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Abstract
The interaction of ferromagnetic properties and heat transfer offers a broad spectrum of biomedical applications. In fields such 
as electronics, energy storage, and biomedicine, the utilization of ferromagnetic nanoparticles has the potential to develop 
thermal management, energy conversion, and targeted therapeutic approaches. The main emphasis is on analysing a hybrid 
nanofluid flow with a mass-based composition, containing ferromagnetic nanoparticles (composed of Mn-ZnFe2O4/CoFe2O4 
nanoparticles), over a convective wedge. The study becomes better with the addition of a hydromagnetic effect, which adds a 
layer of complexity and depth. The study also includes the structural behaviour of the effects of Joule dissipation. This study 
clarifies the complex interactions involving the nanoparticle shape, magnetization effects, viscous dissipation, radiative heat 
effects, and the influence of the mass of ferromagnetic nanoparticles. In particular, the implementation of Hamilton–Crosser 
conductivity model defines the role of various shapes of the nanoparticles. Standard similarity transformations rules are 
adopted to transform the governing partial differential equations and their boundary conditions into non-dimensional forms. 
The resulting transformed ordinary differential equations are then solved using the bvp5c solver with the shooting technique 
in MATLAB. Through careful observation and in-depth analysis of graphical illustrations, the impact of characterizing factors 
on the flow profiles is thoroughly studied. However, the significant outcomes of the study are presented as: the momentum 
boundary layer thickness retards with increasing magnetization, wedge angle parameter along with velocity ratio parameter. 
Further, the thickness of the thermal boundary layer shows the opposite impact with increasing thermal radiation and Biot 
and Eckert numbers, respectively.

Keywords  Hybrid nanofluid · Ferromagnetic nanoparticles · Moving wedge · Mass-based method · Variable magnetism · 
Joule dissipation
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List of symbols
�hnf 	� Density
(�Cp)hnf 	� Heat capacitance
Rd 	� Radiation parameter
Pr 	� Prandtl number
Ec 	� Eckert number
�hnf 	� Dynamic viscosity
Bi 	� Thermal Biot number
Cf  	� Skin friction coefficient
�hnf 	� Electrical conductivity
Nux 	� Nusselt number
wf 	� Mass of base fluid
khnf 	� Thermal conductivity
�
∗ 	� Stefan–Boltzmann constant

M 	� Magnetic parameter
m 	� Wedge angle
w1,w2 	� Masses of the first nanoparticle, the second 

nanoparticle
k∗ 	� Mean absorption coefficient
Rex 	� Reynolds number
B0 	� Strength of the applied magnetic field

Introduction

The utilization of ferromagnetic particles within heat trans-
fer processes has attracted considerable attention owing to 
their distinctive thermal and magnetic characteristics. When 
incorporated into heat transfer fluids or materials, these par-
ticles have the capacity to amplify the effectiveness of heat 
transfer, provide a means for meticulous manipulation of 
thermal regulation, and offer practical value across an array 
of industrial and technological domains. Rashad [1] focused 
on investigating the effects of thermal radiation in conjunc-
tion with magnetohydrodynamics (MHD) on the slip flow 
behaviour of a ferrofluid as it flowed towards a non-isother-
mal wedge interface. The convective behaviour of a hybrid 
ferrofluid under the interaction of a magnetized dipole effect 
on an angled enlarged sheet was investigated using numeri-
cal simulations by Kamis et al. [2]. Shah et al. [3] focused 
on analysing the impression Cattaneo–Christov model on a 
microstructured ferrofluid over a sheet that is either being 
stretched or shrunk. The heat transportation that takes place 
over a rotating, stretchable disc in a magnetohydrodynamic 
(MHD) stagnation point flow of a ferrofluid was described 
in detail by Mustafa et al. [4]. Idris et al. [5] investigated 
the heat transportation features of a magnetized hybridized 
ferrofluid flowing over a moving permeable surface. The 
impact of viscous dissipation was also taken into considera-
tion by the researchers.

A variety of industries, including power generation facili-
ties, and refrigeration units, use wedge-configured heat 
exchangers. The distinctive wedge form allows for efficient 

heat transfer between fluids of different temperatures. Ghosh 
and Mukhopadhyay [6] looked at mixed convection flow in 
a Cu-water composition nanofluid that was made up of dif-
ferent-shaped nanoparticles. The behaviour of this specific 
nanofluid as it passed through a dynamically moving wedge 
was examined. To examine entropy formation in the context 
of fluid flow across a convectively heated, moving wedge, 
Berrehal et al. [7] conducted a research using a mass-based 
hybrid nanofluid model. The behaviour of an Al2O3-Cu 
nanofluid flowing over a moving permeable wedge under 
the influence of convective surface boundary restrictions 
was thoroughly investigated by Anuar et al. [8]. Through 
a numerical investigation, Habib et al. [9] delved into the 
transportation dynamics of MHD Prandtl nanofluid induced 
by a moving wedge, taking into account the presence of acti-
vation energy as well as suction or injection effects. Kebede 
et al. [10] examined thermal and mass transportation in an 
inconsistent flow of a tangent hyperbolic nanostructured 
fluid towards a wedge in motion. The analysis considered 
the impacts of both buoyancy and dissipation.

In engineering applications, magnetohydrodynamics can 
influence the behaviour of conducting fluids in systems such 
as electromagnetic pumps, generators, and certain cooling 
mechanisms. Sadighi et al. [11] explored the thermal and 
mass transport features of a nanostructured fluid flowing 
towards a porous enlarged interface while subjected to the 
influence of magnetohydrodynamics (MHD). In order to 
scrutinize this complex fluid behaviour, the study took into 
account the existence of specified boundary restrictions. In 
order to investigate the interaction of radiative heat flux of 
a hybridized nanostructured fluid towards a porous surface, 
Mahesh et al. [12] showed an enquiry with the interaction of 
both MHD coupling and couple stress effects. Moreover, the 
study took viscous dissipation into account when examining 
this complex fluid dynamic circumstances. Ahmed et al. [13] 
were primarily concerned in a computational study of the 
hydromagnetic flow of a nanostructured fluid with hyper-
bolic tangent features towards an extended sheet with non-
linear features. Rafique et al. [14] carried out a meticulous 
mathematical analysis of the hybridized nanofluid’s flow 
characteristic. This fluid had a variety of slip and viscos-
ity properties, and the complex interaction of MHD had an 
impact on how it moved over a stretching surface. In order to 
examine the dynamics of a tri-hybrid nanofluid affected by 
MHD as it flowed through a nonlinear extending/contracting 
sheet, Mahmood et al. [15] deliberated a numerical investi-
gation. Other factors, such as heat generation/absorption and 
slippery condition, were taken into consideration throughout 
the analysis.

Joule dissipation, also referred to as ohmic or electrical 
dissipation, is an occurrence that transpires when electri-
cal currents traverse a conductive medium. This process 
transforms electrical energy into heat owing to the innate 
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resistance of the material. Jamshed et al. [16] studied the 
characteristics associated with entropy optimization in the 
context of a viscous second-grade nanofluid that is subjected 
to thermal radiation. Pattnaik et al. [17] focused on exam-
ining a hybrid strategy to comprehend the computational 
interactions between radiative heat and chemical processes 
within the flow of a viscoelastic nanofluid. Pattnaik et al. 
[18] studied the characteristics of heat dissipation in a 
Casson fluid flow towards a permeable media, specifically 
towards an enlarging cylindrical surface. Pattnaik et al. 
[19] inspected the effects of dissipative energy and inertial 
drag, as well as particle shape, on the heat transportation 
features of a magnetized nanofluid. Baag et al. [20] focused 
on exploring the occurrence of free convection within a con-
ducting nanofluid while it moved over an expanding surface. 
This analysis considered the interplay of a heat source and 
convective heating conditions at the boundary. Patnaik et al. 
[21] provided insight into the flow behaviour of a micropo-
lar nanofluid subjected to mixed convective and radiative 
effects, dissipation, and magnetization. This study focused 
on a widening interface embedded in porous matrix, taking 
into account the impacts of double stratification as well as 
chemical reactions. Thumma et al. [22] explained the utili-
zation of mathematical modelling to depict the simultane-
ous influence of thermal radiation along heat source on the 
movement of nanofluid towards a curved surface. Dogonchi 
et al. [23–25] explored the thermal energy storage system 
utilizing nano-enhanced phase change material (NEPCM), 
featuring an intricate charger. Their investigation delved into 
the impact of thermal radiation, Joule heating, and viscous 
dissipation on heat transfer mechanisms, alongside squeez-
ing flow current, within a magnetohydrodynamic (MHD) 
nanofluid flow confined between parallel discs during suc-
tion/blowing. The governing equations were tackled using 
the Adomian decomposition method (ADM), with numeri-
cal analysis further conducted employing the finite element 
method (FEM). Results revealed the inefficacy of the pro-
posed dilatant working fluid for heat transfer applications. 
Sayyedi et al. [26] studied the natural convection flow of a 
micropolar nanofluid (Al2O3/water) within a semi-annulus 
enclosure under the influence of an angled magnetic field. 
Their investigation scrutinized the effects of active factors 
on magneto-natural convection, employing computational 
methods including CVFEM and Ansys Fluent CFD code 
for conservative comparisons. The study contributes to 
understanding natural convection, crucial in various appli-
cations such as heat exchangers and geothermal systems. 
Furthermore, Afshar et al. [27] examined natural convection, 
a significant form of convective heat transfer, across various 
applications including heat exchangers, geothermal systems, 
and nanofluids. Finite element method (FEM) was employed 
to solve altered governing equations, showcasing numerical 
simulations of velocity distribution through streamlines and 

isotherms for diverse parameters. Trith et al. [28] investi-
gated the impact of internal heat and concentration source 
block on magnetized Boussinesq-free double-diffusive con-
vection within a nanofluid-filled C-shaped inclined restricted 
space. Their findings shed light on the performance of 
nanofluids within a C-shaped enclosure featuring heat and a 
solid-state source block, aiding engineers in devising effec-
tive thermal systems for various technological applications. 
Finally, Tayebi et al. [29] conducted a numerical analysis 
utilizing the finite element method (FEM) to model free 
convection generated by double-diffusion (DDNC) with 
Soret/Dufour effects of Nano-Encapsulated PCMs inside an 
I-shaped enclosure equipped with unique corrugated vertical 
walls under Neumann thermal and solutal conditions.

Novelty of the study

•	 The current article discusses employing the hydromag-
netic effect on a mass-based ferromagnetic hybrid nano-
fluid applied towards a moving wedge.

•	 The thermal properties of the nanofluid flow are 
improved by investigating convective conditions.

•	 Analysing the impacts of Joule dissipation that offers 
valuable ipact on the dynamics of thermal transport.

•	 Exploring the effects of different particle shapes on the 
thermal transport mechanism.

•	 Investigating the relationship between the mass of fer-
romagnetic nanoparticles and their capacity to enhance 
the rate of heat transfer.

Modelling for mass‑based ferromagnetic hybrid 
nanofluid transport

Let us analyse the blood flow of a consistent, two-dimen-
sional, incompressible, laminar, hybridized nanofluid on a 
convectively heated, moving wedge. This scenario involves 
radiative flux, as illustrated in Fig. 1.

•	 Here, the Cartesian coordinates are denoted by x and y , 
where the x − axis taken along the wedge’s wall, and the 
y − axis is perpendicular to it.

•	 The magnetized field B(x) = B
0
x(m−1)∕ 2 is implemented 

normal to the wedge.
•	 The hybrid nanofluid’s ambient temperature denoted as 

T∞. The lower interface temperature is Tf.
•	 The convective heat transportation coefficient is hf and 

the temperature of wall is Tw , while the temperature has 
a steady worth T∞.

•	 The evolution of the Falkner–Skan framework while 
accounting for a moving wedge heated by convection is 
examined in this work.
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•	 The velocities of wedge 
(
Uw

)
 and free stream 

(
Ue

)
are 

U0x
m and U∞x

m , respectively, where U∞, U0, and m are 
constants.

•	 Here, m = �∕2 − � , where � is the Hartree pressure gra-
dient parameter which corresponds to � = �� for a total 
angle of the wedge. m = 1(� = 1) signifies the near the 
plane stagnation point on boundary layer flow of a verti-
cal flat plate (� = �) . m (0 ≤ m ≤ 1) is between 0 and 1 
with m = 0(� = 0) pertains to the boundary layer past a 
horizontal flat plate (� = 0).

In this study, the thermal equilibrium exists between the 
fluid phase (particularly, blood) and the solid phase, which 
contains both the first nanoparticle (Mn-ZnFe2O4) and the 
second nanoparticle (CoFe2O4). We also discuss a no-slip 
requirement between these phases. With these assumptions 

established, the governing equations for the given problem 
as (Berrehal et al. [7]);

Table 1 depicts the thermophysical appearance of the 
hybrid nanofluid based on the model proposed. Differ-
ent shapes of nanoparticles are distinguished in Table 2. 
Table 3 represents mass-based model for hybrid nanofluid. 
The physical features of nanoparticles as well as base liq-
uid are visualized in Table 4.

(1)ux + vy = 0

(2)uux + vuy = −
px

�hnf

+
�hnf

�hnf

uyy −
�hnf

�hnf

B2u

(3)

uTx + vTy = �hnfTyy +
�hnf

(�Cp)hnf
(uy)

2 −
(qr)y

(�Cp)hnf
+

�hnfB
2u2

(�Cp)hnf

Fig. 1   Flow diagram of current 
problem qr

Mn-ZnFe2O4 nanoparticles

CoFe2O4 nanoparticles

Momentum&
thermal boundary layer

B(x)

y,v

Blood

T & h
= 0�

= 1�

> 0

Hot convective fluid

Wall temperature

–k T
hn

�

�� � �

� � �

�

y
h T   – T

�

x,u

Uw

Tw

Ue(x)

Table 1   Thermophysical models for hybrid nanofluid (Berrehal et al. [7])

Attributes Hybrid nanofluid

Effective density �hnf = �nf

[

(1 − �CoFe2O4 )
[

1 − �Mn - ZnFe2O4 + �Mn - ZnFe2O4

( �Mn - ZnFe2O4
�Blood

)]

+ �CoFe2O4

( �CoFe2O4
�Blood

)]

Dynamic viscosity �hnf = �nf(0.904)
2e14.8(�Mn - ZnFe2O4

+�CoFe2O4
)

Heat capacity (�cp)hnf = (1 − �CoFe2O4
)
[

(1 − �Mn - ZnFe2O4
)(�cp)Blood + �Mn - ZnFe2O4

(�cp)Mn - ZnFe2O4

]

+ �CoFe2O4
(�cp)CoFe2O4

Thermal conductivity khnf

knf
=

[
kCoFe2O4

+(n−1)knf−(n−1)�CoFe2O4
(knf−kCoFe2O4

)

kCoFe2O4
+(n−1)knf−�CoFe2O4

(knf−kCoFe2O4
)

]

where knf
kf

=

[
kMn - ZnFe2O4

+(n−1)kBlood−(n−1)�Mn - ZnFe2O4
(kBlood−kMn - ZnFe2O4

)

kMn - ZnFe2O4
+(n−1)kBlood−�Mn - ZnFe2O4

(kBlood−kMn - ZnFe2O4
)

]

Electrical conductivity �hnf

�bf

=
�CoFe2O4

+2�nf−2�CoFe2O4
(�nf−�CoFe2O4

)

�CoFe2O4
+2�nf+�CoFe2O4

(�nf−�CoFe2O4
)

where �nf
�f

=
�Mn - ZnFe2O4

+2�Blood−2�Mn - ZnFe2O4
(�Blood−�Mn - ZnFe2O4

)

�sMn - ZnFe2O4
+2�Blood+�Mn - ZnFe2O4

(�Blood−�Mn - ZnFe2O4
)
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Because the pressure remains constant within the 
inviscid flow, and the velocity of the primary stream A 
is equivalent to the velocity at the boundary layer’s edge. 
This relationship is derived from Eq. (2).

Inserting Eq. (4) in Eq. (2) gives

From the approximation of Roseland, the radiative heat 
flux is given by

where T4 ≈ 4T3
∞
T − 3T4

∞
 subsequently

By putting Eq. (6) into Eq. (3):

(4)Ue(x)
dUe(x)

dx
= −

px

�

(5)uux + vuy = Ue(x)
dUe(x)

dx
+

�hnf

�hnf

uyy −
�hnf

�hnf

B2(u − ue)

(6)qr = −
4�∗

3k∗
(T4)y ≈ −

16�∗T3
∞

3k∗
Ty

(7)(qr)y ≈ −
16�∗T3

∞

3k∗
Tyy

The boundary conditions associated with Eqs. (1) to (5) 
and (8) can be formulated in the subsequent manner (Ber-
rehal et al. [7]):

The provided similarity transformations are regarded as 
being converted into ordinary differentials.

By employing Eq. (10) in Eqs. (2) and (9), subsequent 
simplification leads to the following expression:

(8)

uTx + vTy =

[
�hnf +

16�
∗

T3
∞

3k∗(�Cp)hnf

]
Tyy +

�hnf

(�Cp)hnf
(uy)

2 +
�hnfB

2u2

(�Cp)hnf

At y = 0; v = 0, u = Uw(x) = U0x
m,−khnfTy = hf(Tf − T),

(9)At y → ∞; u = Ue(x) = U∞x
m, T = T∞.

(10)

� = y
(

(m + 1)Ue(x)
2x�f

)0.5

,

� =
T − T∞
Tf − T∞

, u = Ue(x)f ′(�),

� =
(

2�xUe(x)
m + 1

)0.5

f ,

(11)

f ��� +
�f

�hnf

�hnf

�f

{
ff �� +

2m

m + 1
(1 − f �2)

}
−

�hnf

�f

M(f � − 1) = 0

(12)

(
khnf

kf
+

4

3
Rd

)
�
�� +

(�cp)hnf

(�cp)f
Pr f �� +

�hnf

�f

PrEcf ��2 +
�hnf

�f

EcMf �2 = 0

Table 2   Different shapes of 
nanoparticles (Pattnaik et al. 
[19])

n shape of the particle

3

Spherical
3.7

Brick
5

Cylindrical
5.7

Platelet
8.9

Blade

Table 3   Model for proposed 
mass-based hybrid nanofluid 
(Berrehal et al. [7])

Thermophysical properties Mathematical relation

density �s =
(�1×w1)+(�2×w2)

w1+w2

specific heat (Cp)s =
((Cp)1×w1)+((Cp)2×w2)

w1+w2

Solid particle concentration of first nanoparticle �1 =
w1∕ �1

(w1∕ �1)+(w2∕ �2)+(wf∕ �f)

Solid particle concentration of second nanoparticle �2 =
w1∕ �1

(w1∕ �1)+(w2∕ �2)+(wf∕ �f)

Correspondent solid particle concentration of nanoparticles
� = �1 + �2 =

(w1+w2)∕ �s

((w1+w2)∕ �s)∕ (wf∕ �f)

Table 4   The physical aspects of Blood and Ferro fluids

Properties Blood Mn-ZnFe2O4 CoFe2O4

ρ ∕ kgm−3 1063 4900 4907

Cp ∕ Jkg
−1 K−1 3594 960 700

k ∕Wm−1 K−1 0.492 5 3.7

σ ∕ sm−1 4.3 × 10−5 8 × 10−6 1.1 × 10−7
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with boundary conditions

Here, � is indicating for the velocity ratio factor, where 
� = 0 corresponds to a static wedge, 𝜆 < 0 correspond to 
wedge in motion against the stream, and 𝜆 > 0 is corre-
sponding to the similar-direction wedge in motion with the 
stream.

The dimensionless parameters are

The measurable parameters of practical significance are 
defined as

Results and discussion

The current study investigates the movement of a mass-
based hybrid nanofluid, comprising ferromagnetic nanopar-
ticles, over a rotating wedge subjected to convective motion 
while considering variable magnetism. The study aims to 
acquire valuable insights into the behaviour of the nanofluid 
within convective conditions and various geometrical con-
figurations. This is achieved by meticulous examination of 
factors such as the nanoparticles’ shape factor, wedge angle 
parameter, magnetic parameter, nanoparticle mass, radiative 
heat transfer, Biot number, and Eckert number. The compu-
tation dealt with the fixed values of the factors M = 1 , 
m = 0.5 ,  Pr = 21 ,  Ec = 0.01 ,  Rd = 0.5 ,  w1 = 10 gr  , 
w2 = 10 gr , n = 3 , Bi = 0.5 , wf = 100 gr , and � = 0.1 , 

�hnf
�f

=
⎛

⎜

⎜

⎝

1 −
w1+w2

�s
w1+w2

�s
+ wf

�s

⎞

⎟

⎟

⎠

−2.5

,

�hnf
�f

=
⎛

⎜

⎜

⎝

1 −
w1+w2

�s
w1+w2

�s
+ wf

�s

+

w1+w2
�s

w1+w2
�s

+ wf
�s

�s
�f

⎞

⎟

⎟

⎠

(�cp)hnf

(�cp)f
=

⎛
⎜⎜⎝
1 −

w1+w2

�s

w1+w2

�s

+
wf

�s

+

w1+w2

�s

w1+w2

�s

+
wf

�s

�
(�cp)s

(�cp)f

�⎞
⎟⎟⎠

(13)
f (0) = 0, f �(0) = �, ��(0) = −Bi[1 − �(0)], f �(∞) = 1, �(∞) = 0

(14)

m =
�

2 − �
, � =

Uw

Ue

, , Pr =
�f

�f

, Ec =
U2

e

cpΔT
,M =

�fB
2
0

�fUe

Bi =

(
hx

kf

)
Re−1∕2

x
, Rex =

Uex

�f

, Rd =
4�∗T3

∞

k∗kf

(15)

|

|

|

|

2Rex
m + 1

|

|

|

|

1∕2
Cf =

�hnf
�f

f ′′(0),
|

|

|

|

2
(m + 1)Rex

|

|

|

|

1∕2
Nux

= −
(

khnf
kf

+ 4
3
Rd

)

�′(0)

whereas the variation of particular constraints presented in 
each figure. The present results are corroborated through a 
comparison with the earlier investigation conducted by Ber-
rehal et al. [7], which demonstrated in Table 5. The physical 
significance of the effective factors is provided below. In 
Figs. 2 and 3, the impact of the wedge angle parameter (m) 
on f �(�) and �(�) is displayed under conditions of both the 
presence (M ≠ 0) and absence (M = 0) of a magnetic field. 
In both figures, m = 1(� = 1) indicates the stagnation point 
flow of the plane, m = 0.2(� = 1∕3) is presents the wedge 
flow with (� = �∕3) , m = 0(� = 0) implies the horizontal 
sheet, m = −0.0825(� = −0.18) indicates the flow occurring 
over a downward slope to the point of separation. In Fig. 2, 
the pressure distribution along the surface is influenced by 
changes in the wedge angle. These adjustments in pressure 
gradients bring about modifications in the flow’s behaviour, 
ultimately leading to a reduction in the hydrodynamic 
boundary layer. Consequently, the f �(�) diminishes as the 
value of the wedge angle parameter increases. As depicted 
in Fig. 3, when the wedge angle parameter upsurges, the 
flow’s acceleration occurs due to the attenuation of the pro-
pelling force behind the fluid motion. This leads to an 
enhanced transfer of heat from the wedge’s surface to the 
fluid through the fluid particles and their associated 

Table 5   The comparison value of f ��(0) at w
1
= w

2
= 0,w

f
= 100

gr,�= 0,M= 0

m f ��(0)

Previous study [7] Present study

0 0.469599 0.46959997
0.2 0.802126 0.80212665
0.5 1.038903 1.03890321
1 1.232588 1.23258887

 0 1 2 3 4 5
0

0.2

0.4

f’(
  ) �

�

0.6

0.8

1
Solid curve: M = 0.0
Dash curve: M = 1.0

m = – 0.0825, 0.0, 0.2, 1.0

Fig. 2   Presentation of m towards f �(�)
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temperatures. Consequently, the fluid’s temperature at the 
surface of the wedge experiences a reduction. The imposi-
tion of a magnetic field results in a reduction of the momen-
tum boundary layer. This implies that the fluid layer in close 
proximity to the surface exhibits a decelerated flow. Con-
versely, the intensity of the magnetic field plays a more 
significant role in influencing the temperature distribution, 
amplifying its impact as the magnetic field strength grows. 
In Fig. 4, the influence of the velocity ratio factor on the 
fluid velocity profile is depicted. Upon close examination 
of the figure, a significant trend comes to light: as the 
parameter 𝜆 < 1 rises, there is a noticeable reduction in the 
thickness of the velocity bounding surface. The increasing 
value of parameter � signifies a scenario where the free 
stream velocity exceeds the stretching velocity within the 

fluid flow. This circumstance gives rise to a series of con-
sequences. The augmented free stream velocity leads to 
elevated pressure levels, accompanied by intensified strain-
ing motion in the vicinity of the stagnation point. This phe-
nomenon is attributed to the interplay between the forces 
associated with the fluid’s motion and the stretching of the 
fluid layer due to the differing velocities. Figures 5 and 6 
display the variation of the mass of the first nanoparticle 
(w1) and the mass of the second nanoparticle (w2) on f �(�) 
and �(�) , respectively. Here, w1 = w2 = 0 designates for 
pure blood. In Fig. 5, the hydrodynamic boundary layer 
increases noticeably when the mass of nanoparticles inside 
that fluid is increased. Nanoparticles may aggregate or 
agglomerate under particular conditions, such as high 
velocities. Larger groups are formed as a result of the clus-
tering of the particles involved in this process. The velocity 
profile has increased mass as a result of the clustering 
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effect. This effect results that an increase in nanoparticle 
mass injects more momentum into the fluid. The enhanced 
interactions between the nanoparticles and the nearby fluid 
particles are ultimately provide this extra momentum. From 
Fig. 6, it is revealed that the �(�) rises by increasing the 
value of the mass of the nanoparticles. The thermal conduc-
tivity of materials can be influenced by nanoparticles. These 
nanoparticles accelerate the transfer of heat when their ther-
mal conductivity is higher than that of the surrounding 
medium. The distribution of temperatures within the system 
is subsequently affected by this acceleration in heat trans-
port. Additionally, a larger mass of nanoparticles has the 
ability to alter when heat is lost from a system or radiated 
from it. Figure 7 illustrates the thermal radiation character-
istics of the blood-based ferromagnetic hybrid nanofluid 
concerning �(�) . This depiction is presented for both sce-
narios: one with the magnetic field effect incorporated and 
the other without. Thermal radiation involves the propaga-
tion of heat through electromagnetic waves, occurring 
devoid of the need for any intervening medium. Within the 
context of the blood-based ferromagnetic hybrid nanofluid, 
the phenomenon of thermal radiation assumes a pivotal role 
in facilitating the exchange of energy between the fluid and 
the solid surface. When Rd = 0 , the significance of radiative 
effects diminishes, leaving conduction and convection as 
the predominant heat transfer mechanisms. This energy 
exchange can lead to a temperature rise near the stretching 
surface, influenced by factors such as surface emissivity and 
temperature gradient. However, these effects become nota-
bly more prominent and significant when a magnetic field 
is present. Figure 8 portrays the influence of the Eckert 
number on �(�) . The Eckert number, denoting the ratio of 
kinetic energy to thermal energy at the interface between 

the fluid and solid, assumes a pivotal role in characterizing 
the balance between these energies within the flow field. It 
serves as a fundamental descriptor of the equilibrium 
between thermal and kinetic phenomena within the system. 
Notably, the introduction of magnetic forces into the fluid 
flow and heat transfer dynamics is accountable for the 
observed elevation in the Eckert number when a magnetic 
field is present. This phenomenon underscores the signifi-
cant impact magnetic forces wield on the interplay between 
kinetic and thermal energies within the context of the study. 
Figure 9 illustrates the impact of the thermal Biot number 
on the dispersion of fluid temperatures across different sce-
narios. The current investigation encompassed both low 
Biot number values (Bi < 1) and high Biot number values 
(Bi > 1) . In a general sense, when Bi < 1 , it denotes a ther-
mally uniform with consistent temperature distributions 
within the material. In contrast, Bi > 1 indicates an uneven 
temperature spread within the material, signifying a more 
intricate circumstance. As the Biot number increases, the 
temperature profile rises. However, the impact is signifi-
cantly more pronounced and substantial in the presence of 
magnetic field. Figure 10 illustrates the impact of several 
nanoparticle shapes, including spherical, cylindrical, brick, 
platelet, and blade structures, on the variation of the con-
ductivity ratio with respect to volume percentage. The ther-
mal conductivity ratio denotes the percentage of more ther-
mally conductive the nanofluid is than the base fluid. The 
performance of nanofluids in transporting heat is greatly 
influenced by this characteristic. A nanofluid’s ability to 
conduct and transport heat is influenced by the distinct geo-
metric properties of the various nanoparticle shapes. Due 
to their simplicity of usage and strong thermal conductivity 
enhancement, spherical nanoparticles are frequently used, 
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especially at low volume fractions. With an increase in the 
volume proportion of spherical nanoparticles, the conduc-
tivity ratio typically rises linearly. In Figs. 11 and 12, the 
variation of magnetic parameter on the velocity gradient at 
the wall (Cf ) and the temperature gradient at the wall (Nux) 
towards the mass of nanoparticles is shown. The analysis 
uncovers that Cf  exhibits an upward trend with increasing 
values of M , whereas the opposite pattern is observed for 
Nux . However, the magnetic field restricts the fluid’s capac-
ity to conduct heat away from the surface, resulting in a 
reduction in heat transfer rate. In Figs. 13 and 14, the aug-
mentation of wedge angle parameter on both Cf  and Nux is 
depicted. Due to the increased fluid movement and 
improved thermal contact between the fluid and the surface, 
this lead to higher heat transfer rates. Figure 15 displays the 
enhancement of Nux with rising value of radiation param-
eter with respect to the mass of nanoparticles. With a higher 
radiation parameter, radiative heat transfer takes on a more 
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prominent role. This implies that thermal energy exchange 
occurs between surfaces via electromagnetic waves. In such 
scenarios, the potential for a substantial increase in the heat 
transfer rate becomes evident. Figure 16 displays the reduc-
tion in heat transfer rate with increasing value of Eckert 
number. Low Eckert numbers result in reduced heat transfer 
rates because there is insufficient fluid movement to effi-
ciently remove thermal energy from the surface. Figure 17 
visualized the upsurge in heat transfer rate with increasing 
value of Biot number. Due to enhanced thermal conduction 
within the solid material, a rise in the Biot number can 
accelerate the rate of heat transfer.

Final remarks

The flow of a mass-based hybrid nanofluid containing fer-
romagnetic nanoparticles across a rotating wedge with 
convective motion with variable magnetism is examined 
numerically. The modelling is accomplished through the 
utilization of the mass-based algorithm. In the framework of 
the Falkner–Skan problem, numerous nanoparticle shapes, 
including spheres, bricks, cylinders, platelets, and blades, 
have been investigated. Vertical plates, wedges, and horizon-
tal plates are all included in this study. Several significant 
findings were derived from the investigation, encompassing 
the following:
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•	 The analysis presented by comparing the current results 
in particular case shows the validation as well as the con-
vergence property of the proposed methodology.

•	 Increasing the mass of ferromagnetic nanoparticles 
results in improved thermal characteristics of the fluid, 
including enhanced viscosity and conductivity.

•	 Emphasizing the significance, it is pointed out that the 
magnetic parameter, wedge angle parameter, and veloc-
ity ratio parameter collectively lead to a reduction in the 
thickness of the momentum boundary layer.

•	 It is important to highlight that the radiation parameter, 
Biot number, Eckert number, and magnetic parameter 
contribute to an enlargement in the thickness of the 
thermal boundary layer, but wedge angle parameter has 
reverse trend.

•	 Incorporating the radiation parameter, convective con-
ditions, and wedge angle parameter amplifies the heat 
transfer rate, whereas the Eckert number and magnetic 
parameter have an opposite effect, diminishing the heat 
transfer rate.

•	 Observations reveal that when larger particle shapes are 
involved, a notable deceleration in the fluid temperature 
is marked.
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