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Abstract
The goal of the current research is to analyze heat transmission of radiative nanofluid with reference to boundary layer nature. 
Carbon nanotube's (CNT's) reliant liquid is being tested, and it flows on top of a curved extending surface. To scrutinize 
thermal transmission through the flow additional impacts of thermal radiation as well as internal heat generation have been 
incorporated. Dual nature of CNTs, that is, single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) have been 
employed in conjunction with slurry mixture (base fluid) for the formulation of nanofluid. Second-grade fluid model is 
engaged in order to capture the rheological properties of slurry mixtures (base fluid). To acquire the numerical solution of 
designed mathematical model, NDSolve approach is engaged using software Mathematica. Various parameters occurring in 
governing equations makes an impact on focused physical quantities. Graphs have been employed to capture these impacts for 
both SWCNTs and MWCNTs. In like manner, the impact of numerous factors on skin friction coefficient as well as Nusselt 
number have been examined using numerical charts. An increment in dimensionless curvature parameter causes a decline 
in fluid’s velocity profile as well as temperature profile. However, both fluid’s velocity and temperature get enhanced as an 
upsurge in solid volume fraction of carbon nanotubes, radiation parameter and heat generation parameter.

Keywords Second-grade nanofluid · Internal heat generation · Thermal radiation · Carbon nanotubes (CNTs: SWCNTs-
MWCNTs) · Curved stretching surface · Numerical solution

List of symbols
(ù, v̀)  Velocity components  (ms−1)
R̀∗
c
  Radius of curvature (m)

a  Stretching constant (s−1)
�̀�1  Second-grade fluid parameter
(�Cp)nf  Nanofluid heat capacity
�f  Base fluid dynamic viscosity (kg  ms−1)
kf  Base fluid thermal conductivity W  m−1  K−1

Cp  Specific heat J  kg−1  K−1

kCNT  Thermal conductivity of CNTs W  m−1  K−1

�nf  Thermal diffusivity of nanofluid  (m2  s−1)
àR  Rooseland mean approximation coefficient
�f   Fluid density (kg  m−3)
�

CNT
  Carbon nanotubes density (kg  m−3)

�f  Base fluid kinematic viscosity  (m2  s−1)
�  Similarity variable
�  Dimensionless radius of curvature
l  Characteristic length (m)

A  Reference temperature (K)
𝜏r̀s̀  Wall shear stress (Pa)
Reś  Local Reynolds number
r̀, s̀  Coordinate axes (m)

P  Pressure (Pa)
�̀�  Volumetric heat generation (J)
q̀r  Radiative heat flux (J)
�  Nanoparticles concentration
�nf  Nanofluid dynamic viscosity (kg  ms−1)
knf  Nanofluid thermal conductivity W  m−1  K−1

T̀   Temperature (K)
T̀w  Surface temperature (K)
T̀∞  Free stream temperature (K)
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�̀�∗   Stefan–Boltzmann constant (W  m−2  K−4)
RD  Radiation parameter
Pr  Prandtl number
�nf  Nanofluid kinematic viscosity  (m2  s−1)
�1  Heat generation parameter
�  Dimensionless temperature
f ′  Dimensionless velocities
q̀w  Wall heat flux (W  m−2)
Cf  Skin friction coefficient
Nus̀  Local Nusselt number

Introduction

Nanofluids are a type of fluid that have been infused with 
tiny nanoparticles. These nanoparticles can be made up of 
a variety of materials, including metals, oxides and other 
materials. When these nanoparticles are mixed into a fluid, 
they can dramatically change its properties. Nanofluids 
have been shown to have enhanced thermal conductivity, 
improved lubrication and increased stability. They also 
have the potential to improve a wide range of medical and 
industrial processes from cooling systems to energy pro-
duction. Nanofluids can be used in medical imaging, drug 
delivery, tissue engineering and cancer treatment. Choi [1] 
was the explorer who laid the groundwork for the evolu-
tion of nanofluids as a new category of thermal transmit-
ted fluids. He proposed the idea that adding small amounts 
of nanoparticles to a fluid could dramatically enhance its 
thermal conductivity. Soon after this, Kim et al. [2] investi-
gated the convective instability and heat transmission prop-
erties of nanofluids. Buongiorno [3] documented a study 
to explain the convective heat transmission in nanofluids. 
Tiwari and Das [4] examined the heat transfer performance 
of a square cavity filled with nanofluid under differentially 

heated conditions. The study also investigates the influence 
of the lid-driven motion on the heat transfer performance 
of the nanofluid. Buongiorno’s work [3] was extended by 
Khan and Pop [5] in regard to boundary layer nano-liquid 
flow over a stretchable sheet. The examination explored the 
effects of various parameters such as the stretching rate, 
nanoparticle volume fraction, thermal conductivity and heat 
transfer characteristics of the nanofluid. The heat and mass 
transmission phenomenon of nanofluid flow past a vertical 
plate under natural convection conditions were elaborated by 
Kuznetsov et al. [6]. Cu–H2O-based nanofluid was evaluated 
and documented by Raza et al. [7], by taking into account 
the impact of Brownian motion and thermophoresis, which 
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are two unique properties of nanofluids. Further literature 
can be seen [8–10].

Carbon nanotubes (both single and multiple-walled) are 
one of the most fascinating and promising materials of our 
time. These incredibly small tubes are made up of carbon 
atoms, arranged in a unique way that creates a strong, flex-
ible and highly conductive structure. They are so small that 

they are measured in nanometers or billionths of a meter. 
Carbon nanotubes have the strength to revolutionize a 
broader aspect of industries from electronics to medicine 
to energy. They are already being used in everything from 
super-strong materials to ultrafast computer chips, and 
scientists are constantly discovering new ways to harness 
their unique properties. Maxwell [11] conducted a formal 
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investigation on carbon nanotubes, exploring their effects 
on electricity and magnetism. Later on, Xue [12] developed 
a model to predict the thermal conductivity of CNT-based 
composites. The model takes into account the microstruc-
ture of the composites, including the orientation, length and 
concentration of the CNTs as well as the thermal conduc-
tivity of the surrounding matrix material. Khan et al. [13] 

investigated the dynamics of Stoke’s first problem for CNTs 
suspended nanofluids in the presence of slip boundary con-
dition. The results of the study show that the inclusion of 
CNTs enhances the heat transmission rate and the skin fric-
tion coefficient, while slip boundary condition has a promi-
nent impact on the fluid flow and heat transfer performance 
of the nanofluid. Hayat et al. [14] investigated the radiation 
effects for nanofluid flow over a rotating disk in the pres-
ence of carbon nanotubes (CNTs) and partial slip. Wakif 
et al. [15] performed a semi-analytical analysis of electro-
thermo-hydrodynamic stability in dielectric nanofluids using 
Buongiorno’s mathematical model. A mathematical model 
to analyze the behavior of CNT-based nanomaterial flow in 
the presence of two coaxially circulating disks was unveiled 
by Khan et al. [16]. The results of the study show that the 
existence of CNTs enhances the heat transmission rate and 
reduces the occurrence of entropy, while affecting the flow 
and temperature fields of the nanomaterial. Acharya et al. 
[17] scrutinized the mixed convective flow of carbon nano-
tubes (CNTs) over a convectively heated curved surface. Due 
to the prominent applications of carbon nanotubes, many 
researchers tried to harness the properties of CNTs [18–22].

Nowadays scrutinization of non-Newtonian fluids has 
become the central hotspot for engineers and scientists owing 
to its bright and encouraging applications in industry. Non-
Newtonian fluids are fluids which disobey law of viscosity 
unveiled by Newton. Salient utilization of non-Newtonian 
liquids incorporates; drag reducing agents (heavy oils and 
greases), printing technology, biological systems and strat-
egies, food processing, fluorescent lamps, electric devices 
and many others. One of many proposed non-Newtonian 
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liquids is second-grade fluid, which possesses stress tensor 
relationship with dual derivatives. In recent times, Hayat 
and Sajid [23] amplified second-grade axisymmetric fluid 
flow past an elastic sheet. Saif et al. [24] given thought to 
a stagnation point stream of a second-grade nano-material 
in the vicinity of nonlinear extending surface with a fluctu-
ating thickness. Abderrahim [25] documented a numerical 
procedure in order to simulate steady MHD flows of radia-
tive Casson fluids over a horizontal stretching sheet. Hayat 
et al. [26] given an explanation of second-grade fluid flow 
across a porous surface. Radiative stream of a second-grade 
nanofluid overtop an extending surface was illustrated by 
Jamshed et al. [27]. The Stefan blowing impact was incor-
porated by Gowda et al. [28] to investigate the second-grade 
fluid flow overtop a curved elastic surface. Further literature 
can be found at [29–32].

The study of fluid flow over a stretchable boundary is 
essential in the manufacturing of polymer films, sheets and 
fibers. Stretching of polymer materials is a critical step in 
the formation of these materials and proper understanding of 
the boundary layer flow is essential for achieving the desired 
properties. Moreover in the production of textiles, boundary 
layer flow over a stretching surface plays a crucial role in the 
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spinning and weaving of fibers. Aerodynamics, bio-inspired 
robotics, wind and water turbines are some crucial practical 
applications of boundary layer flow across a flexible surface. 
Sakiadis [33] initiated the investigations of streams in regard 
with boundary layer description across a stretchable surface 
and unveiled its numerical findings. The 2-D laminar flow 
of viscous fluid across a stretchable sheet was investigated 
by Crane [34]. Most of the previous studies incorporated 
boundary layer flow due to stretching surface, either linear 
or nonlinear; however, scrutinization of fluid flows through 
curved extending surfaces has not been studied much. Sajid 
et al. [35] were the pioneers who initiated the study of fluid 
flow in regard with boundary layer description across a 
curved elongating surface. Hayat et al. [36] illustrated the 
effects of Darcy–Forchheimer flow, Cattaneo–Christov heat 
flux as well as heterogeneous-homogeneous reactions on the 
behavior of viscous fluid flow over a curved stretching sur-
face. Hayat et al. [37] unveiled a numerical model to ana-
lyze the influences of convective heat and mass transfer via 
nonlinear curved stretching sheet. Sugunamma et al. [38] 
documented the impact of frictional heated radiative fer-
rofluid flow over a slandering stretchable surface. Further 
work can be seen at [39–42].

We conducted this investigation because CNTs are 
widely used in the engineering and healthcare sectors. Over 
a curved stretched sheet, we investigated the heat transfer 
through a radiative flow of a boundary layer description and 
internal heat generation of a second-grade nanofluid made 
of carbon nanotubes (SWCNTs and MWCNTs). In-depth 
literary analysis revealed that a combination of such effects 
had never before been investigated. As a result, the inquiry 
is divided into several sections. Following a review of the 
literature, the first section elaborates the mathematical for-
mulation, while the second section includes the mathemati-
cal solution obtained numerically by deploying NDSolve 
technique using software Mathematica along with significant 
discoveries via graphical representation. The final portion 
is set up to draw conclusions from the entire investigation.

Mathematical analysis

The flow under inspection is 2D-steady incompressible flow 
overtop a curved extending sheet at r̀ = R̀∗

c
. Geometrical 

vision of problem is described by Fig. 1. Curvilinear coordi-
nates have been engaged to model the governing equations. 
Nanofluid being studied is composed by introducing nano-
sized particles of carbon nanotubes (SWCNTs and MWC-
NTs) to second-grade fluid (base fluid). Moreover, effects of 
internal heat generation and thermal radiation have also been 
utilized to inspect the process of thermal transmission. The 

curved sheet is being stretched linearly in s̀ direction with 
velocity ù = as̀, where a > 0 is the stretching constant. The 
free stream temperature and sheet’s temperature are repre-
sented as T̀∞ and T̀w , respectively.

The second-grade fluid possess an extra stress tensor [27] 
defined as

where p denotes pressure, I indicates identity tensor, �̀� is 
dynamic viscosity, �j(j = 1, 2) are second-grade material 
constants and the first two Rivlin–Ericksen tensors A1 and 
A2 are described as

in which d/dt is material time derivative, and V is the veloc-
ity vector. This fact should be noticed that when �1 = �2 = 0, 
the fundamental equation for second-grade fluid reduces to 
that of viscous fluid. Employing the above assumption under 
boundary layer approximation, the equations that govern the 
flow are expressed as [27, 39]:

The associated constraints are as follows:

where v̀ and ù are velocities along r̀ and s̀ directions, respec-
tively, for the curved sheet R̀∗

c
 indicates its radius of cur-

vature, T̀  stands for base fluid’s (second grade fluid) tem-
perature, P for dimensionless pressure, q̀r for radiative heat 
flux, �̀� for rate of volumetric heat generation caused by heat 
source. Furthermore, (�Cp)nf stands for volumetric heat 

(1)� = −p�+�̀�A1 + �̀�1A2 + �̀�2A
2

1
,

(2)
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𝜕r̀𝜕s̀
−

4ù
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capacity of nanofluid �̀�nf for dynamic viscosity of nanofluid 
k̀nf for thermal conductivity and �nf for thermal diffusivity 
and their mathematical expressions [12] are stated as

where �̀�f stands for base fluid’s viscosity, � for concentra-
tion of nanoparticles, �nf for thermal diffusivity of nanofluid 
and (�f, �CNT) and (kf, kCNT) stands for density and thermal 
conductivity of base fluid (second grade fluid) and carbon 
nanotubes, respectively.

The term for radiative heat flux is estimated by Rooseland’s 
approximation [43] as:

where àR denotes the coefficient for Rooseland mean approx-
imation and �̀� is Stefan–Boltzmann constant. Temperature 
variation is taken into account in such fashion that T̀4 can 
be expanded about T̀∞ using Taylor series expansion while 
omitting terms of higher order:

Now using Eq. (11) and Eq. (12) in Eq. (6) we get:

Taking RD =
16�̀�∗T̀3

∞

3àR k̀f
 as radiation parameter [44], Eq. (13) 

takes the form:

(8)
�nf =

�f

(1−�)2.5
, �nf =

knf

(�Cp)nf
,

(�Cp)nf = (1 − �)(�Cp)f + �(�Cp)CNT,

}

(9)
(�Cp)nf

(�Cp)f
= 1 −

(

1 −
(�Cp)CNT

(�Cp)f

)

�,

�nf = (1 − �)�f + ��CNT,

}

(10)
knf

kf
=

(1 − �)(kCNT − kf) + 2�kCNT ln
(

kCNT+kf

2kf

)

(1 − �)(kCNT − kf) + 2�kf ln
(

kCNT+kf

2kf

) ,

(11)q̀r = −
4�̀�∗

3àR
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ù

r̀ + R̀∗
c

𝜕T̀

𝜕s̀

=
k̀nf

(𝜌Cp)nf

(

1 +
16�̀�∗T̀3

∞
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where Pr = 𝜈f

�̀�f
 , symbolizes Prandtl number. To simplify the 

governing equations, we engage the following similarity 
variables:

With the help of Eq. (15), Eq. (3) is trivially satisfied and 
Eq. (4), Eq. (5) and Eq. (14) can be written as:
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à

𝜈f
R̀∗
c
 symbolizes dimensionless radius of cur-

vature 𝛼1 =
�̀�1a

𝜇f

and 𝜆1 =
�̀�
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 stands for heat generation 

parameter. If we set second-grade parameter �1 = 0 then the 
modeled governing equations will govern the rheological 
properties of Newtonian nanofluids (a limiting case). Further 
parameters ⋏1,⋏2 and ⋏3 are formulated as:
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c

r̀d+R̀
∗
c

√

à𝜈ff (𝜍), 𝜍 =

�

à

𝜈f
r̀,

P = 𝜌à2s̀2P(𝜍), T̀ = T̀∞ +
As̀

l
𝜃(𝜍), 𝜃(𝜍) =

T̀−T̀∞

T̀w−T̀∞
.

⎫

⎪

⎬

⎪

⎭

(16)

�P
��

1
⋏1

=
f ′2

� + �
, 2�
� + �

P
⋏1

− �
� + �

ff ′′ + �
� + �

f ′2

− �
(� + �)2

ff ′ − ⋏2

(

f ′′′ + 1
� + �

f ′′ − 1
(� + �)2

f ′
)

(17)−
�1

⋏1

(

−
2�

(�+�)2

(

ff ��� + 4f �f ��
)

+
2�

�+�
f �f ���

+
2�

(�+�)3
(2f �� + 3f �2) −

4�

(�+�)4
ff �

)

= 0,

(18)

(

1 +
RD

(k̀nf∕k̀f)

)

(

𝜃�� +
𝜃�

𝜍 + 𝜅

)

−
Pr

(k̀nf∕k̀f)

(

⋏3

𝜅

𝜍 + 𝜅
(f �𝜃 − f 𝜃�) −𝜆1𝜃

)

= 0,

(19)

⋏1 = 1 − � + �
�CNT

�f
,

⋏2 =
1

(1−�)2.5
�

1−�+�
�CNT

�f

� ,

⋏3 = 1 −
�

1 −
(�Cp)CNT

(�Cp)f

�

�.

⎫

⎪

⎪

⎬

⎪

⎪

⎭
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The utilization of Eq. (15) transforms Eq. (7) into dimen-
sionless form as:

Getting rid of pressure from Eq. (16) and Eq. (17) we get:

Ultimately, pressure P can be obtained as follows:

In s̀-direction, the skin-friction coefficient (Cf) as well 
as local Nusselt number (Nus̀) are defined as:

where uw is velocity in s̀-direction, 𝜏r̀s̀ and q̀w describes shear 
stress as well as heat flux at curved stretchable surface in s̀
-direction respectively as follows:

Employing Eq. (15) in Eq. (23) and Eq. (24), we get expres-
sions for skin-friction coefficient as well as local Nusselt 
number as:

where Res̀ =
as̀2

𝜈f
 expresses local Reynolds number.

(20)
f (0) = 0, f ′(0) = 1, �(0) = 1,
f ′(∞) = 0, f ′′(∞) = 0, �(∞) = 0.

}

(21)

⋏2

(

f iv +
1

(� + �)3
f � −

1

(� + �)2
f �� +

2

� + �
f ���

)

+
�

� + �

(

ff ��� − f �f ��
)

+
�

(� + �)2

(

ff �� − f �
2
)

−
�

(� + �)3
ff �

+
�1

⋏1

(

2�

�+�

(

f �f iv + f ��f ���
)

−
10�

(�+�)2
f �f ��� −

2�

(�+�)2
ff iv −

8�

(�+�)2
f ��2

+
6�

(�+�)3
ff ��� +

24�

(�+�)3
f �f �� −

16�

(�+�)4
f �2 −

12�

(�+�)4
ff �� +

12�

(�+�)5
ff �

)

= 0.

(22)P = ⋏1

𝜍 + 𝜅

2𝜅

⎛

⎜

⎜

⎜

⎝

𝜅

𝜍+𝜅
ff �� −

𝜅

𝜍+𝜅
f �

2

+
𝜅

(𝜍+𝜅)2
ff � + ⋏2

�

f ��� +
1

𝜍+𝜅
f �� −

1

(𝜍+𝜅)2
f �
�

−
�̀�1

⋏1

à

�̀�f

�

−
2𝜅

(𝜍+𝜅)2

�

ff ��� + 4f �f ��
�

+
2𝜅

𝜍+𝜅
f �f ���

+
2𝜅

(𝜍+𝜅)3
(2f �� + 3f �2) −

4𝜅

(𝜍+𝜅)4
ff �

�

⎞

⎟

⎟

⎟

⎠

.

(23)Cf =
𝜏r̀s̀

𝜌fu
2
w

, Nus̀ =
(sdq̀w)∕kf

(T̀w − T̀∞)
,

(24)𝜏r̀s̀ =
1

(1−𝜙)2.5
𝜇nf

�

𝜕ù

𝜕r̀
−

ù

r̀+R̀
+

2𝛼1

𝜇nf

�

v̀

r̀+R̀

𝜕ù

𝜕r̀
+

R̀

r̀+R̀

𝜕ù

𝜕r̀

𝜕ù

𝜕s̀
−

2ùv̀

(r̀+R̀)
2 −

2R̀ù

(r̀+R̀)
2

𝜕ù

𝜕r̀

��

�

�

�

�

�r̀=0

,

q̀w = −knf

�

1 +
16𝜎∗T̀3

∞

3aRkf(knf∕kf)

�

𝜕T̀

𝜕r̀

�

�

�

�r̀=0

.

⎫

⎪

⎬

⎪

⎭

(25)

Re
1∕2

s̀
Cf =

1

(1−𝜙)2.5
2

�

f ��(0) −
f �(0)

𝜅
+ 𝛼1

�

−2
f �(0)2

𝜅
+ f �(0)f

��
(0)

��

,

Re
−1∕2

s̀
Nus̀ = −

knf

kf

�

1 +
RD

(knf∕kf)

�

𝜃�(0),

⎫

⎪

⎬

⎪

⎭

Numerical solution and discussion

The assessment of exact solution for the resultant system 
of nonlinear Eqs. (16), (18) and (21) together with bound-
ary conditions (20) is a tedious task. A well systematic 
technique, namely shooting method is engaged using 

Table 1  Thermophysical characteristics of carbon nanotubes (SWC-
NTs and MWCNTs) are tabulated as:

ρ/Kgm−3 Cp/Jkg
−1K−1

k/Wm
−1
K

−1

SWCNTs 2600 425 6600
MWCNTs 1600 796 3300

software MATHEMATICA to get the numerical solution. 
Under the aegis of this approach, a boundary value prob-
lem (BVP) is transformed into an initial value problem 
(IVP) with first-order differential equations with a minimal 
number of lacking initial constraints. These lacking initial 
constraints are selected in such a way that they must sat-
isfy the asymptotic boundary constraints. Table 1 along 
with Eqs. (8 − 10) is utilized to calculate numerical values 
of parameters formulated in Eq. (19), which are involved 

in evaluating the exact solution for derived nonlinear sys-
tem of equations. The pressure effects can be calculated 
using Eq. (22). Table 2 is generated to assess the effective-
ness and accuracy of the numerical technique employed in 
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this study. This table guarantees the validity of employed 
numerical technique by showcasing that our outcomes 
using shooting method aligns closely with results in 
existing literature obtained by Runge–Kutta–Fehlberg 
fourth–fifth-order method. Table 3 serves to present a 
comprehensive comparison between our results and the 
findings in existing literature, which shows an excellent 
agreement. After achieving the solution, this section is 
compiled to explore the effects of numerous parameters 
including dimensionless curvature (�) , solid volume frac-
tion of CNTs (�) , heat generation parameter (�1) , radiation 
parameter (RD) and Prandtl number (Pr) on focused physi-
cal quantities, i.e., velocity f �(�) and temperature �(�) of 
fluid. The effect of dimensionless curvature (�) on fluid’s 
velocity f �(�) is unveiled in Fig. 2. It can be seen that an 
upsurge in values of dimensionless curvature (�) causes 
a decline in fluid’s velocity f �(�) . This is due to the fact 
that value of � determines the flow regime in curved sur-
face. For low values of � (𝜅 << 1) , the flow is considered 
to be in the "low-curvature" regime, where the effects of 
curvature are negligible. However, for high values of � 
(𝜅 >> 1) , the flow is in the "high-curvature" regime, where 
curvature has a significant influence on the flow behavior. 
The influence of solid volume fraction (�) of CNTs on 
velocity profile f �(�) of nanofluid is unveiled in Fig. 3. 
A certain inflation has been noticed as the solid volume 
fraction (�) of CNTs is increased. As the solid volume 
fraction (�) of CNTs in the fluid increases, the number of 

collisions between the nanotubes and the fluid molecules 
also increases. These collisions cause the nanoparticles 
to move around in a random manner, which is known as 
the Brownian motion effect. This random movement of 
the nanoparticles creates a more chaotic environment 
for the fluid molecules, thereby enhancing their velocity. 
Moreover it has been noted that SWCNTs have slightly 
less velocity as compared to MWCNTs due to greater den-
sity values of MWCNTs. Figure 4 portrays the influence 
of second-grade fluid parameter (�1) over fluid’s velocity 
f �(�) . As the second-grade fluid parameter gets amplified, 
the velocity rises. This is because the added elasticity of 
the fluid can enhance its ability to resist deformation under 
shear. The fluid’s higher elasticity allows it to absorb and 
store more energy, resulting in greater momentum transfer 
and increased velocity. Figure 5 elucidates the impact of 
dimensionless curvature (�) on temperature profile �(�) . 
Physically larger values of (�) corresponds to reduction in 
viscous force (i.e., decay in kinematic velocity of fluid). 
Decay in kinematic viscosity of fluid corresponds to lower 
heat transfer. Hence, a declination in temperature profile 
�(�) is certain. Figure 6 unveils the action of solid volume 
fraction (�) of CNTs on temperature profile �(�) . Carbon 
nanotubes (both single and multiple-walled) have rela-
tively greater thermal conductivity and lesser specific heat 
then base fluid (second grade fluid). So increasing their 
volume (�) in nanofluid will cause a rise in �(�) . Moreo-
ver as the volume fraction (�) of carbon nanotubes in the 
fluid increases, the movement of fluid molecules becomes 
more restricted and the frictional forces between the fluid 
and the solid particles increase. This increase in frictional 
forces results in an increase in heat generation, which 
raises the temperature of the fluid. Additionally, carbon 
nanotubes themselves can absorb heat and transfer it to 
the surrounding fluid, which can further increase the tem-
perature. Action on temperature profile �(�) by heat gen-
eration parameter (�1) elucidates Fig. 7. The heat genera-
tion parameter (�1) is a measure of the amount of energy 
being generated per unit volume of the fluid. As the heat 
generation parameter (�1) increases, the amount of energy 
being generated per unit volume of the fluid also increases. 

Table 2  Error analysis of the values of −Re1∕2
s̀

Cf to address the valid-
ity of numerical method with RD = �1 = �1 = 0

� � Nagaraja 
et al. [45]

Current study Percentage 
relative

SWCNTs MWCNTs Absolute 
difference

0.0 5 1.15764 1.15763 1.15763 0.000864%

10 1.07349 1.07349 1.07349 0%

30 1.02352 1.02353 1.02353 0.000977%

50 1.01407 1.01405 1.01405 0.001972%

Table 3  Comparative analysis 
of the values of −Re1∕2

s̀
Cf for 

distinct numerics of � and � , 
with RD = �1 = �1 = 0

� � Abbas et al. [46] Saba et al. [40] Current study

SWCNTs MWCNTs SWCNTs MWCNTs

0.0 5 1.15763 1.15763 1.15763 1.15763 1.15763
10 1.07349 1.07349 1.07349 1.07349 1.07349
50 1.01405 1.01405 1.01405 1.01405 1.01405
1000 1.00079 1.00079 1.00079 1.00079 1.00079

0.1 5 − 1.43781 1.38677 1.43707 1.38669
10 − 1.32577 1.27251 1.32569 1.27247
50 − 1.27579 1.22190 1.27549 1.22186
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This leads to an increase in the amount of heat energy 
transferred to the fluid, causing the temperature �(�) of 
the fluid to rise. Figure 8 depicts the sway of radiation 
parameter (RD) on temperature of fluid �(�) . As predicted, 
the fluid’s temperature amplifies quite significantly as an 
upsurge in 

(

RD

)

 . The radiation parameter (RD) comprises 
mean absorption coefficient which reduces as increase in 
(

RD

)

 consequently the heat transfer rate seems increases at 
every point away from sheet. Hence, an increase in fluid’s 
temperature is certain. When using slurry mixtures as base 
fluid, it is worth noting that these are examined by taking 
the value of Prandtl number as 5.83, which is lower as 
compared to water and other common base fluids. Prandtl 
number is the ratio of momentum dfusivity to thermal dif-
fusivity that’s why its larger values decline the tempera-
ture distribution. The effect of dimensionless curvature 
(�) on pressure profile P(�) is explained in Fig. 9. One can 
notice that an increment in value of (�) causes an upsurge 
in pressure inside the boundary layer. However, pressure 
approaches to zero far away from the boundary. This is 
because as we move far from boundary the stream lines 
of fluid flow conduct the same manner as for the case of 
flat stretching surface. Moreover, Fig 10 guarantees that 
pressure variations can be neglected throughout the flow 
for the case (� = 1000) , i.e., a flat stretching sheet, while 
it cannot be neglected for curved surfaces.

Figure 11 shows the impact of dimensionless curva-
ture over skin friction coefficient (Cf) . An amplification in 
dimensionless curvature (�) leads to a rise in skin friction 
coefficient (Cf) in a flow over a curved stretching surface 
due to the increased surface area of the curved surface. 
As the dimensionless curvature (�) of the surface rises, 

the surface area also gets broadened, which can lead to a 
higher skin friction coefficient (Cf) . This is due to the fact 
that the fluid molecules in contact with the surface experi-
ence a higher shear stress as the dimensionless curvature 
(�) rises, resulting in a boost in skin friction coefficient 
(Cf) . Figure 12 portrays the influence of dimensionless 
curvature (�) over local Nusselt number (Nus̀) . As the 
dimensionless curvature of the surface rises (�) , the sur-
face area also expands, which can lead to a rise in the 
convective heat transfer coefficient and, subsequently, an 
increment in the local Nusselt number 

(

Nus
)

 . Additionally, 
the boundary layer thickness drops as the dimensionless 
curvature (�) of the surface rises, resulting in an increment 
in heat transfer rate at the surface, which can also contrib-
ute to a rise in the local Nusselt number 

(

Nus
)

 . Table 4 
displays how several factors such as solid volume frac-
tion of carbon nanotubes (�) , radiation parameter 

(

RD

)

 and 
internal heat generation parameter (�1) affects skin-friction 
coefficient 

(

Cf

)

 and local Nusselt number 
(

Nus̀
)

 defined in 
Eq. (25). An increment in solid volume fraction of car-
bon nanotubes (�) reduces the skin friction coefficient (Cf) 
due to the unique properties of carbon nanotubes. These 
properties, such as their high aspect ratio and excellent 
thermal conductivity enhances the transfer of heat and 
momentum in the fluid, which leads to a reduction in skin 
friction coefficient (Cf) . When the second-grade fluid 
parameter (�1) is higher, fluid’s viscosity tends to decrease 
with increasing shear rate. This decrease in viscosity with 
shear rate is known as shear-thinning behavior. The shear-
thinning behavior of the second-grade fluid leads to the 
reduction in the effective viscosity near the surface, result-
ing in decline of skin friction coefficient (Cf) . Furthermore 

Table 4  Numerical data for 
local Nusselt number and skin 
friction coefficient for various 
parameters

� �1 �1 R
D

SWCNTs MWCNTs

 Re1∕2
s̀

Cf Re
−1∕2

s̀
Nus̀ Re

1∕2

s̀
Cf Re

−1∕2

s̀
Nus̀

0.0 0.3 0.1 0.1 −3.09927 −1.48942 −3.09927 −1.52424

0.3 −3.56770 ↓ −1.48227 ↑ −3.27669 ↓ −1.51863 ↑

0.5 −3.97289 ↓ −1.44833 ↑ −3.64933 ↓ −1.48731 ↑

0.7 −5.19836 −1.37694 −4.98352 −1.41830

0.1 0.3 0.1 0.1 −3.75080 −1.57626 −3.67442 −1.59220

0.4 −3.89063 ↓ −1.59300 ↓ −3.80818 ↓ −1.60926 ↓

0.5 −4.03592 ↓ −1.60758 ↓ −3.94744 ↓ −1.62415 ↓

0.6 −4.18728 −1.62017 −4.09278 −1.63704

0.1 0.3 0.1 0.1 −3.26908 −1.49443 −3.14391 −1.51198

0.2 −3.26908 − −1.39034 ↑ −3.14391 − −1.41178 ↑

0.3 −3.26908 − −1.25988 ↑ −3.14391 − −1.29045 ↑

0.4 −3.26908 −1.16865 −3.14391 −1.21177

0.1 0.3 0.1 0.1 −3.26908 −1.49443 −3.14391 −1.51198

0.3 −3.26908 − −1.59302 ↓ −3.14391 − −1.61358 ↓

0.5 −3.26908 − −1.68015 ↓ −3.14391 − −1.70362 ↓

0.7 −3.26908 −1.75847 −3.14391 −1.78468
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thermal radiation (RD) and internal heat generation (�1) do 
not change the value of the local skin friction coefficient 
(Cf) because they do not directly affect the shear stress at 
the surface. Skin friction coefficient is the ratio of shear 
stress to the dynamic pressure of the fluid and is based 
solely on the fluid properties and flow conditions at the 
surface. Thermal radiation (RD) and internal heat genera-
tion (�1) are related to the energy balance of the fluid, but 
they do not directly influence the fluid flow behavior at 
the surface. Therefore, they do not affect the skin friction 
coefficient (Cf).

Carbon nanotubes have enhanced thermal conductivity, 
which can amplify the transfer of heat between the fluid 
and the surface. As the solid volume fraction of carbon 
nanotubes (�) strengthens, so does the thermal conductiv-
ity of the nanofluid, which leads to an advancement in the 
local Nusselt number 

(

Nus
)

 . Increment in second-grade 
fluid parameter (�1) leads to formation of thicker boundary 
layer near the solid surface. The thicker boundary layer acts 
as a barrier to heat transfer, reducing the convective heat 
transfer coefficient. As a result, the convective heat transfer 
decreases, resulting in lower local Nusselt number 

(

Nus
)

 . 
The Nusselt number 

(

Nus
)

 is a dimensionless parameter that 
relates the convective heat transfer coefficient to the thermal 
conductivity of the fluid and the characteristic length of the 
surface. It has been perceived that rate of heat flux raises 
as an upsurge in radiation parameter (RD) contains mean 
absorption coefficient which generates as rise in ( RD) ). For 
this reason, the heat transfer rate seems maximizing at every 
point away from sheet. So, the local Nusselt number gets 
amplified as a rise in radiation parameter (RD) . Moreover, an 
increment in heat generation parameter (�1) causes a reduc-
tion in local Nusselt number (Nu).

Conclusions

This investigation scrutinizes heat transmission through a 
radiative flow of boundary layer nature incorporating heat 
generation of second-grade nanofluid (slurry mixture) con-
taining carbon nanotubes (SWCNTs and MWCNTs) overtop 
a curved extending surface. Main highlights are:

• The velocity profile f �(�) gets amplified as an upsurge 
in solid volume fraction (�) and second-grade parameter 
(�1) and reduces as an increment in dimensionless cur-
vature (�).

• The temperature �(�) of the fluid rises due to amplifica-
tion of heat generation parameter (�1) , radiation param-
eter (RD) and solid volume fraction (�) of carbon nano-
tubes, while an opposite trend is noticed for the upsurge 
in dimensionless curvature (�).

• The skin friction coefficient (Cf) drops due to an incre-
ment in solid volume fraction (�) and it gets ampli-
fied due to a rise in dimensionless curvature (�) and it 
remains invariant for upsurge in radiation parameter (RD) 
and internal heat generation (�1).

• Local Nusselt (Nus) number rises as an upsurge in values 
of solid volume fraction (�) , dimensionless curvature (�) 
and internal heat generation (�1) , while it diminishes as 
a rise in radiation parameter (RD).
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