phase transition during the heating process, which is 
caused by the presence of two martensite structure and 
the PTT of γ′ martensite is higher than that of β′ mar-
tensite. The thermal stability of β′ martensite is better 
than that of γ′ martensite, and compared with the as-cast 
alloy, the thermal stability of quenched alloy is better, so 
QC-2 has the best thermal stability.

3. The compressive stress and strain of  Cu95-xAlxFe5 
(x = 11, 12, 13 mass%) SMAs first decrease and then 
increase with increasing Al content in the as-cast state, 
resulting from the decrease of α(Cu) phase, and increase 
of Al content in β′ martensite. However, the compressive 
stress and strain first increase and then decrease with 
increasing of Al content in the quenched state, which is 
caused by the formation of γ′ martensite.

4. The recovery strain and recovery ratio remarkably 
increase with increasing Al content in the as-cast state, 

resulting from the increase of β′ martensite. However, 
the recovery strain and recovery ratio first increase and 
then decrease with increasing Al content in the quenched 
state, which is due to the formation of γ′ martensite. And 
QC-2 has the best recovery strain and recovery ratio, 
reaching 0.81% and 84.38%, respectively.
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